// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PXFOUNDATION_PXMAT44_H #define PXFOUNDATION_PXMAT44_H /** \addtogroup foundation @{ */ #include "foundation/PxQuat.h" #include "foundation/PxVec4.h" #include "foundation/PxMat33.h" #include "foundation/PxTransform.h" #if !PX_DOXYGEN namespace physx { #endif /*! \brief 4x4 matrix class This class is layout-compatible with D3D and OpenGL matrices. More notes on layout are given in the PxMat33 @see PxMat33 PxTransform */ class PxMat44 { public: //! Default constructor PX_CUDA_CALLABLE PX_INLINE PxMat44() { } //! identity constructor PX_CUDA_CALLABLE PX_INLINE PxMat44(PxIDENTITY r) : column0(1.0f, 0.0f, 0.0f, 0.0f) , column1(0.0f, 1.0f, 0.0f, 0.0f) , column2(0.0f, 0.0f, 1.0f, 0.0f) , column3(0.0f, 0.0f, 0.0f, 1.0f) { PX_UNUSED(r); } //! zero constructor PX_CUDA_CALLABLE PX_INLINE PxMat44(PxZERO r) : column0(PxZero), column1(PxZero), column2(PxZero), column3(PxZero) { PX_UNUSED(r); } //! Construct from four 4-vectors PX_CUDA_CALLABLE PxMat44(const PxVec4& col0, const PxVec4& col1, const PxVec4& col2, const PxVec4& col3) : column0(col0), column1(col1), column2(col2), column3(col3) { } //! constructor that generates a multiple of the identity matrix explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(float r) : column0(r, 0.0f, 0.0f, 0.0f) , column1(0.0f, r, 0.0f, 0.0f) , column2(0.0f, 0.0f, r, 0.0f) , column3(0.0f, 0.0f, 0.0f, r) { } //! Construct from three base vectors and a translation PX_CUDA_CALLABLE PxMat44(const PxVec3& col0, const PxVec3& col1, const PxVec3& col2, const PxVec3& col3) : column0(col0, 0), column1(col1, 0), column2(col2, 0), column3(col3, 1.0f) { } //! Construct from float[16] explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(float values[]) : column0(values[0], values[1], values[2], values[3]) , column1(values[4], values[5], values[6], values[7]) , column2(values[8], values[9], values[10], values[11]) , column3(values[12], values[13], values[14], values[15]) { } //! Construct from a quaternion explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxQuat& q) { const float x = q.x; const float y = q.y; const float z = q.z; const float w = q.w; const float x2 = x + x; const float y2 = y + y; const float z2 = z + z; const float xx = x2 * x; const float yy = y2 * y; const float zz = z2 * z; const float xy = x2 * y; const float xz = x2 * z; const float xw = x2 * w; const float yz = y2 * z; const float yw = y2 * w; const float zw = z2 * w; column0 = PxVec4(1.0f - yy - zz, xy + zw, xz - yw, 0.0f); column1 = PxVec4(xy - zw, 1.0f - xx - zz, yz + xw, 0.0f); column2 = PxVec4(xz + yw, yz - xw, 1.0f - xx - yy, 0.0f); column3 = PxVec4(0.0f, 0.0f, 0.0f, 1.0f); } //! Construct from a diagonal vector explicit PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxVec4& diagonal) : column0(diagonal.x, 0.0f, 0.0f, 0.0f) , column1(0.0f, diagonal.y, 0.0f, 0.0f) , column2(0.0f, 0.0f, diagonal.z, 0.0f) , column3(0.0f, 0.0f, 0.0f, diagonal.w) { } //! Construct from Mat33 and a translation PX_CUDA_CALLABLE PxMat44(const PxMat33& axes, const PxVec3& position) : column0(axes.column0, 0.0f), column1(axes.column1, 0.0f), column2(axes.column2, 0.0f), column3(position, 1.0f) { } PX_CUDA_CALLABLE PxMat44(const PxTransform& t) { *this = PxMat44(PxMat33(t.q), t.p); } /** \brief returns true if the two matrices are exactly equal */ PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxMat44& m) const { return column0 == m.column0 && column1 == m.column1 && column2 == m.column2 && column3 == m.column3; } //! Copy constructor PX_CUDA_CALLABLE PX_INLINE PxMat44(const PxMat44& other) : column0(other.column0), column1(other.column1), column2(other.column2), column3(other.column3) { } //! Assignment operator PX_CUDA_CALLABLE PX_INLINE PxMat44& operator=(const PxMat44& other) { column0 = other.column0; column1 = other.column1; column2 = other.column2; column3 = other.column3; return *this; } //! Get transposed matrix PX_CUDA_CALLABLE PX_INLINE const PxMat44 getTranspose() const { return PxMat44( PxVec4(column0.x, column1.x, column2.x, column3.x), PxVec4(column0.y, column1.y, column2.y, column3.y), PxVec4(column0.z, column1.z, column2.z, column3.z), PxVec4(column0.w, column1.w, column2.w, column3.w)); } //! Unary minus PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator-() const { return PxMat44(-column0, -column1, -column2, -column3); } //! Add PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator+(const PxMat44& other) const { return PxMat44(column0 + other.column0, column1 + other.column1, column2 + other.column2, column3 + other.column3); } //! Subtract PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator-(const PxMat44& other) const { return PxMat44(column0 - other.column0, column1 - other.column1, column2 - other.column2, column3 - other.column3); } //! Scalar multiplication PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator*(float scalar) const { return PxMat44(column0 * scalar, column1 * scalar, column2 * scalar, column3 * scalar); } friend PxMat44 operator*(float, const PxMat44&); //! Matrix multiplication PX_CUDA_CALLABLE PX_INLINE const PxMat44 operator*(const PxMat44& other) const { // Rows from this columns from other // column0 = transform(other.column0) etc return PxMat44(transform(other.column0), transform(other.column1), transform(other.column2), transform(other.column3)); } // a = b operators //! Equals-add PX_CUDA_CALLABLE PX_INLINE PxMat44& operator+=(const PxMat44& other) { column0 += other.column0; column1 += other.column1; column2 += other.column2; column3 += other.column3; return *this; } //! Equals-sub PX_CUDA_CALLABLE PX_INLINE PxMat44& operator-=(const PxMat44& other) { column0 -= other.column0; column1 -= other.column1; column2 -= other.column2; column3 -= other.column3; return *this; } //! Equals scalar multiplication PX_CUDA_CALLABLE PX_INLINE PxMat44& operator*=(float scalar) { column0 *= scalar; column1 *= scalar; column2 *= scalar; column3 *= scalar; return *this; } //! Equals matrix multiplication PX_CUDA_CALLABLE PX_INLINE PxMat44& operator*=(const PxMat44& other) { *this = *this * other; return *this; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE float operator()(unsigned int row, unsigned int col) const { return (*this)[col][row]; } //! Element access, mathematical way! PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator()(unsigned int row, unsigned int col) { return (*this)[col][row]; } //! Transform vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE const PxVec4 transform(const PxVec4& other) const { return column0 * other.x + column1 * other.y + column2 * other.z + column3 * other.w; } //! Transform vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE const PxVec3 transform(const PxVec3& other) const { return transform(PxVec4(other, 1.0f)).getXYZ(); } //! Rotate vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE const PxVec4 rotate(const PxVec4& other) const { return column0 * other.x + column1 * other.y + column2 * other.z; // + column3*0; } //! Rotate vector by matrix, equal to v' = M*v PX_CUDA_CALLABLE PX_INLINE const PxVec3 rotate(const PxVec3& other) const { return rotate(PxVec4(other, 1.0f)).getXYZ(); } PX_CUDA_CALLABLE PX_INLINE const PxVec3 getBasis(int num) const { PX_SHARED_ASSERT(num >= 0 && num < 3); return (&column0)[num].getXYZ(); } PX_CUDA_CALLABLE PX_INLINE const PxVec3 getPosition() const { return column3.getXYZ(); } PX_CUDA_CALLABLE PX_INLINE void setPosition(const PxVec3& position) { column3.x = position.x; column3.y = position.y; column3.z = position.z; } PX_CUDA_CALLABLE PX_FORCE_INLINE const float* front() const { return &column0.x; } PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec4& operator[](unsigned int num) { return (&column0)[num]; } PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec4& operator[](unsigned int num) const { return (&column0)[num]; } PX_CUDA_CALLABLE PX_INLINE void scale(const PxVec4& p) { column0 *= p.x; column1 *= p.y; column2 *= p.z; column3 *= p.w; } PX_CUDA_CALLABLE PX_INLINE const PxMat44 inverseRT(void) const { PxVec3 r0(column0.x, column1.x, column2.x), r1(column0.y, column1.y, column2.y), r2(column0.z, column1.z, column2.z); return PxMat44(r0, r1, r2, -(r0 * column3.x + r1 * column3.y + r2 * column3.z)); } PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return column0.isFinite() && column1.isFinite() && column2.isFinite() && column3.isFinite(); } // Data, see above for format! PxVec4 column0, column1, column2, column3; // the four base vectors }; // implementation from PxTransform.h PX_CUDA_CALLABLE PX_FORCE_INLINE PxTransform::PxTransform(const PxMat44& m) { PxVec3 column0 = PxVec3(m.column0.x, m.column0.y, m.column0.z); PxVec3 column1 = PxVec3(m.column1.x, m.column1.y, m.column1.z); PxVec3 column2 = PxVec3(m.column2.x, m.column2.y, m.column2.z); q = PxQuat(PxMat33(column0, column1, column2)); p = PxVec3(m.column3.x, m.column3.y, m.column3.z); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // #ifndef PXFOUNDATION_PXMAT44_H