import tensorflow as tf import settings from tensorflow.keras import layers from keras.layers import Input, Dense, Conv2D, Flatten from keras.models import Model, Sequential import numpy as np from sys import exit import pickle print('Reading samples from: {}'.format(settings.samples_path)) train_X = np.load(settings.samples_path)['arr_0'] n_samples = train_X.shape[0] input_shape = settings.midi_resolution*128 train_X = train_X.reshape(n_samples, input_shape) # encoder model input_img = tf.keras.layers.Input(shape=(input_shape,)) encoded = tf.keras.layers.Dense(160, activation='relu')(input_img) decoded = tf.keras.layers.Dense(input_shape, activation='sigmoid')(encoded) autoencoder = tf.keras.models.Model(input_img, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) autoencoder.fit(train_X, train_X, epochs=settings.epochs, batch_size=32) autoencoder.save_weights(settings.model_path) print("Model save to {}".format(settings.model_path))