Simple LSTM Music Generator #1
@ -48,18 +48,14 @@ output_path = sys.argv[2]
|
|||||||
# this dictionary is generated with model
|
# this dictionary is generated with model
|
||||||
print('Loading... {}'.format(trained_model_path))
|
print('Loading... {}'.format(trained_model_path))
|
||||||
model = pickle.load(open(trained_model_path, 'rb'))
|
model = pickle.load(open(trained_model_path, 'rb'))
|
||||||
int_to_note = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
|
int_to_note, n_vocab, seq_len = pickle.load(open('{}_dict'.format(trained_model_path), 'rb'))
|
||||||
|
|
||||||
# TODO: 16 it should a variable by integrated with model seq_len
|
|
||||||
# TODO: random.randint(0,50), the range should be a variable of lenght of vocab size
|
|
||||||
seed = [random.randint(0,250) for x in range(16)]
|
|
||||||
|
|
||||||
|
seed = [random.randint(0,n_vocab) for x in range(seq_len)]
|
||||||
music = []
|
music = []
|
||||||
|
|
||||||
print('Generating...')
|
print('Generating...')
|
||||||
for i in trange(124):
|
for i in trange(124):
|
||||||
#TODO: 16 it should a variable by integrated with model seq_len
|
predicted_vector = model.predict(np.array(seed).reshape(1,seq_len,1))
|
||||||
predicted_vector = model.predict(np.array(seed).reshape(1,16,1))
|
|
||||||
# using best fitted note
|
# using best fitted note
|
||||||
# predicted_index = np.argmax(predicted_vector)
|
# predicted_index = np.argmax(predicted_vector)
|
||||||
# using propability distribution for choosing note
|
# using propability distribution for choosing note
|
||||||
@ -67,14 +63,14 @@ for i in trange(124):
|
|||||||
predicted_index = choose_by_prob(predicted_vector)
|
predicted_index = choose_by_prob(predicted_vector)
|
||||||
music.append(int_to_note[predicted_index])
|
music.append(int_to_note[predicted_index])
|
||||||
seed.append(predicted_index)
|
seed.append(predicted_index)
|
||||||
#TODO: 16 it should a variable by integrated with model seq_len
|
seed = seed[1:1+seq_len]
|
||||||
seed = seed[1:1+16]
|
|
||||||
|
|
||||||
|
|
||||||
print('Saving...')
|
print('Saving...')
|
||||||
offset = 0
|
offset = 0
|
||||||
output_notes = []
|
output_notes = []
|
||||||
for event in tqdm(music):
|
for _event in tqdm(music):
|
||||||
|
event, note_len = _event.split(';')
|
||||||
if (' ' in event) or event.isdigit():
|
if (' ' in event) or event.isdigit():
|
||||||
notes_in_chord = event.split(' ')
|
notes_in_chord = event.split(' ')
|
||||||
notes = []
|
notes = []
|
||||||
@ -91,7 +87,7 @@ for event in tqdm(music):
|
|||||||
new_note.storedInstrument = instrument.Piano()
|
new_note.storedInstrument = instrument.Piano()
|
||||||
output_notes.append(new_note)
|
output_notes.append(new_note)
|
||||||
|
|
||||||
offset += 0.5
|
offset += float(note_len)
|
||||||
|
|
||||||
midi_stream = stream.Stream(output_notes)
|
midi_stream = stream.Stream(output_notes)
|
||||||
|
|
||||||
|
@ -8,8 +8,7 @@ that is prepared for model training.
|
|||||||
output_path - the output path where will be created samples of data
|
output_path - the output path where will be created samples of data
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
>>> ./midi.py <midi_folder_path> <output_path>
|
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import settings
|
import settings
|
||||||
@ -24,9 +23,22 @@ import pickle
|
|||||||
from music21 import converter, instrument, note, chord, stream
|
from music21 import converter, instrument, note, chord, stream
|
||||||
import music21
|
import music21
|
||||||
|
|
||||||
midi_folder_path = sys.argv[1]
|
class MidiParseError(Exception):
|
||||||
output_path = sys.argv[2]
|
"""Error that is raised then midi file cannot be parsed"""
|
||||||
seq_len = int(sys.argv[3])
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def parse_argv(argv):
|
||||||
|
'''This function is parsing given arguments when running a midi script.
|
||||||
|
Returns a tuple consinting of midi_folder_path, output_path, seq_len'''
|
||||||
|
try:
|
||||||
|
midi_folder_path = argv[1]
|
||||||
|
output_path = argv[2]
|
||||||
|
seq_len = int(argv[3])
|
||||||
|
return midi_folder_path, output_path, seq_len
|
||||||
|
except IndexError:
|
||||||
|
raise AttributeError('You propably didnt pass parameters to run midi.py script.\
|
||||||
|
>>> ./midi.py <midi_folder_path> <output_path> <sequence_lenth>')
|
||||||
|
|
||||||
def to_sequence(midi_path, seq_len):
|
def to_sequence(midi_path, seq_len):
|
||||||
''' This function is supposed to be used on one midi file in directory loop.
|
''' This function is supposed to be used on one midi file in directory loop.
|
||||||
@ -40,22 +52,24 @@ def to_sequence(midi_path, seq_len):
|
|||||||
- midi_path: path to midi file
|
- midi_path: path to midi file
|
||||||
- seq_len: lenght of sequance before prediction
|
- seq_len: lenght of sequance before prediction
|
||||||
|
|
||||||
Returns: Tuple of train_X, train_y directories'''
|
Returns: Tuple of train_X, train_y dictionaries consisinting of samples of song grouped by instruments
|
||||||
|
'''
|
||||||
|
|
||||||
seq_by_instrument = defaultdict( lambda : [] )
|
seq_by_instrument = defaultdict( lambda : [] )
|
||||||
|
|
||||||
|
try:
|
||||||
midi_file = music21.converter.parse(midi_path)
|
midi_file = music21.converter.parse(midi_path)
|
||||||
|
except music21.midi.MidiException:
|
||||||
|
raise MidiParseError
|
||||||
stream = music21.instrument.partitionByInstrument(midi_file)
|
stream = music21.instrument.partitionByInstrument(midi_file)
|
||||||
for part in stream:
|
for part in stream:
|
||||||
for event in part:
|
for event in part:
|
||||||
if part.partName != None:
|
if part.partName != None:
|
||||||
# TODO: add note lenght as parameter
|
|
||||||
if isinstance(event, music21.note.Note):
|
if isinstance(event, music21.note.Note):
|
||||||
# to_export_event = (str(event.pitch), event.quarterLength)
|
to_export_event = '{};{}'.format(str(event.pitch), float(event.quarterLength))
|
||||||
to_export_event = str(event.pitch)
|
|
||||||
seq_by_instrument[part.partName].append(to_export_event)
|
seq_by_instrument[part.partName].append(to_export_event)
|
||||||
elif isinstance(event, music21.chord.Chord):
|
elif isinstance(event, music21.chord.Chord):
|
||||||
to_export_event = ' '.join(str(note) for note in event.pitches)
|
to_export_event = '{};{}'.format(' '.join(str(note) for note in event.pitches), float(event.quarterLength))
|
||||||
# to_export_event = (' '.join(str(note) for note in event.pitches), event.quarterLength)
|
|
||||||
seq_by_instrument[part.partName].append(to_export_event)
|
seq_by_instrument[part.partName].append(to_export_event)
|
||||||
|
|
||||||
X_train_by_instrument = defaultdict( lambda : [] )
|
X_train_by_instrument = defaultdict( lambda : [] )
|
||||||
@ -65,39 +79,54 @@ def to_sequence(midi_path, seq_len):
|
|||||||
for i in range(len(sequence)-(seq_len)) :
|
for i in range(len(sequence)-(seq_len)) :
|
||||||
X_train_by_instrument[instrument].append(np.array(sequence[i:i+seq_len])) # <seq lenth
|
X_train_by_instrument[instrument].append(np.array(sequence[i:i+seq_len])) # <seq lenth
|
||||||
y_train_by_instrument[instrument].append(np.array(sequence[i+seq_len]))
|
y_train_by_instrument[instrument].append(np.array(sequence[i+seq_len]))
|
||||||
# TODO: Notes to integers
|
|
||||||
|
|
||||||
return X_train_by_instrument, y_train_by_instrument
|
return X_train_by_instrument, y_train_by_instrument
|
||||||
|
|
||||||
def main():
|
def colect_samples(midi_folder_path, seq_len):
|
||||||
print('Exporting...')
|
'''This function is looping throuth given directories and
|
||||||
|
collecting samples from midi files.
|
||||||
|
|
||||||
|
Parameters: midi_folder_path - a path to directory with midi files
|
||||||
|
seq_len - a lenth of train_X sample that tells
|
||||||
|
how many notes is given do LSTM to predict the next note.
|
||||||
|
|
||||||
|
Returns: Tuple of train_X, train_y dictionaries consisinting
|
||||||
|
of samples of all songs in directory grouped by instruments.
|
||||||
|
'''
|
||||||
|
|
||||||
|
print('Collecting samples...')
|
||||||
train_X = defaultdict( lambda : [] )
|
train_X = defaultdict( lambda : [] )
|
||||||
train_y = defaultdict( lambda : [] )
|
train_y = defaultdict( lambda : [] )
|
||||||
|
|
||||||
for directory, subdirectories, files in os.walk(midi_folder_path):
|
for directory, subdirectories, files in os.walk(midi_folder_path):
|
||||||
for midi_file in tqdm(files):
|
for midi_file in tqdm(files):
|
||||||
midi_file_path = os.path.join(directory, midi_file)
|
midi_file_path = os.path.join(directory, midi_file)
|
||||||
|
|
||||||
# some midi files can be corupted, and cannot be parsed
|
|
||||||
# so we just omit corupted files, and go to the next file.
|
|
||||||
try:
|
try:
|
||||||
_X_train, _y_train = to_sequence(midi_file_path, seq_len)
|
_X_train, _y_train = to_sequence(midi_file_path, seq_len)
|
||||||
except music21.midi.MidiException:
|
except MidiParseError:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
for (X_key, X_value), (y_key, y_value) in zip(_X_train.items(), _y_train.items()):
|
for (X_key, X_value), (y_key, y_value) in zip(_X_train.items(), _y_train.items()):
|
||||||
train_X[X_key].extend(np.array(X_value))
|
train_X[X_key].extend(np.array(X_value))
|
||||||
train_y[y_key].extend(np.array(y_value))
|
train_y[y_key].extend(np.array(y_value))
|
||||||
|
|
||||||
# this is for intrument separation
|
return train_X, train_y
|
||||||
|
|
||||||
|
def save_samples(output_path, samples):
|
||||||
|
'''This function save samples to npz packages, splitted by instrument.'''
|
||||||
|
|
||||||
print('Saving...')
|
print('Saving...')
|
||||||
|
|
||||||
if not os.path.exists(output_path):
|
if not os.path.exists(output_path):
|
||||||
os.makedirs(output_path)
|
os.makedirs(output_path)
|
||||||
|
|
||||||
|
train_X, train_y = samples
|
||||||
for (X_key, X_value), (y_key, y_value) in tqdm(zip(train_X.items(), train_y.items())):
|
for (X_key, X_value), (y_key, y_value) in tqdm(zip(train_X.items(), train_y.items())):
|
||||||
if X_key == y_key:
|
if X_key == y_key:
|
||||||
np.savez_compressed('{}/{}.npz'.format(output_path, X_key), np.array(X_value), np.array(y_value))
|
np.savez_compressed('{}/{}.npz'.format(output_path, X_key), np.array(X_value), np.array(y_value))
|
||||||
|
|
||||||
|
def main():
|
||||||
|
midi_folder_path, output_path, seq_len = parse_argv(sys.argv)
|
||||||
|
save_samples(output_path, colect_samples(midi_folder_path, seq_len))
|
||||||
print('Done!')
|
print('Done!')
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
@ -1,15 +1,14 @@
|
|||||||
#!python3
|
#!python3
|
||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
|
import sys
|
||||||
import tensorflow as tf
|
import pickle
|
||||||
import settings
|
import settings
|
||||||
#from tensorflow.keras import layers
|
|
||||||
|
import numpy as np
|
||||||
from keras.layers import Input, Dense, Conv2D, Flatten, LSTM, Dropout, TimeDistributed, RepeatVector, Activation, Bidirectional, Reshape
|
from keras.layers import Input, Dense, Conv2D, Flatten, LSTM, Dropout, TimeDistributed, RepeatVector, Activation, Bidirectional, Reshape
|
||||||
from keras.models import Model, Sequential
|
from keras.models import Model, Sequential
|
||||||
from keras.utils.np_utils import to_categorical
|
from keras.utils.np_utils import to_categorical
|
||||||
import numpy as np
|
|
||||||
import sys
|
|
||||||
import pickle
|
|
||||||
|
|
||||||
def load_data(samples_path):
|
def load_data(samples_path):
|
||||||
print('Loading... {}'.format(train_data_path))
|
print('Loading... {}'.format(train_data_path))
|
||||||
@ -25,7 +24,6 @@ def preprocess_samples(train_X, train_y):
|
|||||||
n_vocab = vocab.shape[0]
|
n_vocab = vocab.shape[0]
|
||||||
note_to_int = dict((note, number) for number, note in enumerate(vocab))
|
note_to_int = dict((note, number) for number, note in enumerate(vocab))
|
||||||
int_to_note = dict((number, note) for number, note in enumerate(vocab))
|
int_to_note = dict((number, note) for number, note in enumerate(vocab))
|
||||||
|
|
||||||
_train_X = []
|
_train_X = []
|
||||||
_train_y = []
|
_train_y = []
|
||||||
for sample in train_X:
|
for sample in train_X:
|
||||||
@ -58,12 +56,13 @@ model.add(Dense(n_vocab))
|
|||||||
model.add(Activation('softmax'))
|
model.add(Activation('softmax'))
|
||||||
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
|
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
|
||||||
|
|
||||||
# model training
|
# This code will train our model, with given by parameter number of epochs
|
||||||
print('Training...')
|
print('Training...')
|
||||||
model.fit(train_X, train_y, epochs=epochs, batch_size=64)
|
model.fit(train_X, train_y, epochs=epochs, batch_size=64)
|
||||||
|
|
||||||
# save trained model
|
# it saves model, and additional informations of model
|
||||||
|
# that is needed to generate music from it
|
||||||
pickle.dump(model, open(save_model_path,'wb'))
|
pickle.dump(model, open(save_model_path,'wb'))
|
||||||
pickle.dump(int_to_note, open('{}_dict'.format(save_model_path),'wb'))
|
pickle.dump((int_to_note, n_vocab, train_X.shape[1]), open('{}_dict'.format(save_model_path),'wb'))
|
||||||
print('Done!')
|
print('Done!')
|
||||||
print("Model saved to: {}".format(save_model_path))
|
print("Model saved to: {}".format(save_model_path))
|
||||||
|
Loading…
Reference in New Issue
Block a user