// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PX_PHYSICS_NP_SCENE #define PX_PHYSICS_NP_SCENE #include "PsUserAllocated.h" #include "PsSync.h" #include "PsArray.h" #include "PsThread.h" #include "PsHashSet.h" #include "PxPhysXConfig.h" #if PX_SUPPORT_GPU_PHYSX #include "device/PhysXIndicator.h" #endif #include "NpSceneQueries.h" #include "NpSceneAccessor.h" namespace physx { class PhysicsThread; class PxBatchQueryDesc; class NpMaterial; class NpScene; class NpArticulation; namespace Sc { class Joint; class ConstraintBreakEvent; } namespace Sq { class SceneQueryManager; } class NpObjectFactory; class NpRigidStatic; class NpRigidDynamic; class NpConstraint; class NpArticulationLink; class NpShapeManager; class NpBatchQuery; class PxBatchQuery; class NpContactCallbackTask : public physx::PxLightCpuTask { NpScene* mScene; const PxContactPairHeader* mContactPairHeaders; uint32_t mNbContactPairHeaders; public: void setData(NpScene* scene, const PxContactPairHeader* contactPairHeaders, const uint32_t nbContactPairHeaders); virtual void run(); virtual const char* getName() const { return "NpContactCallbackTask"; } }; class NpScene : public NpSceneQueries, public Ps::UserAllocated { //virtual interfaces: PX_NOCOPY(NpScene) public: virtual void release(); virtual void setFlag(PxSceneFlag::Enum flag, bool value); virtual PxSceneFlags getFlags() const; // implement PxScene: virtual void setGravity(const PxVec3&); virtual PxVec3 getGravity() const; virtual void setBounceThresholdVelocity(const PxReal t); virtual PxReal getBounceThresholdVelocity() const; virtual PxReal getFrictionOffsetThreshold() const; virtual void setLimits(const PxSceneLimits& limits); virtual PxSceneLimits getLimits() const; virtual void addActor(PxActor& actor, const PxBVHStructure* bvhStructure); virtual void removeActor(PxActor& actor, bool wakeOnLostTouch); virtual PxU32 getNbConstraints() const; virtual PxU32 getConstraints(PxConstraint** buffer, PxU32 bufferSize, PxU32 startIndex=0) const; virtual void addArticulation(PxArticulationBase&); virtual void removeArticulation(PxArticulationBase&, bool wakeOnLostTouch); virtual PxU32 getNbArticulations() const; virtual PxU32 getArticulations(PxArticulationBase** userBuffer, PxU32 bufferSize, PxU32 startIndex=0) const; // Aggregates virtual void addAggregate(PxAggregate&); virtual void removeAggregate(PxAggregate&, bool wakeOnLostTouch); virtual PxU32 getNbAggregates() const; virtual PxU32 getAggregates(PxAggregate** userBuffer, PxU32 bufferSize, PxU32 startIndex=0) const; virtual void addCollection(const PxCollection& collection); // Groups virtual void setDominanceGroupPair(PxDominanceGroup group1, PxDominanceGroup group2, const PxDominanceGroupPair& dominance); virtual PxDominanceGroupPair getDominanceGroupPair(PxDominanceGroup group1, PxDominanceGroup group2) const; // Actors virtual PxU32 getNbActors(PxActorTypeFlags types) const; virtual PxU32 getActors(PxActorTypeFlags types, PxActor** buffer, PxU32 bufferSize, PxU32 startIndex=0) const; virtual PxActor** getActiveActors(PxU32& nbActorsOut); // Run virtual void getSimulationStatistics(PxSimulationStatistics& s) const; // Multiclient virtual PxClientID createClient(); // FrictionModel virtual void setFrictionType(PxFrictionType::Enum frictionType); virtual PxFrictionType::Enum getFrictionType() const; // Callbacks virtual void setSimulationEventCallback(PxSimulationEventCallback* callback); virtual PxSimulationEventCallback* getSimulationEventCallback() const; virtual void setContactModifyCallback(PxContactModifyCallback* callback); virtual PxContactModifyCallback* getContactModifyCallback() const; virtual void setCCDContactModifyCallback(PxCCDContactModifyCallback* callback); virtual PxCCDContactModifyCallback* getCCDContactModifyCallback() const; virtual void setBroadPhaseCallback(PxBroadPhaseCallback* callback); virtual PxBroadPhaseCallback* getBroadPhaseCallback() const; //CCD passes virtual void setCCDMaxPasses(PxU32 ccdMaxPasses); virtual PxU32 getCCDMaxPasses() const; // Collision filtering virtual void setFilterShaderData(const void* data, PxU32 dataSize); virtual const void* getFilterShaderData() const; virtual PxU32 getFilterShaderDataSize() const; virtual PxSimulationFilterShader getFilterShader() const; virtual PxSimulationFilterCallback* getFilterCallback() const; virtual void resetFiltering(PxActor& actor); virtual void resetFiltering(PxRigidActor& actor, PxShape*const* shapes, PxU32 shapeCount); virtual PxPairFilteringMode::Enum getKinematicKinematicFilteringMode() const; virtual PxPairFilteringMode::Enum getStaticKinematicFilteringMode() const; // Get Physics SDK virtual PxPhysics& getPhysics(); // new API methods virtual void simulate(PxReal elapsedTime, physx::PxBaseTask* completionTask, void* scratchBlock, PxU32 scratchBlockSize, bool controlSimulation); virtual void advance(physx::PxBaseTask* completionTask); virtual void collide(PxReal elapsedTime, physx::PxBaseTask* completionTask, void* scratchBlock, PxU32 scratchBlockSize, bool controlSimulation = true); virtual bool checkResults(bool block); virtual bool checkCollision(bool block); virtual bool fetchCollision(bool block); virtual bool fetchResults(bool block, PxU32* errorState); virtual bool fetchResultsStart(const PxContactPairHeader*& contactPairs, PxU32& nbContactPairs, bool block = false); virtual void processCallbacks(physx::PxBaseTask* continuation); virtual void fetchResultsFinish(PxU32* errorState = 0); virtual void flush(bool sendPendingReports) { flushSimulation(sendPendingReports); } virtual void flushSimulation(bool sendPendingReports); virtual void flushQueryUpdates(); virtual const PxRenderBuffer& getRenderBuffer(); virtual PxBatchQuery* createBatchQuery(const PxBatchQueryDesc& desc); void releaseBatchQuery(PxBatchQuery* bq); virtual void setDynamicTreeRebuildRateHint(PxU32 dynamicTreeRebuildRateHint); virtual PxU32 getDynamicTreeRebuildRateHint() const; virtual void forceDynamicTreeRebuild(bool rebuildStaticStructure, bool rebuildDynamicStructure); virtual void sceneQueriesUpdate(physx::PxBaseTask* completionTask, bool controlSimulation); virtual bool checkQueries(bool block); virtual bool fetchQueries(bool block); virtual void setSceneQueryUpdateMode(PxSceneQueryUpdateMode::Enum updateMode); virtual PxSceneQueryUpdateMode::Enum getSceneQueryUpdateMode() const; virtual void setSolverBatchSize(PxU32 solverBatchSize); virtual PxU32 getSolverBatchSize(void) const; virtual void setSolverArticulationBatchSize(PxU32 solverBatchSize); virtual PxU32 getSolverArticulationBatchSize(void) const; virtual bool setVisualizationParameter(PxVisualizationParameter::Enum param, PxReal value); virtual PxReal getVisualizationParameter(PxVisualizationParameter::Enum param) const; virtual void setVisualizationCullingBox(const PxBounds3& box); virtual PxBounds3 getVisualizationCullingBox() const; virtual PxTaskManager* getTaskManager() { return mTaskManager; } void checkBeginWrite() const {} virtual PxCudaContextManager* getCudaContextManager() { return mCudaContextManager; } virtual void setNbContactDataBlocks(PxU32 numBlocks); virtual PxU32 getNbContactDataBlocksUsed() const; virtual PxU32 getMaxNbContactDataBlocksUsed() const; virtual PxU32 getContactReportStreamBufferSize() const; virtual PxU32 getTimestamp() const; virtual PxU32 getSceneQueryStaticTimestamp() const; virtual PxCpuDispatcher* getCpuDispatcher() const; virtual PxCudaContextManager* getCudaContextManager() const; virtual PxPruningStructureType::Enum getStaticStructure() const; virtual PxPruningStructureType::Enum getDynamicStructure() const; virtual PxBroadPhaseType::Enum getBroadPhaseType() const; virtual bool getBroadPhaseCaps(PxBroadPhaseCaps& caps) const; virtual PxU32 getNbBroadPhaseRegions() const; virtual PxU32 getBroadPhaseRegions(PxBroadPhaseRegionInfo* userBuffer, PxU32 bufferSize, PxU32 startIndex=0) const; virtual PxU32 addBroadPhaseRegion(const PxBroadPhaseRegion& region, bool populateRegion); virtual bool removeBroadPhaseRegion(PxU32 handle); virtual void addActors(PxActor*const* actors, PxU32 nbActors); virtual void addActors(const PxPruningStructure& prunerStructure); virtual void removeActors(PxActor*const* actors, PxU32 nbActors, bool wakeOnLostTouch); virtual void lockRead(const char* file=NULL, PxU32 line=0); virtual void unlockRead(); virtual void lockWrite(const char* file=NULL, PxU32 line=0); virtual void unlockWrite(); virtual PxReal getWakeCounterResetValue() const; virtual void shiftOrigin(const PxVec3& shift); virtual PxPvdSceneClient* getScenePvdClient(); //Implementations for NpSceneAccessor interface! virtual PxsSimulationController* getSimulationController(); virtual void setActiveActors(PxActor** actors, PxU32 nbActors); virtual PxActor** getFrozenActors(PxU32& nbActorsOut); virtual void setFrozenActorFlag(const bool buildFrozenActors); virtual void forceSceneQueryRebuild(); virtual void frameEnd(); //internal public methods: public: NpScene(const PxSceneDesc& desc); ~NpScene(); PX_FORCE_INLINE PxTaskManager* getTaskManager() const { return mTaskManager; } PX_FORCE_INLINE Sc::SimulationStage::Enum getSimulationStage() const { return mScene.getSimulationStage(); } PX_FORCE_INLINE void setSimulationStage(Sc::SimulationStage::Enum stage) { mScene.setSimulationStage(stage); } void addActorInternal(PxActor& actor, const PxBVHStructure* bvhStructure); void removeActorInternal(PxActor& actor, bool wakeOnLostTouch, bool removeFromAggregate); void addActorsInternal(PxActor*const* PX_RESTRICT actors, PxU32 nbActors, const Sq::PruningStructure* ps = NULL); void addArticulationInternal(PxArticulationBase&); void removeArticulationInternal(PxArticulationBase&, bool wakeOnLostTouch, bool removeFromAggregate); // materials void addMaterial(const NpMaterial& mat); void updateMaterial(const NpMaterial& mat); void removeMaterial(const NpMaterial& mat); void executeScene(PxBaseTask* continuation); void executeCollide(PxBaseTask* continuation); void executeAdvance(PxBaseTask* continuation); void constraintBreakEventNotify(PxConstraint *const *constraints, PxU32 count); bool loadFromDesc(const PxSceneDesc&); void removeFromRigidActorList(const PxU32&); PX_FORCE_INLINE void removeFromArticulationList(PxArticulationBase&); PX_FORCE_INLINE void removeFromAggregateList(PxAggregate&); PX_FORCE_INLINE void addToConstraintList(PxConstraint&); PX_FORCE_INLINE void removeFromConstraintList(PxConstraint&); void addArticulationLink(NpArticulationLink& link); void addArticulationLinkBody(NpArticulationLink& link); void addArticulationLinkConstraint(NpArticulationLink& link); void removeArticulationLink(NpArticulationLink& link, bool wakeOnLostTouch); struct StartWriteResult { enum Enum { eOK, eNO_LOCK, eIN_FETCHRESULTS, eRACE_DETECTED }; }; StartWriteResult::Enum startWrite(bool allowReentry); void stopWrite(bool allowReentry); bool startRead() const; void stopRead() const; PxU32 getReadWriteErrorCount() const { return PxU32(mConcurrentErrorCount); } #if PX_CHECKED void checkPositionSanity(const PxRigidActor& a, const PxTransform& pose, const char* fnName) const; #endif #if PX_SUPPORT_GPU_PHYSX void updatePhysXIndicator(); #else PX_FORCE_INLINE void updatePhysXIndicator() {} #endif PX_FORCE_INLINE PxReal getWakeCounterResetValueInteral() const { return mScene.getWakeCounterResetValue(); } private: bool checkResultsInternal(bool block); bool checkCollisionInternal(bool block); bool checkSceneQueriesInternal(bool block); void simulateOrCollide(PxReal elapsedTime, physx::PxBaseTask* completionTask, void* scratchBlock, PxU32 scratchBlockSize, bool controlSimulation, const char* invalidCallMsg, Sc::SimulationStage::Enum simStage); void addRigidStatic(NpRigidStatic& , const Gu::BVHStructure* bvhStructure, bool hasPrunerStructure = false); void removeRigidStatic(NpRigidStatic&, bool wakeOnLostTouch, bool removeFromAggregate); void addRigidDynamic(NpRigidDynamic& , const Gu::BVHStructure* bvhStructure, bool hasPrunerStructure = false); void removeRigidDynamic(NpRigidDynamic&, bool wakeOnLostTouch, bool removeFromAggregate); bool addRigidActorsInternal(PxU32 nbActors, PxActor** PX_RESTRICT actors); void visualize(); void updateDirtyShaders(); void fireOutOfBoundsCallbacks(); void fetchResultsPreContactCallbacks(); void fetchResultsPostContactCallbacks(); void updateScbStateAndSetupSq(const PxRigidActor& rigidActor, Scb::Actor& actor, NpShapeManager& shapeManager, bool actorDynamic, const PxBounds3* bounds, bool hasPrunerStructure); PX_FORCE_INLINE void updateScbStateAndSetupSq(const PxRigidActor& rigidActor, Scb::Body& body, NpShapeManager& shapeManager, bool actorDynamic, const PxBounds3* bounds, bool hasPrunerStructure); Cm::RenderBuffer mRenderBuffer; Ps::CoalescedHashSet mConstraints; Ps::Array mRigidActors; // no hash set used because it would be quite a bit slower when adding a large number of actors Ps::CoalescedHashSet mArticulations; Ps::CoalescedHashSet mAggregates; Ps::Array mBatchQueries; PxBounds3 mSanityBounds; #if PX_SUPPORT_GPU_PHYSX PhysXIndicator mPhysXIndicator; #endif Ps::Sync mPhysicsDone; // physics thread signals this when update ready Ps::Sync mCollisionDone; // physics thread signals this when all collisions ready Ps::Sync mSceneQueriesDone; // physics thread signals this when all scene queries update ready //legacy timing settings: PxReal mElapsedTime; //needed to transfer the elapsed time param from the user to the sim thread. PxU32 mNbClients; // Tracks reserved clients for multiclient support. Ps::Array mClientBehaviorFlags;// Tracks behavior bits for clients. struct SceneCompletion : public Cm::Task { SceneCompletion(PxU64 contextId, Ps::Sync& sync) : Cm::Task(contextId), mSync(sync){} virtual void runInternal() {} //ML: As soon as mSync.set is called, and the scene is shutting down, //the scene may be deleted. That means this running task may also be deleted. //As such, we call mSync.set() inside release() to avoid a crash because the v-table on this //task might be deleted between the call to runInternal() and release() in the worker thread. virtual void release() { //We cache the continuation pointer because this class may be deleted //as soon as mSync.set() is called if the application releases the scene. PxBaseTask* c = mCont; //once mSync.set(), fetchResults() will be allowed to run. mSync.set(); //Call the continuation task that we cached above. If we use mCont or //any other member variable of this class, there is a small chance //that the variables might have become corrupted if the class //was deleted. if(c) c->removeReference(); } virtual const char* getName() const { return "NpScene.completion"; } // //This method just is called in the split sim approach as a way to set continuation after the task has been initialized void setDependent(PxBaseTask* task){PX_ASSERT(mCont == NULL); mCont = task; if(task)task->addReference();} Ps::Sync& mSync; private: SceneCompletion& operator=(const SceneCompletion&); }; typedef Cm::DelegateTask SceneExecution; typedef Cm::DelegateTask SceneCollide; typedef Cm::DelegateTask SceneAdvance; PxTaskManager* mTaskManager; PxCudaContextManager* mCudaContextManager; SceneCompletion mSceneCompletion; SceneCompletion mCollisionCompletion; SceneCompletion mSceneQueriesCompletion; SceneExecution mSceneExecution; SceneCollide mSceneCollide; SceneAdvance mSceneAdvance; bool mControllingSimulation; PxU32 mSimThreadStackSize; volatile PxI32 mConcurrentWriteCount; mutable volatile PxI32 mConcurrentReadCount; mutable volatile PxI32 mConcurrentErrorCount; // TLS slot index, keeps track of re-entry depth for this thread PxU32 mThreadReadWriteDepth; Ps::Thread::Id mCurrentWriter; Ps::ReadWriteLock mRWLock; bool mSceneQueriesUpdateRunning; bool mHasSimulatedOnce; bool mBetweenFetchResults; bool mBuildFrozenActors; }; PX_FORCE_INLINE void NpScene::addToConstraintList(PxConstraint& constraint) { mConstraints.insert(&constraint); } PX_FORCE_INLINE void NpScene::removeFromConstraintList(PxConstraint& constraint) { const bool exists = mConstraints.erase(&constraint); PX_ASSERT(exists); PX_UNUSED(exists); } PX_FORCE_INLINE void NpScene::removeFromArticulationList(PxArticulationBase& articulation) { const bool exists = mArticulations.erase(&articulation); PX_ASSERT(exists); PX_UNUSED(exists); } PX_FORCE_INLINE void NpScene::removeFromAggregateList(PxAggregate& aggregate) { const bool exists = mAggregates.erase(&aggregate); PX_ASSERT(exists); PX_UNUSED(exists); } } #endif