// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PXFOUNDATION_PXVEC2_H #define PXFOUNDATION_PXVEC2_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #if !PX_DOXYGEN namespace physx { #endif /** \brief 2 Element vector class. This is a 2-dimensional vector class with public data members. */ class PxVec2 { public: /** \brief default constructor leaves data uninitialized. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2() { } /** \brief zero constructor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(PxZERO r) : x(0.0f), y(0.0f) { PX_UNUSED(r); } /** \brief Assigns scalar parameter to all elements. Useful to initialize to zero or one. \param[in] a Value to assign to elements. */ explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float a) : x(a), y(a) { } /** \brief Initializes from 2 scalar parameters. \param[in] nx Value to initialize X component. \param[in] ny Value to initialize Y component. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(float nx, float ny) : x(nx), y(ny) { } /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2(const PxVec2& v) : x(v.x), y(v.y) { } // Operators /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator=(const PxVec2& p) { x = p.x; y = p.y; return *this; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](int index) { PX_SHARED_ASSERT(index >= 0 && index <= 1); return reinterpret_cast(this)[index]; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](int index) const { PX_SHARED_ASSERT(index >= 0 && index <= 1); return reinterpret_cast(this)[index]; } /** \brief returns true if the two vectors are exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec2& v) const { return x == v.x && y == v.y; } /** \brief returns true if the two vectors are not exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec2& v) const { return x != v.x || y != v.y; } /** \brief tests for exact zero vector */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const { return x == 0.0f && y == 0.0f; } /** \brief returns true if all 2 elems of the vector are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y); } /** \brief is normalized - used by API parameter validation */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const { const float unitTolerance = 1e-4f; return isFinite() && PxAbs(magnitude() - 1) < unitTolerance; } /** \brief returns the squared magnitude Avoids calling PxSqrt()! */ PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const { return x * x + y * y; } /** \brief returns the magnitude */ PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const { return PxSqrt(magnitudeSquared()); } /** \brief negation */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-() const { return PxVec2(-x, -y); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator+(const PxVec2& v) const { return PxVec2(x + v.x, y + v.y); } /** \brief vector difference */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator-(const PxVec2& v) const { return PxVec2(x - v.x, y - v.y); } /** \brief scalar post-multiplication */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator*(float f) const { return PxVec2(x * f, y * f); } /** \brief scalar division */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 operator/(float f) const { f = 1.0f / f; // PT: inconsistent notation with operator /= return PxVec2(x * f, y * f); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator+=(const PxVec2& v) { x += v.x; y += v.y; return *this; } /** \brief vector difference */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator-=(const PxVec2& v) { x -= v.x; y -= v.y; return *this; } /** \brief scalar multiplication */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator*=(float f) { x *= f; y *= f; return *this; } /** \brief scalar division */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2& operator/=(float f) { f = 1.0f / f; // PT: inconsistent notation with operator / x *= f; y *= f; return *this; } /** \brief returns the scalar product of this and other. */ PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec2& v) const { return x * v.x + y * v.y; } /** return a unit vector */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 getNormalized() const { const float m = magnitudeSquared(); return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec2(0, 0); } /** \brief normalizes the vector in place */ PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize() { const float m = magnitude(); if(m > 0.0f) *this /= m; return m; } /** \brief a[i] * b[i], for all i. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 multiply(const PxVec2& a) const { return PxVec2(x * a.x, y * a.y); } /** \brief element-wise minimum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 minimum(const PxVec2& v) const { return PxVec2(PxMin(x, v.x), PxMin(y, v.y)); } /** \brief returns MIN(x, y); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const { return PxMin(x, y); } /** \brief element-wise maximum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec2 maximum(const PxVec2& v) const { return PxVec2(PxMax(x, v.x), PxMax(y, v.y)); } /** \brief returns MAX(x, y); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const { return PxMax(x, y); } float x, y; }; PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec2 operator*(float f, const PxVec2& v) { return PxVec2(f * v.x, f * v.y); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // #ifndef PXFOUNDATION_PXVEC2_H