// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PXFOUNDATION_PXVEC3_H #define PXFOUNDATION_PXVEC3_H /** \addtogroup foundation @{ */ #include "foundation/PxMath.h" #if !PX_DOXYGEN namespace physx { #endif /** \brief 3 Element vector class. This is a 3-dimensional vector class with public data members. */ class PxVec3 { public: /** \brief default constructor leaves data uninitialized. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3() { } /** \brief zero constructor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(PxZERO r) : x(0.0f), y(0.0f), z(0.0f) { PX_UNUSED(r); } /** \brief Assigns scalar parameter to all elements. Useful to initialize to zero or one. \param[in] a Value to assign to elements. */ explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float a) : x(a), y(a), z(a) { } /** \brief Initializes from 3 scalar parameters. \param[in] nx Value to initialize X component. \param[in] ny Value to initialize Y component. \param[in] nz Value to initialize Z component. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(float nx, float ny, float nz) : x(nx), y(ny), z(nz) { } /** \brief Copy ctor. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3(const PxVec3& v) : x(v.x), y(v.y), z(v.z) { } // Operators /** \brief Assignment operator */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator=(const PxVec3& p) { x = p.x; y = p.y; z = p.z; return *this; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE float& operator[](unsigned int index) { PX_SHARED_ASSERT(index <= 2); return reinterpret_cast(this)[index]; } /** \brief element access */ PX_CUDA_CALLABLE PX_FORCE_INLINE const float& operator[](unsigned int index) const { PX_SHARED_ASSERT(index <= 2); return reinterpret_cast(this)[index]; } /** \brief returns true if the two vectors are exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator==(const PxVec3& v) const { return x == v.x && y == v.y && z == v.z; } /** \brief returns true if the two vectors are not exactly equal. */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool operator!=(const PxVec3& v) const { return x != v.x || y != v.y || z != v.z; } /** \brief tests for exact zero vector */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isZero() const { return x == 0.0f && y == 0.0f && z == 0.0f; } /** \brief returns true if all 3 elems of the vector are finite (not NAN or INF, etc.) */ PX_CUDA_CALLABLE PX_INLINE bool isFinite() const { return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z); } /** \brief is normalized - used by API parameter validation */ PX_CUDA_CALLABLE PX_FORCE_INLINE bool isNormalized() const { const float unitTolerance = 1e-4f; return isFinite() && PxAbs(magnitude() - 1) < unitTolerance; } /** \brief returns the squared magnitude Avoids calling PxSqrt()! */ PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const { return x * x + y * y + z * z; } /** \brief returns the magnitude */ PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitude() const { return PxSqrt(magnitudeSquared()); } /** \brief negation */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-() const { return PxVec3(-x, -y, -z); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator+(const PxVec3& v) const { return PxVec3(x + v.x, y + v.y, z + v.z); } /** \brief vector difference */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator-(const PxVec3& v) const { return PxVec3(x - v.x, y - v.y, z - v.z); } /** \brief scalar post-multiplication */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator*(float f) const { return PxVec3(x * f, y * f, z * f); } /** \brief scalar division */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 operator/(float f) const { f = 1.0f / f; return PxVec3(x * f, y * f, z * f); } /** \brief vector addition */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator+=(const PxVec3& v) { x += v.x; y += v.y; z += v.z; return *this; } /** \brief vector difference */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator-=(const PxVec3& v) { x -= v.x; y -= v.y; z -= v.z; return *this; } /** \brief scalar multiplication */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator*=(float f) { x *= f; y *= f; z *= f; return *this; } /** \brief scalar division */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3& operator/=(float f) { f = 1.0f / f; x *= f; y *= f; z *= f; return *this; } /** \brief returns the scalar product of this and other. */ PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxVec3& v) const { return x * v.x + y * v.y + z * v.z; } /** \brief cross product */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 cross(const PxVec3& v) const { return PxVec3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x); } /** return a unit vector */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getNormalized() const { const float m = magnitudeSquared(); return m > 0.0f ? *this * PxRecipSqrt(m) : PxVec3(0, 0, 0); } /** \brief normalizes the vector in place */ PX_CUDA_CALLABLE PX_FORCE_INLINE float normalize() { const float m = magnitude(); if(m > 0.0f) *this /= m; return m; } /** \brief normalizes the vector in place. Does nothing if vector magnitude is under PX_NORMALIZATION_EPSILON. Returns vector magnitude if >= PX_NORMALIZATION_EPSILON and 0.0f otherwise. */ PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeSafe() { const float mag = magnitude(); if(mag < PX_NORMALIZATION_EPSILON) return 0.0f; *this *= 1.0f / mag; return mag; } /** \brief normalizes the vector in place. Asserts if vector magnitude is under PX_NORMALIZATION_EPSILON. returns vector magnitude. */ PX_CUDA_CALLABLE PX_FORCE_INLINE float normalizeFast() { const float mag = magnitude(); PX_SHARED_ASSERT(mag >= PX_NORMALIZATION_EPSILON); *this *= 1.0f / mag; return mag; } /** \brief a[i] * b[i], for all i. */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 multiply(const PxVec3& a) const { return PxVec3(x * a.x, y * a.y, z * a.z); } /** \brief element-wise minimum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 minimum(const PxVec3& v) const { return PxVec3(PxMin(x, v.x), PxMin(y, v.y), PxMin(z, v.z)); } /** \brief returns MIN(x, y, z); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float minElement() const { return PxMin(x, PxMin(y, z)); } /** \brief element-wise maximum */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 maximum(const PxVec3& v) const { return PxVec3(PxMax(x, v.x), PxMax(y, v.y), PxMax(z, v.z)); } /** \brief returns MAX(x, y, z); */ PX_CUDA_CALLABLE PX_FORCE_INLINE float maxElement() const { return PxMax(x, PxMax(y, z)); } /** \brief returns absolute values of components; */ PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 abs() const { return PxVec3(PxAbs(x), PxAbs(y), PxAbs(z)); } float x, y, z; }; PX_CUDA_CALLABLE static PX_FORCE_INLINE PxVec3 operator*(float f, const PxVec3& v) { return PxVec3(f * v.x, f * v.y, f * v.z); } #if !PX_DOXYGEN } // namespace physx #endif /** @} */ #endif // #ifndef PXFOUNDATION_PXVEC3_H