Projekt_Grafika/dependencies/physx-4.1/source/simulationcontroller/include/ScBodyCore.h

217 lines
9.5 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PX_PHYSICS_SCP_BODYCORE
#define PX_PHYSICS_SCP_BODYCORE
#include "foundation/PxTransform.h"
#include "ScRigidCore.h"
#include "PxRigidDynamic.h"
#include "PxvDynamics.h"
#include "PxvConfig.h"
#include "PsPool.h"
namespace physx
{
class PxRigidBodyDesc;
namespace Sc
{
class BodySim;
struct SimStateData;
struct KinematicTransform
{
PxTransform targetPose; // The body will move to this pose over the superstep following this getting set.
PxU8 targetValid; // User set a kinematic target.
PxU8 pad[2];
PxU8 type;
};
class BodyCore : public RigidCore
{
//= ATTENTION! =====================================================================================
// Changing the data layout of this class breaks the binary serialization format. See comments for
// PX_BINARY_SERIAL_VERSION. If a modification is required, please adjust the getBinaryMetaData
// function. If the modification is made on a custom branch, please change PX_BINARY_SERIAL_VERSION
// accordingly.
//==================================================================================================
//---------------------------------------------------------------------------------
// Construction, destruction & initialization
//---------------------------------------------------------------------------------
public:
// PX_SERIALIZATION
BodyCore(const PxEMPTY) : RigidCore(PxEmpty), mCore(PxEmpty), mSimStateData(NULL) {}
static void getBinaryMetaData(PxOutputStream& stream);
void disableInternalCaching(bool disable);
void restoreDynamicData();
//~PX_SERIALIZATION
BodyCore(PxActorType::Enum type, const PxTransform& bodyPose);
/*virtual*/ ~BodyCore();
//---------------------------------------------------------------------------------
// External API
//---------------------------------------------------------------------------------
PX_FORCE_INLINE const PxTransform& getBody2World() const { return mCore.body2World; }
void setBody2World(const PxTransform& p);
PX_FORCE_INLINE const PxVec3& getLinearVelocity() const { return mCore.linearVelocity; }
void setLinearVelocity(const PxVec3& v);
PX_FORCE_INLINE const PxVec3& getAngularVelocity() const { return mCore.angularVelocity; }
void setAngularVelocity(const PxVec3& v);
PX_FORCE_INLINE void updateVelocities(const PxVec3& linearVelModPerStep, const PxVec3& angularVelModPerStep)
{
mCore.linearVelocity += linearVelModPerStep;
mCore.angularVelocity += angularVelModPerStep;
}
PX_FORCE_INLINE const PxTransform& getBody2Actor() const { return mCore.getBody2Actor(); }
void setBody2Actor(const PxTransform& p);
void addSpatialAcceleration(Ps::Pool<SimStateData>* simStateDataPool, const PxVec3* linAcc, const PxVec3* angAcc);
void setSpatialAcceleration(Ps::Pool<SimStateData>* simStateDataPool, const PxVec3* linAcc, const PxVec3* angAcc);
void clearSpatialAcceleration(bool force, bool torque);
void addSpatialVelocity(Ps::Pool<SimStateData>* simStateDataPool, const PxVec3* linVelDelta, const PxVec3* angVelDelta);
void clearSpatialVelocity(bool force, bool torque);
PX_FORCE_INLINE PxReal getMaxPenetrationBias() const { return mCore.maxPenBias; }
PX_FORCE_INLINE void setMaxPenetrationBias(PxReal p) { mCore.maxPenBias = p; }
PxReal getInverseMass() const;
void setInverseMass(PxReal m);
const PxVec3& getInverseInertia() const;
void setInverseInertia(const PxVec3& i);
PxReal getLinearDamping() const;
void setLinearDamping(PxReal d);
PxReal getAngularDamping() const;
void setAngularDamping(PxReal d);
PX_FORCE_INLINE PxRigidBodyFlags getFlags() const { return mCore.mFlags; }
void setFlags(Ps::Pool<SimStateData>* simStateDataPool, PxRigidBodyFlags f);
PX_FORCE_INLINE PxRigidDynamicLockFlags getRigidDynamicLockFlags() const { return mCore.lockFlags; }
PX_FORCE_INLINE void setRigidDynamicLockFlags(PxRigidDynamicLockFlags flags) { mCore.lockFlags = flags; }
PX_FORCE_INLINE PxReal getSleepThreshold() const { return mCore.sleepThreshold; }
void setSleepThreshold(PxReal t);
PX_FORCE_INLINE PxReal getFreezeThreshold() const { return mCore.freezeThreshold; }
void setFreezeThreshold(PxReal t);
PX_FORCE_INLINE PxReal getMaxContactImpulse() const { return mCore.maxContactImpulse; }
void setMaxContactImpulse(PxReal m);
PxU32 getInternalIslandNodeIndex() const;
PX_FORCE_INLINE PxReal getWakeCounter() const { return mCore.wakeCounter; }
void setWakeCounter(PxReal wakeCounter, bool forceWakeUp=false);
bool isSleeping() const;
PX_FORCE_INLINE void wakeUp(PxReal wakeCounter) { setWakeCounter(wakeCounter, true); }
void putToSleep();
PxReal getMaxAngVelSq() const;
void setMaxAngVelSq(PxReal v);
PxReal getMaxLinVelSq() const;
void setMaxLinVelSq(PxReal v);
PX_FORCE_INLINE PxU16 getSolverIterationCounts() const { return mCore.solverIterationCounts; }
void setSolverIterationCounts(PxU16 c);
bool getKinematicTarget(PxTransform& p) const;
bool getHasValidKinematicTarget() const;
void setKinematicTarget(Ps::Pool<SimStateData>* simStateDataPool, const PxTransform& p, PxReal wakeCounter);
void invalidateKinematicTarget();
PX_FORCE_INLINE PxReal getContactReportThreshold() const { return mCore.contactReportThreshold; }
void setContactReportThreshold(PxReal t) { mCore.contactReportThreshold = t; }
void onOriginShift(const PxVec3& shift);
//---------------------------------------------------------------------------------
// Internal API
//---------------------------------------------------------------------------------
PX_FORCE_INLINE void setLinearVelocityInternal(const PxVec3& v) { mCore.linearVelocity = v; }
PX_FORCE_INLINE void setAngularVelocityInternal(const PxVec3& v) { mCore.angularVelocity = v; }
PX_FORCE_INLINE void setWakeCounterFromSim(PxReal c) { mCore.wakeCounter = c; }
BodySim* getSim() const;
PX_FORCE_INLINE PxsBodyCore& getCore() { return mCore; }
PX_FORCE_INLINE const PxsBodyCore& getCore() const { return mCore; }
PX_FORCE_INLINE PxReal getCCDAdvanceCoefficient() const { return mCore.ccdAdvanceCoefficient; }
PX_FORCE_INLINE void setCCDAdvanceCoefficient(PxReal c) { mCore.ccdAdvanceCoefficient = c; }
bool setupSimStateData(Ps::Pool<SimStateData>* simStateDataPool, const bool isKinematic, const bool targetValid = false);
void tearDownSimStateData(Ps::Pool<SimStateData>* simStateDataPool, const bool isKinematic);
bool checkSimStateKinematicStatus(bool) const;
Ps::IntBool isFrozen() const;
PX_FORCE_INLINE const SimStateData* getSimStateData(bool isKinematic) const { return (mSimStateData && (checkSimStateKinematicStatus(isKinematic)) ? mSimStateData : NULL); }
PX_FORCE_INLINE SimStateData* getSimStateData(bool isKinematic) { return (mSimStateData && (checkSimStateKinematicStatus(isKinematic)) ? mSimStateData : NULL); }
PX_FORCE_INLINE SimStateData* getSimStateData_Unchecked() const { return mSimStateData; }
static PX_FORCE_INLINE BodyCore& getCore(PxsBodyCore& core)
{
size_t offset = PX_OFFSET_OF_RT(BodyCore, mCore);
return *reinterpret_cast<BodyCore*>(reinterpret_cast<PxU8*>(&core) - offset);
}
void setKinematicLink(const bool value);
private:
void backup(SimStateData&);
void restore();
PX_ALIGN_PREFIX(16) PxsBodyCore mCore PX_ALIGN_SUFFIX(16);
SimStateData* mSimStateData;
};
PxActor* getPxActorFromBodyCore(Sc::BodyCore* bodyCore, PxActorType::Enum& type);
} // namespace Sc
}
#endif