import numpy as np from keras.layers import Input, Dense, Conv2D from keras.models import Model GENERATED_BEAT_PATH = 'data/output/generated_bar' MODEL_PATH = 'data/autoencoder_model.h5' SAMPLES_PATH = 'data/samples.npz' input = Input(shape=(1,96,128)) encoded = Conv2D(filters = 32, kernel_size = 1)(input) decoded = Conv2D(filters = 128, kernel_size = 1)(encoded) autoencoder = Model(input, decoded) # load weights into new model autoencoder.load_weights(MODEL_PATH) print("Loaded model from disk") # generate_seed = np.random.rand(1,1,96,128) generate_seed = np.load(SAMPLES_PATH)['arr_0'][0:] generated_beat = autoencoder.predict(generate_seed) np.savez_compressed(GENERATED_BEAT_PATH, generated_beat)