LSTM Music Generator
This commit is contained in:
parent
fee8de37cb
commit
33db5a7c6d
@ -48,18 +48,14 @@ output_path = sys.argv[2]
|
||||
# this dictionary is generated with model
|
||||
print('Loading... {}'.format(trained_model_path))
|
||||
model = pickle.load(open(trained_model_path, 'rb'))
|
||||
int_to_note = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
|
||||
|
||||
# TODO: 16 it should a variable by integrated with model seq_len
|
||||
# TODO: random.randint(0,50), the range should be a variable of lenght of vocab size
|
||||
seed = [random.randint(0,250) for x in range(16)]
|
||||
int_to_note, n_vocab, seq_len = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
|
||||
|
||||
seed = [random.randint(0,n_vocab) for x in range(seq_len)]
|
||||
music = []
|
||||
|
||||
print('Generating...')
|
||||
for i in trange(124):
|
||||
#TODO: 16 it should a variable by integrated with model seq_len
|
||||
predicted_vector = model.predict(np.array(seed).reshape(1,16,1))
|
||||
predicted_vector = model.predict(np.array(seed).reshape(1,seq_len,1))
|
||||
# using best fitted note
|
||||
# predicted_index = np.argmax(predicted_vector)
|
||||
# using propability distribution for choosing note
|
||||
@ -67,14 +63,14 @@ for i in trange(124):
|
||||
predicted_index = choose_by_prob(predicted_vector)
|
||||
music.append(int_to_note[predicted_index])
|
||||
seed.append(predicted_index)
|
||||
#TODO: 16 it should a variable by integrated with model seq_len
|
||||
seed = seed[1:1+16]
|
||||
seed = seed[1:1+seq_len]
|
||||
|
||||
|
||||
print('Saving...')
|
||||
offset = 0
|
||||
output_notes = []
|
||||
for event in tqdm(music):
|
||||
for _event in tqdm(music):
|
||||
event, note_len = _event.split(';')
|
||||
if (' ' in event) or event.isdigit():
|
||||
notes_in_chord = event.split(' ')
|
||||
notes = []
|
||||
@ -91,7 +87,7 @@ for event in tqdm(music):
|
||||
new_note.storedInstrument = instrument.Piano()
|
||||
output_notes.append(new_note)
|
||||
|
||||
offset += 0.5
|
||||
offset += float(note_len)
|
||||
|
||||
midi_stream = stream.Stream(output_notes)
|
||||
|
||||
|
@ -8,8 +8,7 @@ that is prepared for model training.
|
||||
output_path - the output path where will be created samples of data
|
||||
|
||||
Usage:
|
||||
>>> ./midi.py <midi_folder_path> <output_path>
|
||||
|
||||
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>
|
||||
'''
|
||||
|
||||
import settings
|
||||
@ -24,9 +23,22 @@ import pickle
|
||||
from music21 import converter, instrument, note, chord, stream
|
||||
import music21
|
||||
|
||||
midi_folder_path = sys.argv[1]
|
||||
output_path = sys.argv[2]
|
||||
seq_len = int(sys.argv[3])
|
||||
class MidiParseError(Exception):
|
||||
"""Error that is raised then midi file cannot be parsed"""
|
||||
pass
|
||||
|
||||
|
||||
def parse_argv(argv):
|
||||
'''This function is parsing given arguments when running a midi script.
|
||||
Returns a tuple consinting of midi_folder_path, output_path, seq_len'''
|
||||
try:
|
||||
midi_folder_path = argv[1]
|
||||
output_path = argv[2]
|
||||
seq_len = int(argv[3])
|
||||
return midi_folder_path, output_path, seq_len
|
||||
except IndexError:
|
||||
raise AttributeError('You propably didnt pass parameters to run midi.py script.\
|
||||
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>')
|
||||
|
||||
def to_sequence(midi_path, seq_len):
|
||||
''' This function is supposed to be used on one midi file in directory loop.
|
||||
@ -40,22 +52,24 @@ def to_sequence(midi_path, seq_len):
|
||||
- midi_path: path to midi file
|
||||
- seq_len: lenght of sequance before prediction
|
||||
|
||||
Returns: Tuple of train_X, train_y directories'''
|
||||
Returns: Tuple of train_X, train_y dictionaries consisinting of samples of song grouped by instruments
|
||||
'''
|
||||
|
||||
seq_by_instrument = defaultdict( lambda : [] )
|
||||
midi_file = music21.converter.parse(midi_path)
|
||||
|
||||
try:
|
||||
midi_file = music21.converter.parse(midi_path)
|
||||
except music21.midi.MidiException:
|
||||
raise MidiParseError
|
||||
stream = music21.instrument.partitionByInstrument(midi_file)
|
||||
for part in stream:
|
||||
for event in part:
|
||||
if part.partName != None:
|
||||
# TODO: add note lenght as parameter
|
||||
if isinstance(event, music21.note.Note):
|
||||
# to_export_event = (str(event.pitch), event.quarterLength)
|
||||
to_export_event = str(event.pitch)
|
||||
to_export_event = '{};{}'.format(str(event.pitch), float(event.quarterLength))
|
||||
seq_by_instrument[part.partName].append(to_export_event)
|
||||
elif isinstance(event, music21.chord.Chord):
|
||||
to_export_event = ' '.join(str(note) for note in event.pitches)
|
||||
# to_export_event = (' '.join(str(note) for note in event.pitches), event.quarterLength)
|
||||
to_export_event = '{};{}'.format(' '.join(str(note) for note in event.pitches), float(event.quarterLength))
|
||||
seq_by_instrument[part.partName].append(to_export_event)
|
||||
|
||||
X_train_by_instrument = defaultdict( lambda : [] )
|
||||
@ -65,39 +79,54 @@ def to_sequence(midi_path, seq_len):
|
||||
for i in range(len(sequence)-(seq_len)) :
|
||||
X_train_by_instrument[instrument].append(np.array(sequence[i:i+seq_len])) # <seq lenth
|
||||
y_train_by_instrument[instrument].append(np.array(sequence[i+seq_len]))
|
||||
# TODO: Notes to integers
|
||||
|
||||
return X_train_by_instrument, y_train_by_instrument
|
||||
|
||||
def main():
|
||||
print('Exporting...')
|
||||
|
||||
def colect_samples(midi_folder_path, seq_len):
|
||||
'''This function is looping throuth given directories and
|
||||
collecting samples from midi files.
|
||||
|
||||
Parameters: midi_folder_path - a path to directory with midi files
|
||||
seq_len - a lenth of train_X sample that tells
|
||||
how many notes is given do LSTM to predict the next note.
|
||||
|
||||
Returns: Tuple of train_X, train_y dictionaries consisinting
|
||||
of samples of all songs in directory grouped by instruments.
|
||||
'''
|
||||
|
||||
print('Collecting samples...')
|
||||
train_X = defaultdict( lambda : [] )
|
||||
train_y = defaultdict( lambda : [] )
|
||||
|
||||
for directory, subdirectories, files in os.walk(midi_folder_path):
|
||||
for midi_file in tqdm(files):
|
||||
midi_file_path = os.path.join(directory, midi_file)
|
||||
|
||||
# some midi files can be corupted, and cannot be parsed
|
||||
# so we just omit corupted files, and go to the next file.
|
||||
try:
|
||||
_X_train, _y_train = to_sequence(midi_file_path, seq_len)
|
||||
except music21.midi.MidiException:
|
||||
except MidiParseError:
|
||||
continue
|
||||
|
||||
for (X_key, X_value), (y_key, y_value) in zip(_X_train.items(), _y_train.items()):
|
||||
train_X[X_key].extend(np.array(X_value))
|
||||
train_y[y_key].extend(np.array(y_value))
|
||||
|
||||
# this is for intrument separation
|
||||
return train_X, train_y
|
||||
|
||||
def save_samples(output_path, samples):
|
||||
'''This function save samples to npz packages, splitted by instrument.'''
|
||||
|
||||
print('Saving...')
|
||||
|
||||
if not os.path.exists(output_path):
|
||||
os.makedirs(output_path)
|
||||
|
||||
train_X, train_y = samples
|
||||
for (X_key, X_value), (y_key, y_value) in tqdm(zip(train_X.items(), train_y.items())):
|
||||
if X_key == y_key:
|
||||
np.savez_compressed('{}/{}.npz'.format(output_path, X_key), np.array(X_value), np.array(y_value))
|
||||
|
||||
def main():
|
||||
midi_folder_path, output_path, seq_len = parse_argv(sys.argv)
|
||||
save_samples(output_path, colect_samples(midi_folder_path, seq_len))
|
||||
print('Done!')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -1,15 +1,14 @@
|
||||
#!python3
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import tensorflow as tf
|
||||
import sys
|
||||
import pickle
|
||||
import settings
|
||||
#from tensorflow.keras import layers
|
||||
|
||||
import numpy as np
|
||||
from keras.layers import Input, Dense, Conv2D, Flatten, LSTM, Dropout, TimeDistributed, RepeatVector, Activation, Bidirectional, Reshape
|
||||
from keras.models import Model, Sequential
|
||||
from keras.utils.np_utils import to_categorical
|
||||
import numpy as np
|
||||
import sys
|
||||
import pickle
|
||||
|
||||
|
||||
def load_data(samples_path):
|
||||
print('Loading... {}'.format(train_data_path))
|
||||
@ -25,7 +24,6 @@ def preprocess_samples(train_X, train_y):
|
||||
n_vocab = vocab.shape[0]
|
||||
note_to_int = dict((note, number) for number, note in enumerate(vocab))
|
||||
int_to_note = dict((number, note) for number, note in enumerate(vocab))
|
||||
|
||||
_train_X = []
|
||||
_train_y = []
|
||||
for sample in train_X:
|
||||
@ -58,12 +56,13 @@ model.add(Dense(n_vocab))
|
||||
model.add(Activation('softmax'))
|
||||
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
|
||||
|
||||
# model training
|
||||
# This code will train our model, with given by parameter number of epochs
|
||||
print('Training...')
|
||||
model.fit(train_X, train_y, epochs=epochs, batch_size=64)
|
||||
|
||||
# save trained model
|
||||
# it saves model, and additional informations of model
|
||||
# that is needed to generate music from it
|
||||
pickle.dump(model, open(save_model_path,'wb'))
|
||||
pickle.dump(int_to_note, open('{}_dict'.format(save_model_path),'wb'))
|
||||
pickle.dump((int_to_note, n_vocab, train_X.shape[1]), open('{}_dict'.format(save_model_path),'wb'))
|
||||
print('Done!')
|
||||
print("Model saved to: {}".format(save_model_path))
|
||||
|
Loading…
Reference in New Issue
Block a user