// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #include "ExtPrismaticJoint.h" #include "ExtConstraintHelper.h" #include "PxPhysics.h" using namespace physx; using namespace Ext; PxPrismaticJoint* physx::PxPrismaticJointCreate(PxPhysics& physics, PxRigidActor* actor0, const PxTransform& localFrame0, PxRigidActor* actor1, const PxTransform& localFrame1) { PX_CHECK_AND_RETURN_NULL(localFrame0.isSane(), "PxPrismaticJointCreate: local frame 0 is not a valid transform"); PX_CHECK_AND_RETURN_NULL(localFrame1.isSane(), "PxPrismaticJointCreate: local frame 1 is not a valid transform"); PX_CHECK_AND_RETURN_NULL((actor0 && actor0->is()) || (actor1 && actor1->is()), "PxPrismaticJointCreate: at least one actor must be dynamic"); PX_CHECK_AND_RETURN_NULL(actor0 != actor1, "PxPrismaticJointCreate: actors must be different"); PrismaticJoint* j; PX_NEW_SERIALIZED(j, PrismaticJoint)(physics.getTolerancesScale(), actor0, localFrame0, actor1, localFrame1); if(j->attach(physics, actor0, actor1)) return j; PX_DELETE(j); return NULL; } void PrismaticJoint::setProjectionAngularTolerance(PxReal tolerance) { PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0 && tolerance <= PxPi, "PxPrismaticJoint::setProjectionAngularTolerance: invalid parameter"); data().projectionAngularTolerance = tolerance; markDirty(); } PxReal PrismaticJoint::getProjectionAngularTolerance() const { return data().projectionAngularTolerance; } void PrismaticJoint::setProjectionLinearTolerance(PxReal tolerance) { PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0, "PxPrismaticJoint::setProjectionLinearTolerance: invalid parameter"); data().projectionLinearTolerance = tolerance; markDirty(); } PxReal PrismaticJoint::getProjectionLinearTolerance() const { return data().projectionLinearTolerance; } PxPrismaticJointFlags PrismaticJoint::getPrismaticJointFlags(void) const { return data().jointFlags; } void PrismaticJoint::setPrismaticJointFlags(PxPrismaticJointFlags flags) { data().jointFlags = flags; markDirty(); } void PrismaticJoint::setPrismaticJointFlag(PxPrismaticJointFlag::Enum flag, bool value) { if(value) data().jointFlags |= flag; else data().jointFlags &= ~flag; markDirty(); } PxJointLinearLimitPair PrismaticJoint::getLimit() const { return data().limit; } void PrismaticJoint::setLimit(const PxJointLinearLimitPair& limit) { PX_CHECK_AND_RETURN(limit.isValid(), "PxPrismaticJoint::setLimit: invalid parameter"); data().limit = limit; markDirty(); } bool PrismaticJoint::attach(PxPhysics &physics, PxRigidActor* actor0, PxRigidActor* actor1) { mPxConstraint = physics.createConstraint(actor0, actor1, *this, sShaders, sizeof(PrismaticJointData)); return mPxConstraint!=NULL; } void PrismaticJoint::exportExtraData(PxSerializationContext& stream) { if(mData) { stream.alignData(PX_SERIAL_ALIGN); stream.writeData(mData, sizeof(PrismaticJointData)); } stream.writeName(mName); } void PrismaticJoint::importExtraData(PxDeserializationContext& context) { if(mData) mData = context.readExtraData(); context.readName(mName); } void PrismaticJoint::resolveReferences(PxDeserializationContext& context) { setPxConstraint(resolveConstraintPtr(context, getPxConstraint(), getConnector(), sShaders)); } PrismaticJoint* PrismaticJoint::createObject(PxU8*& address, PxDeserializationContext& context) { PrismaticJoint* obj = new (address) PrismaticJoint(PxBaseFlag::eIS_RELEASABLE); address += sizeof(PrismaticJoint); obj->importExtraData(context); obj->resolveReferences(context); return obj; } // global function to share the joint shaders with API capture const PxConstraintShaderTable* Ext::GetPrismaticJointShaderTable() { return &PrismaticJoint::getConstraintShaderTable(); } //~PX_SERIALIZATION static void PrismaticJointProject(const void* constantBlock, PxTransform& bodyAToWorld, PxTransform& bodyBToWorld, bool projectToA) { const PrismaticJointData& data = *reinterpret_cast(constantBlock); PxTransform cA2w, cB2w, cB2cA, projected; joint::computeDerived(data, bodyAToWorld, bodyBToWorld, cA2w, cB2w, cB2cA); const PxVec3 v(0.0f, cB2cA.p.y, cB2cA.p.z); bool linearTrunc, angularTrunc; projected.p = joint::truncateLinear(v, data.projectionLinearTolerance, linearTrunc); projected.q = joint::truncateAngular(cB2cA.q, PxSin(data.projectionAngularTolerance/2), PxCos(data.projectionAngularTolerance/2), angularTrunc); if(linearTrunc || angularTrunc) { projected.p.x = cB2cA.p.x; joint::projectTransforms(bodyAToWorld, bodyBToWorld, cA2w, cB2w, projected, data, projectToA); } } static void PrismaticJointVisualize(PxConstraintVisualizer& viz, const void* constantBlock, const PxTransform& body0Transform, const PxTransform& body1Transform, PxU32 flags) { const PrismaticJointData& data = *reinterpret_cast(constantBlock); PxTransform cA2w, cB2w; joint::computeJointFrames(cA2w, cB2w, data, body0Transform, body1Transform); if(flags & PxConstraintVisualizationFlag::eLOCAL_FRAMES) viz.visualizeJointFrames(cA2w, cB2w); if((flags & PxConstraintVisualizationFlag::eLIMITS) && (data.jointFlags & PxPrismaticJointFlag::eLIMIT_ENABLED)) { const PxVec3 bOriginInA = cA2w.transformInv(cB2w.p); const PxReal ordinate = bOriginInA.x; const PxReal pad = data.limit.isSoft() ? 0.0f : data.limit.contactDistance; viz.visualizeLinearLimit(cA2w, cB2w, data.limit.lower, ordinate < data.limit.lower + pad); viz.visualizeLinearLimit(cA2w, cB2w, data.limit.upper, ordinate > data.limit.upper - pad); } } static PxU32 PrismaticJointSolverPrep(Px1DConstraint* constraints, PxVec3& body0WorldOffset, PxU32 /*maxConstraints*/, PxConstraintInvMassScale& invMassScale, const void* constantBlock, const PxTransform& bA2w, const PxTransform& bB2w, bool /*useExtendedLimits*/, PxVec3& cA2wOut, PxVec3& cB2wOut) { const PrismaticJointData& data = *reinterpret_cast(constantBlock); PxTransform cA2w, cB2w; joint::ConstraintHelper ch(constraints, invMassScale, cA2w, cB2w, body0WorldOffset, data, bA2w, bB2w); if (cA2w.q.dot(cB2w.q)<0.0f) // minimum dist quat (equiv to flipping cB2bB.q, which we don't use anywhere) cB2w.q = -cB2w.q; const bool limitEnabled = data.jointFlags & PxPrismaticJointFlag::eLIMIT_ENABLED; const PxJointLinearLimitPair& limit = data.limit; const bool limitIsLocked = limitEnabled && limit.lower >= limit.upper; const PxVec3 bOriginInA = cA2w.transformInv(cB2w.p); PxVec3 ra, rb; ch.prepareLockedAxes(cA2w.q, cB2w.q, bOriginInA, limitIsLocked ? 7ul : 6ul, 7ul, ra, rb); cA2wOut = ra + bA2w.p; cB2wOut = rb + bB2w.p; if(limitEnabled && !limitIsLocked) { const PxVec3 axis = cA2w.rotate(PxVec3(1.0f, 0.0f, 0.0f)); // PT: TODO: this has already been computed as part of the quat-to-matrix transform within prepareLockedAxes const PxReal ordinate = bOriginInA.x; ch.linearLimit(axis, ordinate, limit.upper, limit); ch.linearLimit(-axis, -ordinate, -limit.lower, limit); } return ch.getCount(); } PxConstraintShaderTable Ext::PrismaticJoint::sShaders = { PrismaticJointSolverPrep, PrismaticJointProject, PrismaticJointVisualize, PxConstraintFlag::Enum(0) };