// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PSFOUNDATION_PSPOOL_H #define PSFOUNDATION_PSPOOL_H #include "PsArray.h" #include "PsSort.h" #include "PsBasicTemplates.h" #include "PsInlineArray.h" namespace physx { namespace shdfnd { /*! Simple allocation pool */ template ::Type> class PoolBase : public UserAllocated, public Alloc { PX_NOCOPY(PoolBase) protected: PoolBase(const Alloc& alloc, uint32_t elementsPerSlab, uint32_t slabSize) : Alloc(alloc), mSlabs(alloc), mElementsPerSlab(elementsPerSlab), mUsed(0), mSlabSize(slabSize), mFreeElement(0) { PX_COMPILE_TIME_ASSERT(sizeof(T) >= sizeof(size_t)); } public: ~PoolBase() { if(mUsed) disposeElements(); for(void** slabIt = mSlabs.begin(), *slabEnd = mSlabs.end(); slabIt != slabEnd; ++slabIt) Alloc::deallocate(*slabIt); } // Allocate space for single object PX_INLINE T* allocate() { if(mFreeElement == 0) allocateSlab(); T* p = reinterpret_cast(mFreeElement); mFreeElement = mFreeElement->mNext; mUsed++; /** Mark a specified amount of memory with 0xcd pattern. This is used to check that the meta data definition for serialized classes is complete in checked builds. */ #if PX_CHECKED for(uint32_t i = 0; i < sizeof(T); ++i) reinterpret_cast(p)[i] = 0xcd; #endif return p; } // Put space for a single element back in the lists PX_INLINE void deallocate(T* p) { if(p) { PX_ASSERT(mUsed); mUsed--; push(reinterpret_cast(p)); } } PX_INLINE T* construct() { T* t = allocate(); return t ? new (t) T() : 0; } template PX_INLINE T* construct(A1& a) { T* t = allocate(); return t ? new (t) T(a) : 0; } template PX_INLINE T* construct(A1& a, A2& b) { T* t = allocate(); return t ? new (t) T(a, b) : 0; } template PX_INLINE T* construct(A1& a, A2& b, A3& c) { T* t = allocate(); return t ? new (t) T(a, b, c) : 0; } template PX_INLINE T* construct(A1* a, A2& b, A3& c) { T* t = allocate(); return t ? new (t) T(a, b, c) : 0; } template PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d) { T* t = allocate(); return t ? new (t) T(a, b, c, d) : 0; } template PX_INLINE T* construct(A1& a, A2& b, A3& c, A4& d, A5& e) { T* t = allocate(); return t ? new (t) T(a, b, c, d, e) : 0; } PX_INLINE void destroy(T* const p) { if(p) { p->~T(); deallocate(p); } } protected: struct FreeList { FreeList* mNext; }; // All the allocated slabs, sorted by pointer InlineArray mSlabs; uint32_t mElementsPerSlab; uint32_t mUsed; uint32_t mSlabSize; FreeList* mFreeElement; // Head of free-list // Helper function to get bitmap of allocated elements void push(FreeList* p) { p->mNext = mFreeElement; mFreeElement = p; } // Allocate a slab and segregate it into the freelist void allocateSlab() { T* slab = reinterpret_cast(Alloc::allocate(mSlabSize, __FILE__, __LINE__)); mSlabs.pushBack(slab); // Build a chain of nodes for the freelist T* it = slab + mElementsPerSlab; while(--it >= slab) push(reinterpret_cast(it)); } /* Cleanup method. Go through all active slabs and call destructor for live objects, then free their memory */ void disposeElements() { Array freeNodes(*this); while(mFreeElement) { freeNodes.pushBack(mFreeElement); mFreeElement = mFreeElement->mNext; } Alloc& alloc(*this); sort(freeNodes.begin(), freeNodes.size(), Less(), alloc); sort(mSlabs.begin(), mSlabs.size(), Less(), alloc); typename Array::Iterator slabIt = mSlabs.begin(), slabEnd = mSlabs.end(); for(typename Array::Iterator freeIt = freeNodes.begin(); slabIt != slabEnd; ++slabIt) { for(T* tIt = reinterpret_cast(*slabIt), *tEnd = tIt + mElementsPerSlab; tIt != tEnd; ++tIt) { if(freeIt != freeNodes.end() && *freeIt == tIt) ++freeIt; else tIt->~T(); } } } /* Go through all slabs and call destructor if the slab is empty */ void releaseEmptySlabs() { Array freeNodes(*this); Array slabNodes(mSlabs, *this); while(mFreeElement) { freeNodes.pushBack(mFreeElement); mFreeElement = mFreeElement->mNext; } typename Array::Iterator freeIt = freeNodes.begin(), freeEnd = freeNodes.end(), lastCheck = freeNodes.end() - mElementsPerSlab; if(freeNodes.size() > mElementsPerSlab) { Alloc& alloc(*this); sort(freeNodes.begin(), freeNodes.size(), Less(), alloc); sort(slabNodes.begin(), slabNodes.size(), Less(), alloc); mSlabs.clear(); for(void** slabIt = slabNodes.begin(), *slabEnd = slabNodes.end(); slabIt != slabEnd; ++slabIt) { while((freeIt < lastCheck) && (*slabIt > (*freeIt))) { push(reinterpret_cast(*freeIt)); freeIt++; } if(*slabIt == (*freeIt)) // the slab's first element in freeList { const size_t endSlabAddress = size_t(*slabIt) + mSlabSize; const size_t endFreeAddress = size_t(*(freeIt + mElementsPerSlab - 1)); if(endFreeAddress + sizeof(T) == endSlabAddress) { // all slab's element in freeList Alloc::deallocate(*slabIt); freeIt += mElementsPerSlab; continue; } } mSlabs.pushBack(*slabIt); } } while(freeIt != freeEnd) { push(reinterpret_cast(*freeIt)); ++freeIt; } } }; // original pool implementation template ::Type> class Pool : public PoolBase { public: Pool(const Alloc& alloc = Alloc(), uint32_t elementsPerSlab = 32) : PoolBase(alloc, elementsPerSlab, elementsPerSlab * sizeof(T)) { } }; // allows specification of the slab size instead of the occupancy template ::Type> class Pool2 : public PoolBase { public: Pool2(const Alloc& alloc = Alloc()) : PoolBase(alloc, slabSize / sizeof(T), slabSize) { } }; } // namespace shdfnd } // namespace physx #endif // #ifndef PSFOUNDATION_PSPOOL_H