// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #include "foundation/PxMath.h" #include "vehicle/PxVehicleUtilSetup.h" #include "vehicle/PxVehicleDrive4W.h" #include "vehicle/PxVehicleDriveNW.h" #include "vehicle/PxVehicleDriveTank.h" #include "vehicle/PxVehicleNoDrive.h" #include "vehicle/PxVehicleWheels.h" #include "vehicle/PxVehicleUtil.h" #include "vehicle/PxVehicleUpdate.h" #include "PsFoundation.h" #include "CmPhysXCommon.h" namespace physx { void enable3WMode(const PxU32 rightDirection, const PxU32 upDirection, const bool removeFrontWheel, PxVehicleWheelsSimData& wheelsSimData, PxVehicleWheelsDynData& wheelsDynData, PxVehicleDriveSimData4W& driveSimData); void computeDirection(PxU32& rightDirection, PxU32& upDirection); void PxVehicle4WEnable3WTadpoleMode(PxVehicleWheelsSimData& wheelsSimData, PxVehicleWheelsDynData& wheelsDynData, PxVehicleDriveSimData4W& driveSimData) { PX_CHECK_AND_RETURN (!wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eFRONT_LEFT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eFRONT_RIGHT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eREAR_LEFT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eREAR_RIGHT), "PxVehicle4WEnable3WTadpoleMode requires no wheels to be disabled"); PxU32 rightDirection=0xffffffff; PxU32 upDirection=0xffffffff; computeDirection(rightDirection, upDirection); PX_CHECK_AND_RETURN(rightDirection<3 && upDirection<3, "PxVehicle4WEnable3WTadpoleMode requires the vectors set in PxVehicleSetBasisVectors to be axis-aligned"); enable3WMode(rightDirection, upDirection, false, wheelsSimData, wheelsDynData, driveSimData); } void PxVehicle4WEnable3WDeltaMode(PxVehicleWheelsSimData& wheelsSimData, PxVehicleWheelsDynData& wheelsDynData, PxVehicleDriveSimData4W& driveSimData) { PX_CHECK_AND_RETURN (!wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eFRONT_LEFT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eFRONT_RIGHT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eREAR_LEFT) && !wheelsSimData.getIsWheelDisabled(PxVehicleDrive4WWheelOrder::eREAR_RIGHT), "PxVehicle4WEnable3WDeltaMode requires no wheels to be disabled"); PxU32 rightDirection=0xffffffff; PxU32 upDirection=0xffffffff; computeDirection(rightDirection, upDirection); PX_CHECK_AND_RETURN(rightDirection<3 && upDirection<3, "PxVehicle4WEnable3WTadpoleMode requires the vectors set in PxVehicleSetBasisVectors to be axis-aligned"); enable3WMode(rightDirection, upDirection, true, wheelsSimData, wheelsDynData, driveSimData); } void computeSprungMasses(const PxU32 numSprungMasses, const PxVec3* sprungMassCoordinates, const PxVec3& centreOfMass, const PxReal totalMass, const PxU32 gravityDirection, PxReal* sprungMasses); void PxVehicleComputeSprungMasses(const PxU32 numSprungMasses, const PxVec3* sprungMassCoordinates, const PxVec3& centreOfMass, const PxReal totalMass, const PxU32 gravityDirection, PxReal* sprungMasses) { computeSprungMasses(numSprungMasses, sprungMassCoordinates, centreOfMass, totalMass, gravityDirection, sprungMasses); } void PxVehicleCopyDynamicsData(const PxVehicleCopyDynamicsMap& wheelMap, const PxVehicleWheels& src, PxVehicleWheels* trg) { PX_CHECK_AND_RETURN(trg, "PxVehicleCopyDynamicsData requires that trg is a valid vehicle pointer"); PX_CHECK_AND_RETURN(src.getVehicleType() == trg->getVehicleType(), "PxVehicleCopyDynamicsData requires that both src and trg are the same type of vehicle"); #if PX_CHECKED { const PxU32 numWheelsSrc = src.mWheelsSimData.getNbWheels(); const PxU32 numWheelsTrg = trg->mWheelsSimData.getNbWheels(); PxU8 copiedWheelsSrc[PX_MAX_NB_WHEELS]; PxMemZero(copiedWheelsSrc, sizeof(PxU8) * PX_MAX_NB_WHEELS); PxU8 setWheelsTrg[PX_MAX_NB_WHEELS]; PxMemZero(setWheelsTrg, sizeof(PxU8) * PX_MAX_NB_WHEELS); for(PxU32 i = 0; i < PxMin(numWheelsSrc, numWheelsTrg); i++) { const PxU32 srcWheelId = wheelMap.sourceWheelIds[i]; PX_CHECK_AND_RETURN(srcWheelId < numWheelsSrc, "PxVehicleCopyDynamicsData - wheelMap contains illegal source wheel id"); PX_CHECK_AND_RETURN(0 == copiedWheelsSrc[srcWheelId], "PxVehicleCopyDynamicsData - wheelMap contains illegal source wheel id"); copiedWheelsSrc[srcWheelId] = 1; const PxU32 trgWheelId = wheelMap.targetWheelIds[i]; PX_CHECK_AND_RETURN(trgWheelId < numWheelsTrg, "PxVehicleCopyDynamicsData - wheelMap contains illegal target wheel id"); PX_CHECK_AND_RETURN(0 == setWheelsTrg[trgWheelId], "PxVehicleCopyDynamicsData - wheelMap contains illegal target wheel id"); setWheelsTrg[trgWheelId]=1; } } #endif const PxU32 numWheelsSrc = src.mWheelsSimData.getNbWheels(); const PxU32 numWheelsTrg = trg->mWheelsSimData.getNbWheels(); //Set all dynamics data on the target to zero. //Be aware that setToRestState sets the rigid body to //rest so set the momentum back after calling setToRestState. PxRigidDynamic* actorTrg = trg->getRigidDynamicActor(); PxVec3 linVel = actorTrg->getLinearVelocity(); PxVec3 angVel = actorTrg->getAngularVelocity(); switch(src.getVehicleType()) { case PxVehicleTypes::eDRIVE4W: static_cast(trg)->setToRestState(); break; case PxVehicleTypes::eDRIVENW: static_cast(trg)->setToRestState(); break; case PxVehicleTypes::eDRIVETANK: static_cast(trg)->setToRestState(); break; case PxVehicleTypes::eNODRIVE: static_cast(trg)->setToRestState(); break; default: break; } actorTrg->setLinearVelocity(linVel); actorTrg->setAngularVelocity(angVel); //Keep a track of the wheels on trg that have their dynamics data set as a copy from src. PxU8 setWheelsTrg[PX_MAX_NB_WHEELS]; PxMemZero(setWheelsTrg, sizeof(PxU8) * PX_MAX_NB_WHEELS); //Keep a track of the average wheel rotation speed of all enabled wheels on src. PxU32 numEnabledWheelsSrc = 0; PxF32 accumulatedWheelRotationSpeedSrc = 0.0f; //Copy wheel dynamics data from src wheels to trg wheels. //Track the target wheels that have been given dynamics data from src wheels. //Compute the accumulated wheel rotation speed of all enabled src wheels. const PxU32 numMappedWheels = PxMin(numWheelsSrc, numWheelsTrg); for(PxU32 i = 0; i < numMappedWheels; i++) { const PxU32 srcWheelId = wheelMap.sourceWheelIds[i]; const PxU32 trgWheelId = wheelMap.targetWheelIds[i]; trg->mWheelsDynData.copy(src.mWheelsDynData, srcWheelId, trgWheelId); setWheelsTrg[trgWheelId] = 1; if(!src.mWheelsSimData.getIsWheelDisabled(srcWheelId)) { numEnabledWheelsSrc++; accumulatedWheelRotationSpeedSrc += src.mWheelsDynData.getWheelRotationSpeed(srcWheelId); } } //Compute the average wheel rotation speed of src. PxF32 averageWheelRotationSpeedSrc = 0; if(numEnabledWheelsSrc > 0) { averageWheelRotationSpeedSrc = (accumulatedWheelRotationSpeedSrc/ (1.0f * numEnabledWheelsSrc)); } //For wheels on trg that have not had their dynamics data copied from src just set //their wheel rotation speed to the average wheel rotation speed. for(PxU32 i = 0; i < numWheelsTrg; i++) { if(0 == setWheelsTrg[i] && !trg->mWheelsSimData.getIsWheelDisabled(i)) { trg->mWheelsDynData.setWheelRotationSpeed(i, averageWheelRotationSpeedSrc); } } //Copy the engine rotation speed/gear states/autobox states/etc. switch(src.getVehicleType()) { case PxVehicleTypes::eDRIVE4W: case PxVehicleTypes::eDRIVENW: case PxVehicleTypes::eDRIVETANK: { const PxVehicleDriveDynData& driveDynDataSrc = static_cast(src).mDriveDynData; PxVehicleDriveDynData* driveDynDataTrg = &static_cast(trg)->mDriveDynData; *driveDynDataTrg = driveDynDataSrc; } break; default: break; } } bool areEqual(const PxQuat& q0, const PxQuat& q1) { return ((q0.x == q1.x) && (q0.y == q1.y) && (q0.z == q1.z) && (q0.w == q1.w)); } void PxVehicleUpdateCMassLocalPose(const PxTransform& oldCMassLocalPose, const PxTransform& newCMassLocalPose, const PxU32 gravityDirection, PxVehicleWheels* vehicle) { PX_CHECK_AND_RETURN(areEqual(PxQuat(PxIdentity), oldCMassLocalPose.q), "Only center of mass poses with identity rotation are supported"); PX_CHECK_AND_RETURN(areEqual(PxQuat(PxIdentity), newCMassLocalPose.q), "Only center of mass poses with identity rotation are supported"); PX_CHECK_AND_RETURN(0==gravityDirection || 1==gravityDirection || 2==gravityDirection, "gravityDirection must be 0 or 1 or 2."); //Update the offsets from the rigid body center of mass. PxVec3 wheelCenterCMOffsets[PX_MAX_NB_WHEELS]; const PxU32 nbWheels = vehicle->mWheelsSimData.getNbWheels(); for(PxU32 i = 0; i < nbWheels; i++) { wheelCenterCMOffsets[i] = vehicle->mWheelsSimData.getWheelCentreOffset(i) + oldCMassLocalPose.p - newCMassLocalPose.p; vehicle->mWheelsSimData.setWheelCentreOffset(i, vehicle->mWheelsSimData.getWheelCentreOffset(i) + oldCMassLocalPose.p - newCMassLocalPose.p); vehicle->mWheelsSimData.setSuspForceAppPointOffset(i, vehicle->mWheelsSimData.getSuspForceAppPointOffset(i) + oldCMassLocalPose.p - newCMassLocalPose.p); vehicle->mWheelsSimData.setTireForceAppPointOffset(i, vehicle->mWheelsSimData.getTireForceAppPointOffset(i) + oldCMassLocalPose.p - newCMassLocalPose.p); } //Now update the sprung masses. PxF32 sprungMasses[PX_MAX_NB_WHEELS]; PxVehicleComputeSprungMasses(nbWheels, wheelCenterCMOffsets, PxVec3(0,0,0), vehicle->getRigidDynamicActor()->getMass(), gravityDirection, sprungMasses); for(PxU32 i = 0; i < nbWheels; i++) { PxVehicleSuspensionData suspData = vehicle->mWheelsSimData.getSuspensionData(i); const PxF32 massRatio = sprungMasses[i]/suspData.mSprungMass; suspData.mSprungMass = sprungMasses[i]; suspData.mSpringStrength *= massRatio; suspData.mSpringDamperRate *= massRatio; vehicle->mWheelsSimData.setSuspensionData(i, suspData); } } }//physx