import numpy as np import tensorflow as tf from keras.layers import Input, Dense, Conv2D from keras.models import Model import settings #model input_shape = settings.midi_resolution*128 input_img = tf.keras.layers.Input(shape=(input_shape,)) encoded = tf.keras.layers.Dense(160, activation='relu')(input_img) decoded = tf.keras.layers.Dense(input_shape, activation='sigmoid')(encoded) autoencoder = tf.keras.models.Model(input_img, decoded) autoencoder.compile(optimizer='adadelta', loss='categorical_crossentropy', metrics=['accuracy']) # load weights into new model autoencoder.load_weights(settings.model_path) print("Loaded model from {}".format(settings.model_path)) # generate_seed = np.random.rand(12288).reshape(1,12288) generate_seed = np.load(settings.samples_path)['arr_0'][15].reshape(1,12288) generated_sample = autoencoder.predict(generate_seed) np.savez_compressed(settings.generated_sample_path, generated_sample)