LSTM Music Generator

This commit is contained in:
Cezary Pukownik 2019-06-19 15:48:39 +02:00
parent fee8de37cb
commit 33db5a7c6d
3 changed files with 67 additions and 43 deletions

View File

@ -48,18 +48,14 @@ output_path = sys.argv[2]
# this dictionary is generated with model
print('Loading... {}'.format(trained_model_path))
model = pickle.load(open(trained_model_path, 'rb'))
int_to_note = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
# TODO: 16 it should a variable by integrated with model seq_len
# TODO: random.randint(0,50), the range should be a variable of lenght of vocab size
seed = [random.randint(0,250) for x in range(16)]
int_to_note, n_vocab, seq_len = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
seed = [random.randint(0,n_vocab) for x in range(seq_len)]
music = []
print('Generating...')
for i in trange(124):
#TODO: 16 it should a variable by integrated with model seq_len
predicted_vector = model.predict(np.array(seed).reshape(1,16,1))
predicted_vector = model.predict(np.array(seed).reshape(1,seq_len,1))
# using best fitted note
# predicted_index = np.argmax(predicted_vector)
# using propability distribution for choosing note
@ -67,14 +63,14 @@ for i in trange(124):
predicted_index = choose_by_prob(predicted_vector)
music.append(int_to_note[predicted_index])
seed.append(predicted_index)
#TODO: 16 it should a variable by integrated with model seq_len
seed = seed[1:1+16]
seed = seed[1:1+seq_len]
print('Saving...')
offset = 0
output_notes = []
for event in tqdm(music):
for _event in tqdm(music):
event, note_len = _event.split(';')
if (' ' in event) or event.isdigit():
notes_in_chord = event.split(' ')
notes = []
@ -91,7 +87,7 @@ for event in tqdm(music):
new_note.storedInstrument = instrument.Piano()
output_notes.append(new_note)
offset += 0.5
offset += float(note_len)
midi_stream = stream.Stream(output_notes)

View File

@ -8,8 +8,7 @@ that is prepared for model training.
output_path - the output path where will be created samples of data
Usage:
>>> ./midi.py <midi_folder_path> <output_path>
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>
'''
import settings
@ -24,9 +23,22 @@ import pickle
from music21 import converter, instrument, note, chord, stream
import music21
midi_folder_path = sys.argv[1]
output_path = sys.argv[2]
seq_len = int(sys.argv[3])
class MidiParseError(Exception):
"""Error that is raised then midi file cannot be parsed"""
pass
def parse_argv(argv):
'''This function is parsing given arguments when running a midi script.
Returns a tuple consinting of midi_folder_path, output_path, seq_len'''
try:
midi_folder_path = argv[1]
output_path = argv[2]
seq_len = int(argv[3])
return midi_folder_path, output_path, seq_len
except IndexError:
raise AttributeError('You propably didnt pass parameters to run midi.py script.\
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>')
def to_sequence(midi_path, seq_len):
''' This function is supposed to be used on one midi file in directory loop.
@ -40,22 +52,24 @@ def to_sequence(midi_path, seq_len):
- midi_path: path to midi file
- seq_len: lenght of sequance before prediction
Returns: Tuple of train_X, train_y directories'''
Returns: Tuple of train_X, train_y dictionaries consisinting of samples of song grouped by instruments
'''
seq_by_instrument = defaultdict( lambda : [] )
try:
midi_file = music21.converter.parse(midi_path)
except music21.midi.MidiException:
raise MidiParseError
stream = music21.instrument.partitionByInstrument(midi_file)
for part in stream:
for event in part:
if part.partName != None:
# TODO: add note lenght as parameter
if isinstance(event, music21.note.Note):
# to_export_event = (str(event.pitch), event.quarterLength)
to_export_event = str(event.pitch)
to_export_event = '{};{}'.format(str(event.pitch), float(event.quarterLength))
seq_by_instrument[part.partName].append(to_export_event)
elif isinstance(event, music21.chord.Chord):
to_export_event = ' '.join(str(note) for note in event.pitches)
# to_export_event = (' '.join(str(note) for note in event.pitches), event.quarterLength)
to_export_event = '{};{}'.format(' '.join(str(note) for note in event.pitches), float(event.quarterLength))
seq_by_instrument[part.partName].append(to_export_event)
X_train_by_instrument = defaultdict( lambda : [] )
@ -65,39 +79,54 @@ def to_sequence(midi_path, seq_len):
for i in range(len(sequence)-(seq_len)) :
X_train_by_instrument[instrument].append(np.array(sequence[i:i+seq_len])) # <seq lenth
y_train_by_instrument[instrument].append(np.array(sequence[i+seq_len]))
# TODO: Notes to integers
return X_train_by_instrument, y_train_by_instrument
def main():
print('Exporting...')
def colect_samples(midi_folder_path, seq_len):
'''This function is looping throuth given directories and
collecting samples from midi files.
Parameters: midi_folder_path - a path to directory with midi files
seq_len - a lenth of train_X sample that tells
how many notes is given do LSTM to predict the next note.
Returns: Tuple of train_X, train_y dictionaries consisinting
of samples of all songs in directory grouped by instruments.
'''
print('Collecting samples...')
train_X = defaultdict( lambda : [] )
train_y = defaultdict( lambda : [] )
for directory, subdirectories, files in os.walk(midi_folder_path):
for midi_file in tqdm(files):
midi_file_path = os.path.join(directory, midi_file)
# some midi files can be corupted, and cannot be parsed
# so we just omit corupted files, and go to the next file.
try:
_X_train, _y_train = to_sequence(midi_file_path, seq_len)
except music21.midi.MidiException:
except MidiParseError:
continue
for (X_key, X_value), (y_key, y_value) in zip(_X_train.items(), _y_train.items()):
train_X[X_key].extend(np.array(X_value))
train_y[y_key].extend(np.array(y_value))
# this is for intrument separation
return train_X, train_y
def save_samples(output_path, samples):
'''This function save samples to npz packages, splitted by instrument.'''
print('Saving...')
if not os.path.exists(output_path):
os.makedirs(output_path)
train_X, train_y = samples
for (X_key, X_value), (y_key, y_value) in tqdm(zip(train_X.items(), train_y.items())):
if X_key == y_key:
np.savez_compressed('{}/{}.npz'.format(output_path, X_key), np.array(X_value), np.array(y_value))
def main():
midi_folder_path, output_path, seq_len = parse_argv(sys.argv)
save_samples(output_path, colect_samples(midi_folder_path, seq_len))
print('Done!')
if __name__ == '__main__':

View File

@ -1,15 +1,14 @@
#!python3
#!/usr/bin/env python3
import tensorflow as tf
import sys
import pickle
import settings
#from tensorflow.keras import layers
import numpy as np
from keras.layers import Input, Dense, Conv2D, Flatten, LSTM, Dropout, TimeDistributed, RepeatVector, Activation, Bidirectional, Reshape
from keras.models import Model, Sequential
from keras.utils.np_utils import to_categorical
import numpy as np
import sys
import pickle
def load_data(samples_path):
print('Loading... {}'.format(train_data_path))
@ -25,7 +24,6 @@ def preprocess_samples(train_X, train_y):
n_vocab = vocab.shape[0]
note_to_int = dict((note, number) for number, note in enumerate(vocab))
int_to_note = dict((number, note) for number, note in enumerate(vocab))
_train_X = []
_train_y = []
for sample in train_X:
@ -58,12 +56,13 @@ model.add(Dense(n_vocab))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# model training
# This code will train our model, with given by parameter number of epochs
print('Training...')
model.fit(train_X, train_y, epochs=epochs, batch_size=64)
# save trained model
# it saves model, and additional informations of model
# that is needed to generate music from it
pickle.dump(model, open(save_model_path,'wb'))
pickle.dump(int_to_note, open('{}_dict'.format(save_model_path),'wb'))
pickle.dump((int_to_note, n_vocab, train_X.shape[1]), open('{}_dict'.format(save_model_path),'wb'))
print('Done!')
print("Model saved to: {}".format(save_model_path))