Projekt_Grafika/dependencies/physx-4.1/include/foundation/PxQuat.h
Jakub Adamski f5087ee7b6 new repo
2021-01-29 17:02:11 +01:00

404 lines
10 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#ifndef PXFOUNDATION_PXQUAT_H
#define PXFOUNDATION_PXQUAT_H
/** \addtogroup foundation
@{
*/
#include "foundation/PxVec3.h"
#if !PX_DOXYGEN
namespace physx
{
#endif
/**
\brief This is a quaternion class. For more information on quaternion mathematics
consult a mathematics source on complex numbers.
*/
class PxQuat
{
public:
/**
\brief Default constructor, does not do any initialization.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat()
{
}
//! identity constructor
PX_CUDA_CALLABLE PX_INLINE PxQuat(PxIDENTITY r) : x(0.0f), y(0.0f), z(0.0f), w(1.0f)
{
PX_UNUSED(r);
}
/**
\brief Constructor from a scalar: sets the real part w to the scalar value, and the imaginary parts (x,y,z) to zero
*/
explicit PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float r) : x(0.0f), y(0.0f), z(0.0f), w(r)
{
}
/**
\brief Constructor. Take note of the order of the elements!
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(float nx, float ny, float nz, float nw) : x(nx), y(ny), z(nz), w(nw)
{
}
/**
\brief Creates from angle-axis representation.
Axis must be normalized!
Angle is in radians!
<b>Unit:</b> Radians
*/
PX_CUDA_CALLABLE PX_INLINE PxQuat(float angleRadians, const PxVec3& unitAxis)
{
PX_SHARED_ASSERT(PxAbs(1.0f - unitAxis.magnitude()) < 1e-3f);
const float a = angleRadians * 0.5f;
const float s = PxSin(a);
w = PxCos(a);
x = unitAxis.x * s;
y = unitAxis.y * s;
z = unitAxis.z * s;
}
/**
\brief Copy ctor.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat(const PxQuat& v) : x(v.x), y(v.y), z(v.z), w(v.w)
{
}
/**
\brief Creates from orientation matrix.
\param[in] m Rotation matrix to extract quaternion from.
*/
PX_CUDA_CALLABLE PX_INLINE explicit PxQuat(const PxMat33& m); /* defined in PxMat33.h */
/**
\brief returns true if quat is identity
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE bool isIdentity() const
{
return x==0.0f && y==0.0f && z==0.0f && w==1.0f;
}
/**
\brief returns true if all elements are finite (not NAN or INF, etc.)
*/
PX_CUDA_CALLABLE bool isFinite() const
{
return PxIsFinite(x) && PxIsFinite(y) && PxIsFinite(z) && PxIsFinite(w);
}
/**
\brief returns true if finite and magnitude is close to unit
*/
PX_CUDA_CALLABLE bool isUnit() const
{
const float unitTolerance = 1e-4f;
return isFinite() && PxAbs(magnitude() - 1) < unitTolerance;
}
/**
\brief returns true if finite and magnitude is reasonably close to unit to allow for some accumulation of error vs
isValid
*/
PX_CUDA_CALLABLE bool isSane() const
{
const float unitTolerance = 1e-2f;
return isFinite() && PxAbs(magnitude() - 1) < unitTolerance;
}
/**
\brief returns true if the two quaternions are exactly equal
*/
PX_CUDA_CALLABLE PX_INLINE bool operator==(const PxQuat& q) const
{
return x == q.x && y == q.y && z == q.z && w == q.w;
}
/**
\brief converts this quaternion to angle-axis representation
*/
PX_CUDA_CALLABLE PX_INLINE void toRadiansAndUnitAxis(float& angle, PxVec3& axis) const
{
const float quatEpsilon = 1.0e-8f;
const float s2 = x * x + y * y + z * z;
if(s2 < quatEpsilon * quatEpsilon) // can't extract a sensible axis
{
angle = 0.0f;
axis = PxVec3(1.0f, 0.0f, 0.0f);
}
else
{
const float s = PxRecipSqrt(s2);
axis = PxVec3(x, y, z) * s;
angle = PxAbs(w) < quatEpsilon ? PxPi : PxAtan2(s2 * s, w) * 2.0f;
}
}
/**
\brief Gets the angle between this quat and the identity quaternion.
<b>Unit:</b> Radians
*/
PX_CUDA_CALLABLE PX_INLINE float getAngle() const
{
return PxAcos(w) * 2.0f;
}
/**
\brief Gets the angle between this quat and the argument
<b>Unit:</b> Radians
*/
PX_CUDA_CALLABLE PX_INLINE float getAngle(const PxQuat& q) const
{
return PxAcos(dot(q)) * 2.0f;
}
/**
\brief This is the squared 4D vector length, should be 1 for unit quaternions.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float magnitudeSquared() const
{
return x * x + y * y + z * z + w * w;
}
/**
\brief returns the scalar product of this and other.
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE float dot(const PxQuat& v) const
{
return x * v.x + y * v.y + z * v.z + w * v.w;
}
PX_CUDA_CALLABLE PX_INLINE PxQuat getNormalized() const
{
const float s = 1.0f / magnitude();
return PxQuat(x * s, y * s, z * s, w * s);
}
PX_CUDA_CALLABLE PX_INLINE float magnitude() const
{
return PxSqrt(magnitudeSquared());
}
// modifiers:
/**
\brief maps to the closest unit quaternion.
*/
PX_CUDA_CALLABLE PX_INLINE float normalize() // convert this PxQuat to a unit quaternion
{
const float mag = magnitude();
if(mag != 0.0f)
{
const float imag = 1.0f / mag;
x *= imag;
y *= imag;
z *= imag;
w *= imag;
}
return mag;
}
/*
\brief returns the conjugate.
\note for unit quaternions, this is the inverse.
*/
PX_CUDA_CALLABLE PX_INLINE PxQuat getConjugate() const
{
return PxQuat(-x, -y, -z, w);
}
/*
\brief returns imaginary part.
*/
PX_CUDA_CALLABLE PX_INLINE PxVec3 getImaginaryPart() const
{
return PxVec3(x, y, z);
}
/** brief computes rotation of x-axis */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector0() const
{
const float x2 = x * 2.0f;
const float w2 = w * 2.0f;
return PxVec3((w * w2) - 1.0f + x * x2, (z * w2) + y * x2, (-y * w2) + z * x2);
}
/** brief computes rotation of y-axis */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector1() const
{
const float y2 = y * 2.0f;
const float w2 = w * 2.0f;
return PxVec3((-z * w2) + x * y2, (w * w2) - 1.0f + y * y2, (x * w2) + z * y2);
}
/** brief computes rotation of z-axis */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxVec3 getBasisVector2() const
{
const float z2 = z * 2.0f;
const float w2 = w * 2.0f;
return PxVec3((y * w2) + x * z2, (-x * w2) + y * z2, (w * w2) - 1.0f + z * z2);
}
/**
rotates passed vec by this (assumed unitary)
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotate(const PxVec3& v) const
{
const float vx = 2.0f * v.x;
const float vy = 2.0f * v.y;
const float vz = 2.0f * v.z;
const float w2 = w * w - 0.5f;
const float dot2 = (x * vx + y * vy + z * vz);
return PxVec3((vx * w2 + (y * vz - z * vy) * w + x * dot2), (vy * w2 + (z * vx - x * vz) * w + y * dot2),
(vz * w2 + (x * vy - y * vx) * w + z * dot2));
}
/**
inverse rotates passed vec by this (assumed unitary)
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE const PxVec3 rotateInv(const PxVec3& v) const
{
const float vx = 2.0f * v.x;
const float vy = 2.0f * v.y;
const float vz = 2.0f * v.z;
const float w2 = w * w - 0.5f;
const float dot2 = (x * vx + y * vy + z * vz);
return PxVec3((vx * w2 - (y * vz - z * vy) * w + x * dot2), (vy * w2 - (z * vx - x * vz) * w + y * dot2),
(vz * w2 - (x * vy - y * vx) * w + z * dot2));
}
/**
\brief Assignment operator
*/
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator=(const PxQuat& p)
{
x = p.x;
y = p.y;
z = p.z;
w = p.w;
return *this;
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const PxQuat& q)
{
const float tx = w * q.x + q.w * x + y * q.z - q.y * z;
const float ty = w * q.y + q.w * y + z * q.x - q.z * x;
const float tz = w * q.z + q.w * z + x * q.y - q.x * y;
w = w * q.w - q.x * x - y * q.y - q.z * z;
x = tx;
y = ty;
z = tz;
return *this;
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator+=(const PxQuat& q)
{
x += q.x;
y += q.y;
z += q.z;
w += q.w;
return *this;
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator-=(const PxQuat& q)
{
x -= q.x;
y -= q.y;
z -= q.z;
w -= q.w;
return *this;
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat& operator*=(const float s)
{
x *= s;
y *= s;
z *= s;
w *= s;
return *this;
}
/** quaternion multiplication */
PX_CUDA_CALLABLE PX_INLINE PxQuat operator*(const PxQuat& q) const
{
return PxQuat(w * q.x + q.w * x + y * q.z - q.y * z, w * q.y + q.w * y + z * q.x - q.z * x,
w * q.z + q.w * z + x * q.y - q.x * y, w * q.w - x * q.x - y * q.y - z * q.z);
}
/** quaternion addition */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator+(const PxQuat& q) const
{
return PxQuat(x + q.x, y + q.y, z + q.z, w + q.w);
}
/** quaternion subtraction */
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-() const
{
return PxQuat(-x, -y, -z, -w);
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator-(const PxQuat& q) const
{
return PxQuat(x - q.x, y - q.y, z - q.z, w - q.w);
}
PX_CUDA_CALLABLE PX_FORCE_INLINE PxQuat operator*(float r) const
{
return PxQuat(x * r, y * r, z * r, w * r);
}
/** the quaternion elements */
float x, y, z, w;
};
#if !PX_DOXYGEN
} // namespace physx
#endif
/** @} */
#endif // #ifndef PXFOUNDATION_PXQUAT_H