// // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved. // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. #ifndef PXS_RIGID_BODY_H #define PXS_RIGID_BODY_H #include "PxvDynamics.h" #include "CmSpatialVector.h" namespace physx { struct PxsCCDBody; #define PX_INTERNAL_LOCK_FLAG_START 8 PX_ALIGN_PREFIX(16) class PxsRigidBody { public: enum PxsRigidBodyFlag { eFROZEN = 1 << 0, //This flag indicates that the stabilization is enabled and the body is //"frozen". By "frozen", we mean that the body's transform is unchanged //from the previous frame. This permits various optimizations. eFREEZE_THIS_FRAME = 1 << 1, eUNFREEZE_THIS_FRAME = 1 << 2, eACTIVATE_THIS_FRAME = 1 << 3, eDEACTIVATE_THIS_FRAME = 1 << 4, // PT: this flag is now only used on the GPU. For the CPU the data is now stored directly in PxsBodyCore. eDISABLE_GRAVITY_GPU = 1 << 5, eSPECULATIVE_CCD = 1 << 6, //KS - copied here for GPU simulation to avoid needing to pass another set of flags around. eLOCK_LINEAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START), eLOCK_LINEAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 1), eLOCK_LINEAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 2), eLOCK_ANGULAR_X = 1 << (PX_INTERNAL_LOCK_FLAG_START + 3), eLOCK_ANGULAR_Y = 1 << (PX_INTERNAL_LOCK_FLAG_START + 4), eLOCK_ANGULAR_Z = 1 << (PX_INTERNAL_LOCK_FLAG_START + 5) }; PX_FORCE_INLINE PxsRigidBody(PxsBodyCore* core, PxReal freeze_count) : // PT: TODO: unify naming conventions mLastTransform (core->body2World), mInternalFlags (0), solverIterationCounts (core->solverIterationCounts), mCCD (NULL), mCore (core), sleepLinVelAcc (PxVec3(0.0f)), freezeCount (freeze_count), sleepAngVelAcc (PxVec3(0.0f)), accelScale (1.0f) {} PX_FORCE_INLINE ~PxsRigidBody() {} PX_FORCE_INLINE const PxTransform& getPose() const { PX_ASSERT(mCore->body2World.isSane()); return mCore->body2World; } PX_FORCE_INLINE const PxVec3& getLinearVelocity() const { PX_ASSERT(mCore->linearVelocity.isFinite()); return mCore->linearVelocity; } PX_FORCE_INLINE const PxVec3& getAngularVelocity() const { PX_ASSERT(mCore->angularVelocity.isFinite()); return mCore->angularVelocity; } PX_FORCE_INLINE void setVelocity(const PxVec3& linear, const PxVec3& angular) { PX_ASSERT(linear.isFinite()); PX_ASSERT(angular.isFinite()); mCore->linearVelocity = linear; mCore->angularVelocity = angular; } PX_FORCE_INLINE void setLinearVelocity(const PxVec3& linear) { PX_ASSERT(linear.isFinite()); mCore->linearVelocity = linear; } PX_FORCE_INLINE void setAngularVelocity(const PxVec3& angular) { PX_ASSERT(angular.isFinite()); mCore->angularVelocity = angular; } PX_FORCE_INLINE void constrainLinearVelocity(); PX_FORCE_INLINE void constrainAngularVelocity(); PX_FORCE_INLINE PxU32 getIterationCounts() { return mCore->solverIterationCounts; } PX_FORCE_INLINE PxReal getReportThreshold() const { return mCore->contactReportThreshold; } PX_FORCE_INLINE const PxTransform& getLastCCDTransform() const { return mLastTransform; } PX_FORCE_INLINE void saveLastCCDTransform() { mLastTransform = mCore->body2World; } PX_FORCE_INLINE bool isKinematic() const { return mCore->inverseMass == 0.0f; } PX_FORCE_INLINE void setPose(const PxTransform& pose) { mCore->body2World = pose; } PX_FORCE_INLINE void setPosition(const PxVec3& position) { mCore->body2World.p = position; } PX_FORCE_INLINE PxReal getInvMass() const { return mCore->inverseMass; } PX_FORCE_INLINE PxVec3 getInvInertia() const { return mCore->inverseInertia; } PX_FORCE_INLINE PxReal getMass() const { return 1.0f/mCore->inverseMass; } PX_FORCE_INLINE PxVec3 getInertia() const { return PxVec3(1.0f/mCore->inverseInertia.x, 1.0f/mCore->inverseInertia.y, 1.0f/mCore->inverseInertia.z); } PX_FORCE_INLINE PxsBodyCore& getCore() { return *mCore; } PX_FORCE_INLINE const PxsBodyCore& getCore() const { return *mCore; } PX_FORCE_INLINE PxU32 isActivateThisFrame() const { return PxU32(mInternalFlags & eACTIVATE_THIS_FRAME); } PX_FORCE_INLINE PxU32 isDeactivateThisFrame() const { return PxU32(mInternalFlags & eDEACTIVATE_THIS_FRAME); } PX_FORCE_INLINE PxU32 isFreezeThisFrame() const { return PxU32(mInternalFlags & eFREEZE_THIS_FRAME); } PX_FORCE_INLINE PxU32 isUnfreezeThisFrame() const { return PxU32(mInternalFlags & eUNFREEZE_THIS_FRAME); } PX_FORCE_INLINE void clearFreezeFlag() { mInternalFlags &= ~eFREEZE_THIS_FRAME; } PX_FORCE_INLINE void clearUnfreezeFlag() { mInternalFlags &= ~eUNFREEZE_THIS_FRAME; } PX_FORCE_INLINE void clearAllFrameFlags() { mInternalFlags &= eFROZEN; } // PT: implemented in PxsCCD.cpp: void advanceToToi(PxReal toi, PxReal dt, bool clip); void advancePrevPoseToToi(PxReal toi); // PxTransform getAdvancedTransform(PxReal toi) const; Cm::SpatialVector getPreSolverVelocities() const; PxTransform mLastTransform; //28 (28) PxU16 mInternalFlags; //30 (30) PxU16 solverIterationCounts; //32 (32) PxsCCDBody* mCCD; //36 (40) // only valid during CCD PxsBodyCore* mCore; //40 (48) #if !PX_P64_FAMILY PxU32 alignmentPad[2]; //48 (48) #endif PxVec3 sleepLinVelAcc; //60 (60) PxReal freezeCount; //64 (64) PxVec3 sleepAngVelAcc; //76 (76) PxReal accelScale; //80 (80) } PX_ALIGN_SUFFIX(16); PX_COMPILE_TIME_ASSERT(0 == (sizeof(PxsRigidBody) & 0x0f)); void PxsRigidBody::constrainLinearVelocity() { const PxU32 lockFlags = mCore->lockFlags; if(lockFlags) { if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_X) mCore->linearVelocity.x = 0.0f; if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Y) mCore->linearVelocity.y = 0.0f; if(lockFlags & PxRigidDynamicLockFlag::eLOCK_LINEAR_Z) mCore->linearVelocity.z = 0.0f; } } void PxsRigidBody::constrainAngularVelocity() { const PxU32 lockFlags = mCore->lockFlags; if(lockFlags) { if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_X) mCore->angularVelocity.x = 0.0f; if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Y) mCore->angularVelocity.y = 0.0f; if(lockFlags & PxRigidDynamicLockFlag::eLOCK_ANGULAR_Z) mCore->angularVelocity.z = 0.0f; } } } #endif