#!python3 #!/usr/bin/env python3 ''' This module contains functions to endocing midi files into data samples that is prepared for model training. midi_folder_path - the path to directiory containing midi files output_path - the output path where will be created samples of data Usage: >>> ./midi.py ''' import settings import pypianoroll as roll import numpy as np import os from tqdm import tqdm from math import floor import sys from collections import defaultdict import pickle from music21 import converter, instrument, note, chord, stream import music21 midi_folder_path = sys.argv[1] output_path = sys.argv[2] seq_len = int(sys.argv[3]) def to_sequence(midi_path, seq_len): ''' This function is supposed to be used on one midi file in directory loop. Its encoding midi files, into sequances of given lenth as a train_X, and the next note as a train_y. Also splitting midi samples into instrument group. Use for LSTM neural network. Parameters: - midi_path: path to midi file - seq_len: lenght of sequance before prediction Returns: Tuple of train_X, train_y directories''' seq_by_instrument = defaultdict( lambda : [] ) midi_file = music21.converter.parse(midi_path) stream = music21.instrument.partitionByInstrument(midi_file) for part in stream: for event in part: if part.partName != None: # TODO: add note lenght as parameter if isinstance(event, music21.note.Note): # to_export_event = (str(event.pitch), event.quarterLength) to_export_event = str(event.pitch) seq_by_instrument[part.partName].append(to_export_event) elif isinstance(event, music21.chord.Chord): to_export_event = ' '.join(str(note) for note in event.pitches) # to_export_event = (' '.join(str(note) for note in event.pitches), event.quarterLength) seq_by_instrument[part.partName].append(to_export_event) X_train_by_instrument = defaultdict( lambda : [] ) y_train_by_instrument = defaultdict( lambda : [] ) for instrument, sequence in seq_by_instrument.items(): for i in range(len(sequence)-(seq_len)) : X_train_by_instrument[instrument].append(np.array(sequence[i:i+seq_len])) #