{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "gpuClass": "standard", "accelerator": "GPU", "widgets": { "application/vnd.jupyter.widget-state+json": { "faaab551ac144913bdeb5a7d6f036285": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a663f1f2ef884ad7b2ef87281f50b07c", "IPY_MODEL_9c7a0cd78fba490da413bc7083fc7a27", "IPY_MODEL_04529b4a3714492cb6b2a6a388929c85" ], "layout": "IPY_MODEL_3accb74af07c4fd6be92666a46bd9db9" } }, "a663f1f2ef884ad7b2ef87281f50b07c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec974fdfc4f940a895186ae129442ec0", "placeholder": "", "style": "IPY_MODEL_955da7fdb5ff4f539d707839110ad27a", "value": "Downloading builder script: 100%" } }, "9c7a0cd78fba490da413bc7083fc7a27": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e3f2f4acb97540ba93fcb56cb658cb6b", "max": 3208, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b1fad0c4a8694b88b1a9a3998b120289", "value": 3208 } }, "04529b4a3714492cb6b2a6a388929c85": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90c3eca7bac44244b5ae12fe88d780dd", "placeholder": "", "style": "IPY_MODEL_b291cc3d759c485aa2e65afb1c91fbd7", "value": " 3.21k/3.21k [00:00<00:00, 58.7kB/s]" } }, "3accb74af07c4fd6be92666a46bd9db9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ec974fdfc4f940a895186ae129442ec0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "955da7fdb5ff4f539d707839110ad27a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e3f2f4acb97540ba93fcb56cb658cb6b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1fad0c4a8694b88b1a9a3998b120289": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "90c3eca7bac44244b5ae12fe88d780dd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b291cc3d759c485aa2e65afb1c91fbd7": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "659bfbe1501d45bcbfc2fd4c8b9b51f0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d16034be81314b0ab22a57075520bd00", "IPY_MODEL_110f9ceef95345cbbe9b1cc908414dd2", "IPY_MODEL_c2fbae82bace49a59ef379157308e082" ], "layout": "IPY_MODEL_dda5aaa2c75a4ade9088f21c2df614d9" } }, "d16034be81314b0ab22a57075520bd00": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_912b150fa20a415c8d5e5d0f63ddeab5", "placeholder": "", "style": "IPY_MODEL_9633d2a01238445aaa787802680f666e", "value": "Downloading metadata: 100%" } }, "110f9ceef95345cbbe9b1cc908414dd2": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e6b4768ffc4e43dc9e9978e3048e9560", "max": 1687, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7938719f380046a3afb64fdeb0e6f7b5", "value": 1687 } }, "c2fbae82bace49a59ef379157308e082": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f07575607b5142379c572b0d2859a01f", "placeholder": "", "style": "IPY_MODEL_8f0fc0909de4401d9277c7cd4d3d62fa", "value": " 1.69k/1.69k [00:00<00:00, 72.0kB/s]" } }, "dda5aaa2c75a4ade9088f21c2df614d9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "912b150fa20a415c8d5e5d0f63ddeab5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9633d2a01238445aaa787802680f666e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e6b4768ffc4e43dc9e9978e3048e9560": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7938719f380046a3afb64fdeb0e6f7b5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f07575607b5142379c572b0d2859a01f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8f0fc0909de4401d9277c7cd4d3d62fa": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6e349bfc9f4643828f64b3835aa11e71": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_5ae276dee6084ec794c8c54547c39875", "IPY_MODEL_d862c64d967d4502b02ab57dc648474a", "IPY_MODEL_4dadade114f649bb84bd3245db78829a" ], "layout": "IPY_MODEL_1b228494ac544dc6ad10de7164e5cab9" } }, "5ae276dee6084ec794c8c54547c39875": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_aa1136948401479988b355417b5afd3a", "placeholder": "", "style": "IPY_MODEL_ac57cf6d2ee94786be93c39bacd288c0", "value": "Downloading readme: 100%" } }, "d862c64d967d4502b02ab57dc648474a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_101a9188bebf4997bdbd81a1ba3d49cf", "max": 4872, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_14d5a610583743b6af98ff3a1d30d717", "value": 4872 } }, "4dadade114f649bb84bd3245db78829a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f3f77136ea684efca4e0774bae1eb3f3", "placeholder": "", "style": "IPY_MODEL_f82c24b096ea402da6597ead02b2f6fe", "value": " 4.87k/4.87k [00:00<00:00, 61.0kB/s]" } }, "1b228494ac544dc6ad10de7164e5cab9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aa1136948401479988b355417b5afd3a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac57cf6d2ee94786be93c39bacd288c0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "101a9188bebf4997bdbd81a1ba3d49cf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "14d5a610583743b6af98ff3a1d30d717": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f3f77136ea684efca4e0774bae1eb3f3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f82c24b096ea402da6597ead02b2f6fe": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a2c3c8977a9e4c8bb6c0fe5cdcd3ceac": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_98d5729aa1674d239c286edd6bd75d4b", "IPY_MODEL_3d20ff84da944f6fa1078228eee062ee", "IPY_MODEL_6fcf5f5540bc419aa23fcb8be82bc777" ], "layout": "IPY_MODEL_0573bfba71bc4742a47112f4a664d14f" } }, "98d5729aa1674d239c286edd6bd75d4b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a2aa3e788e1b4a16b113256294436c71", "placeholder": "", "style": "IPY_MODEL_149a763e14f541d39d7153e1e1989921", "value": "Downloading data: 100%" } }, "3d20ff84da944f6fa1078228eee062ee": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b44dbebc2aca42039964df60715022bd", "max": 203415, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_0159df9cab8844a29232e00311fb8fd7", "value": 203415 } }, "6fcf5f5540bc419aa23fcb8be82bc777": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a1decedbe7f9411b97f27e76b1d5539a", "placeholder": "", "style": "IPY_MODEL_eeecf24c1ba64460a86c9dc141cf48c0", "value": " 203k/203k [00:00<00:00, 948kB/s]" } }, "0573bfba71bc4742a47112f4a664d14f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a2aa3e788e1b4a16b113256294436c71": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "149a763e14f541d39d7153e1e1989921": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b44dbebc2aca42039964df60715022bd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0159df9cab8844a29232e00311fb8fd7": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a1decedbe7f9411b97f27e76b1d5539a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eeecf24c1ba64460a86c9dc141cf48c0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d0e5525f045f409287c8873153ef495c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9616f2fe8e4b4d59bb8e233089f18949", "IPY_MODEL_84c8cdd28bb74cdca76b1aba43a326dc", "IPY_MODEL_ac95b4de0957453e899fe3f461b4dfb9" ], "layout": "IPY_MODEL_e127270bbb834fe09dac3638574a0eae" } }, "9616f2fe8e4b4d59bb8e233089f18949": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_250c97757de64dc59dfede5ea1f9c1b8", "placeholder": "", "style": "IPY_MODEL_6f6e7f5c15bb4170bed7f1acedaa2868", "value": "Generating train split: 100%" } }, "84c8cdd28bb74cdca76b1aba43a326dc": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_061c430fc36c47929e02ece94720b377", "max": 5574, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f6f3e433ad6d46ed99a3a0cc26624760", "value": 5574 } }, "ac95b4de0957453e899fe3f461b4dfb9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_61039dd008c848bc91f67a11961236f2", "placeholder": "", "style": "IPY_MODEL_ac902e290cdb46e7a76a9202dfbfeea6", "value": " 5574/5574 [00:18<00:00, 6599.81 examples/s]" } }, "e127270bbb834fe09dac3638574a0eae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "250c97757de64dc59dfede5ea1f9c1b8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f6e7f5c15bb4170bed7f1acedaa2868": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "061c430fc36c47929e02ece94720b377": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f6f3e433ad6d46ed99a3a0cc26624760": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "61039dd008c848bc91f67a11961236f2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac902e290cdb46e7a76a9202dfbfeea6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "00ff5a79c3474438b9a2d3d5a613c38a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_5b2a5d29ab18450990dff3d0038098e3", "IPY_MODEL_586924ae3bed49f4bcc34b62b88015cc", "IPY_MODEL_9185e41c357b4348a227a5dd2b02e17a" ], "layout": "IPY_MODEL_32d8bb3c116842eeb4b08eec26fa2dbe" } }, "5b2a5d29ab18450990dff3d0038098e3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dfeff42101544ba5830e9cb4bfa11204", "placeholder": "", "style": "IPY_MODEL_784b879d84b9412e933b4d1990991f52", "value": "100%" } }, "586924ae3bed49f4bcc34b62b88015cc": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_469c46e6825446b6b205ba1a9e9b7d97", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b103284a69f64cf6908e494ec3b88b0c", "value": 1 } }, "9185e41c357b4348a227a5dd2b02e17a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cae316c7fd2b42b4901fe22cc07f6a28", "placeholder": "", "style": "IPY_MODEL_767a6eb624374e0fbf51bf257cccc53b", "value": " 1/1 [00:00<00:00, 14.12it/s]" } }, "32d8bb3c116842eeb4b08eec26fa2dbe": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dfeff42101544ba5830e9cb4bfa11204": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "784b879d84b9412e933b4d1990991f52": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "469c46e6825446b6b205ba1a9e9b7d97": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b103284a69f64cf6908e494ec3b88b0c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "cae316c7fd2b42b4901fe22cc07f6a28": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "767a6eb624374e0fbf51bf257cccc53b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dd1ec83063aa42faacf6e996dee95a58": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_563eb31845224d4093e9dc96cf57c445", "IPY_MODEL_7ea724412ddf4fdaaf9c76f19c39ab34", "IPY_MODEL_b1d74065386d454788fb573b7a01d73a" ], "layout": "IPY_MODEL_16d7dfccfd0c4801ba14eaa3640ea231" } }, "563eb31845224d4093e9dc96cf57c445": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_91a0abd03d494b2699e8eb645ed7eda7", "placeholder": "", "style": "IPY_MODEL_acfe963e793840f5af98d016c3a5be4d", "value": "Downloading (…)solve/main/vocab.txt: 100%" } }, "7ea724412ddf4fdaaf9c76f19c39ab34": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_12eecded77aa4c0b8270958c429c5e33", "max": 231508, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_e7eb4aa69ede435e911ccb4f6bb27eca", "value": 231508 } }, "b1d74065386d454788fb573b7a01d73a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7df4f48608fc4f3185771b93105584dc", "placeholder": "", "style": "IPY_MODEL_1e5ffcf81cc649c3b9beacb8a7ab70c8", "value": " 232k/232k [00:00<00:00, 935kB/s]" } }, "16d7dfccfd0c4801ba14eaa3640ea231": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "91a0abd03d494b2699e8eb645ed7eda7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "acfe963e793840f5af98d016c3a5be4d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "12eecded77aa4c0b8270958c429c5e33": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e7eb4aa69ede435e911ccb4f6bb27eca": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7df4f48608fc4f3185771b93105584dc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1e5ffcf81cc649c3b9beacb8a7ab70c8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1e464642d1a046eba08a6b5b94dfd060": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_02f6d5269ce6403b93301e1cc0810c2e", "IPY_MODEL_93d7c900c84b488ba7fc0e801e8db5a7", "IPY_MODEL_a0bc131511d941189e834a4c6eab91ad" ], "layout": "IPY_MODEL_585307a3684a47cc8f0bd1f92b682373" } }, "02f6d5269ce6403b93301e1cc0810c2e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b2e8a810e8c54e6b99ef5f9597a20077", "placeholder": "", "style": "IPY_MODEL_c61939fef83c4cb987192a3aaccc64fe", "value": "Downloading (…)okenizer_config.json: 100%" } }, "93d7c900c84b488ba7fc0e801e8db5a7": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_412fe82e08214f89804c8d68a599ac78", "max": 28, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d0b28111954e4a2abba91a096c19f06c", "value": 28 } }, "a0bc131511d941189e834a4c6eab91ad": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d5b8ded6476744a3b935d167d44b3b56", "placeholder": "", "style": "IPY_MODEL_1f5be997bd8641afbd3e0534387fe378", "value": " 28.0/28.0 [00:00<00:00, 895B/s]" } }, "585307a3684a47cc8f0bd1f92b682373": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2e8a810e8c54e6b99ef5f9597a20077": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c61939fef83c4cb987192a3aaccc64fe": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "412fe82e08214f89804c8d68a599ac78": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d0b28111954e4a2abba91a096c19f06c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d5b8ded6476744a3b935d167d44b3b56": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1f5be997bd8641afbd3e0534387fe378": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "99e4648ab3bb4068afabf5bb441dbd43": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_52a54be01e8f48a180e966021b38a629", "IPY_MODEL_c8c5f72bee734aeca1019c11bedf1b3b", "IPY_MODEL_e302c57ba0a14ba8bed6825155dac372" ], "layout": "IPY_MODEL_a4c5260f6e89479088a3e22e48e2dfe3" } }, "52a54be01e8f48a180e966021b38a629": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_38a5be06cf344b1ba233bcb4b380ef40", "placeholder": "", "style": "IPY_MODEL_aebaeada4ced48058c2aeeb825b43d12", "value": "Downloading (…)lve/main/config.json: 100%" } }, "c8c5f72bee734aeca1019c11bedf1b3b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_67dd29a08bb549dfb8515bbb55a83c63", "max": 570, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_ca258a0856da4668a6efaae834984f1a", "value": 570 } }, "e302c57ba0a14ba8bed6825155dac372": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b334b7e24224d0291c68a765bee7a83", "placeholder": "", "style": "IPY_MODEL_ef04044742d64af2becb6fd4561c871e", "value": " 570/570 [00:00<00:00, 16.1kB/s]" } }, "a4c5260f6e89479088a3e22e48e2dfe3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "38a5be06cf344b1ba233bcb4b380ef40": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "aebaeada4ced48058c2aeeb825b43d12": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "67dd29a08bb549dfb8515bbb55a83c63": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ca258a0856da4668a6efaae834984f1a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5b334b7e24224d0291c68a765bee7a83": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ef04044742d64af2becb6fd4561c871e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d92c1e0371f44bf1a09ab322f66e37af": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9fb44ba6139b41849d40fb5ac20301da", "IPY_MODEL_81efef51b9d245bba85c978f34b4b945", "IPY_MODEL_4db1c74d5d5b4ea3a9bf298a30f69dfe" ], "layout": "IPY_MODEL_9c1441d4a6594e1894af6554ea357453" } }, "9fb44ba6139b41849d40fb5ac20301da": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90fd9ee5752a498bb1fe1e85469c86f5", "placeholder": "", "style": "IPY_MODEL_ba8f4bb285154ca08194c4dc912b0d8f", "value": "Downloading (…)"pytorch_model.bin";: 100%" } }, "81efef51b9d245bba85c978f34b4b945": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dd2a99f30f4e403e89cde06b1acab3d4", "max": 440473133, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_018f52dd2214404c85a53593f0e2ebc3", "value": 440473133 } }, "4db1c74d5d5b4ea3a9bf298a30f69dfe": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d65dd677908d4e6c873291c59d94b729", "placeholder": "", "style": "IPY_MODEL_5a2347b2bca94f798434ec43fbd41028", "value": " 440M/440M [00:02<00:00, 249MB/s]" } }, "9c1441d4a6594e1894af6554ea357453": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "90fd9ee5752a498bb1fe1e85469c86f5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ba8f4bb285154ca08194c4dc912b0d8f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dd2a99f30f4e403e89cde06b1acab3d4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "018f52dd2214404c85a53593f0e2ebc3": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d65dd677908d4e6c873291c59d94b729": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5a2347b2bca94f798434ec43fbd41028": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "markdown", "source": [ "# Instalacja pakietów" ], "metadata": { "id": "t2xXKpOpcZg_" } }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fdpN7ugfauLD", "outputId": "5140c905-6bcf-4a6c-979f-b927f224d1a5" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting transformers\n", " Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m64.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting datasets\n", " Downloading datasets-2.9.0-py3-none-any.whl (462 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m462.8/462.8 KB\u001b[0m \u001b[31m41.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: torch in /usr/local/lib/python3.8/dist-packages (1.13.1+cu116)\n", "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.25.1)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n", "Collecting huggingface-hub<1.0,>=0.11.0\n", " Downloading huggingface_hub-0.12.1-py3-none-any.whl (190 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.3/190.3 KB\u001b[0m \u001b[31m24.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.9.0)\n", "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n", " Downloading tokenizers-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m101.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (23.0)\n", "Requirement already satisfied: dill<0.3.7 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.3.6)\n", "Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (9.0.0)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets) (3.8.4)\n", "Collecting responses<0.19\n", " Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n", "Collecting xxhash\n", " Downloading xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (213 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m213.0/213.0 KB\u001b[0m \u001b[31m26.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting multiprocess\n", " Downloading multiprocess-0.70.14-py38-none-any.whl (132 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.0/132.0 KB\u001b[0m \u001b[31m16.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (2023.1.0)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from datasets) (1.3.5)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch) (4.5.0)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.1)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.8.2)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.3)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (6.0.4)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (4.0.2)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (22.2.0)\n", "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (3.0.1)\n", "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (4.0.0)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n", "Collecting urllib3<1.27,>=1.21.1\n", " Downloading urllib3-1.26.14-py2.py3-none-any.whl (140 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.6/140.6 KB\u001b[0m \u001b[31m17.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2.8.2)\n", "Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2022.7.1)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n", "Installing collected packages: tokenizers, xxhash, urllib3, multiprocess, responses, huggingface-hub, transformers, datasets\n", " Attempting uninstall: urllib3\n", " Found existing installation: urllib3 1.24.3\n", " Uninstalling urllib3-1.24.3:\n", " Successfully uninstalled urllib3-1.24.3\n", "Successfully installed datasets-2.9.0 huggingface-hub-0.12.1 multiprocess-0.70.14 responses-0.18.0 tokenizers-0.13.2 transformers-4.26.1 urllib3-1.26.14 xxhash-3.2.0\n" ] } ], "source": [ "!pip install transformers datasets torch" ] }, { "cell_type": "markdown", "source": [ "# Załadowanie pakietów" ], "metadata": { "id": "s8cfdy_6ldCn" } }, { "cell_type": "code", "source": [ "from datasets import load_dataset\n", "from transformers import BertTokenizer\n", "import torch\n", "from torch.utils.data import TensorDataset, random_split\n", "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n", "from transformers import get_linear_schedule_with_warmup\n", "import numpy as np\n", "import time\n", "import datetime\n", "import random" ], "metadata": { "id": "yLS_x9DIlgSs" }, "execution_count": 2, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Załadowanie datasetu\n", "sms_spam" ], "metadata": { "id": "fPwDyJd5cdaE" } }, { "cell_type": "code", "source": [ "dataset = load_dataset(\"sms_spam\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 263, "referenced_widgets": [ "faaab551ac144913bdeb5a7d6f036285", "a663f1f2ef884ad7b2ef87281f50b07c", "9c7a0cd78fba490da413bc7083fc7a27", "04529b4a3714492cb6b2a6a388929c85", "3accb74af07c4fd6be92666a46bd9db9", "ec974fdfc4f940a895186ae129442ec0", "955da7fdb5ff4f539d707839110ad27a", "e3f2f4acb97540ba93fcb56cb658cb6b", "b1fad0c4a8694b88b1a9a3998b120289", "90c3eca7bac44244b5ae12fe88d780dd", "b291cc3d759c485aa2e65afb1c91fbd7", "659bfbe1501d45bcbfc2fd4c8b9b51f0", "d16034be81314b0ab22a57075520bd00", "110f9ceef95345cbbe9b1cc908414dd2", "c2fbae82bace49a59ef379157308e082", "dda5aaa2c75a4ade9088f21c2df614d9", "912b150fa20a415c8d5e5d0f63ddeab5", "9633d2a01238445aaa787802680f666e", "e6b4768ffc4e43dc9e9978e3048e9560", "7938719f380046a3afb64fdeb0e6f7b5", "f07575607b5142379c572b0d2859a01f", "8f0fc0909de4401d9277c7cd4d3d62fa", "6e349bfc9f4643828f64b3835aa11e71", "5ae276dee6084ec794c8c54547c39875", "d862c64d967d4502b02ab57dc648474a", "4dadade114f649bb84bd3245db78829a", "1b228494ac544dc6ad10de7164e5cab9", "aa1136948401479988b355417b5afd3a", "ac57cf6d2ee94786be93c39bacd288c0", "101a9188bebf4997bdbd81a1ba3d49cf", "14d5a610583743b6af98ff3a1d30d717", "f3f77136ea684efca4e0774bae1eb3f3", "f82c24b096ea402da6597ead02b2f6fe", "a2c3c8977a9e4c8bb6c0fe5cdcd3ceac", "98d5729aa1674d239c286edd6bd75d4b", "3d20ff84da944f6fa1078228eee062ee", "6fcf5f5540bc419aa23fcb8be82bc777", "0573bfba71bc4742a47112f4a664d14f", "a2aa3e788e1b4a16b113256294436c71", "149a763e14f541d39d7153e1e1989921", "b44dbebc2aca42039964df60715022bd", "0159df9cab8844a29232e00311fb8fd7", "a1decedbe7f9411b97f27e76b1d5539a", "eeecf24c1ba64460a86c9dc141cf48c0", "d0e5525f045f409287c8873153ef495c", "9616f2fe8e4b4d59bb8e233089f18949", "84c8cdd28bb74cdca76b1aba43a326dc", "ac95b4de0957453e899fe3f461b4dfb9", "e127270bbb834fe09dac3638574a0eae", "250c97757de64dc59dfede5ea1f9c1b8", "6f6e7f5c15bb4170bed7f1acedaa2868", "061c430fc36c47929e02ece94720b377", "f6f3e433ad6d46ed99a3a0cc26624760", "61039dd008c848bc91f67a11961236f2", "ac902e290cdb46e7a76a9202dfbfeea6", "00ff5a79c3474438b9a2d3d5a613c38a", "5b2a5d29ab18450990dff3d0038098e3", "586924ae3bed49f4bcc34b62b88015cc", "9185e41c357b4348a227a5dd2b02e17a", "32d8bb3c116842eeb4b08eec26fa2dbe", "dfeff42101544ba5830e9cb4bfa11204", "784b879d84b9412e933b4d1990991f52", "469c46e6825446b6b205ba1a9e9b7d97", "b103284a69f64cf6908e494ec3b88b0c", "cae316c7fd2b42b4901fe22cc07f6a28", "767a6eb624374e0fbf51bf257cccc53b" ] }, "id": "N1EWeM0KcYtO", "outputId": "9fc3f675-a80c-4869-cfb5-160a2a25b6e2" }, "execution_count": 3, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading builder script: 0%| | 0.00/3.21k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "faaab551ac144913bdeb5a7d6f036285" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading metadata: 0%| | 0.00/1.69k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "659bfbe1501d45bcbfc2fd4c8b9b51f0" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading readme: 0%| | 0.00/4.87k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "6e349bfc9f4643828f64b3835aa11e71" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Downloading and preparing dataset sms_spam/plain_text to /root/.cache/huggingface/datasets/sms_spam/plain_text/1.0.0/53f051d3b5f62d99d61792c91acefe4f1577ad3e4c216fb0ad39e30b9f20019c...\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading data: 0%| | 0.00/203k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "a2c3c8977a9e4c8bb6c0fe5cdcd3ceac" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Generating train split: 0%| | 0/5574 [00:00, ? examples/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "d0e5525f045f409287c8873153ef495c" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Dataset sms_spam downloaded and prepared to /root/.cache/huggingface/datasets/sms_spam/plain_text/1.0.0/53f051d3b5f62d99d61792c91acefe4f1577ad3e4c216fb0ad39e30b9f20019c. Subsequent calls will reuse this data.\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " 0%| | 0/1 [00:00, ?it/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "00ff5a79c3474438b9a2d3d5a613c38a" } }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "dataset['train'][0]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Mf1QIM_dlp2x", "outputId": "a36bc069-6dc5-47bb-eae8-302dd8dd15dd" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "{'sms': 'Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\\n',\n", " 'label': 0}" ] }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "markdown", "source": [ "# Tokenizer BERT" ], "metadata": { "id": "Qc7CIjSOchir" } }, { "cell_type": "code", "source": [ "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 113, "referenced_widgets": [ "dd1ec83063aa42faacf6e996dee95a58", "563eb31845224d4093e9dc96cf57c445", "7ea724412ddf4fdaaf9c76f19c39ab34", "b1d74065386d454788fb573b7a01d73a", "16d7dfccfd0c4801ba14eaa3640ea231", "91a0abd03d494b2699e8eb645ed7eda7", "acfe963e793840f5af98d016c3a5be4d", "12eecded77aa4c0b8270958c429c5e33", "e7eb4aa69ede435e911ccb4f6bb27eca", "7df4f48608fc4f3185771b93105584dc", "1e5ffcf81cc649c3b9beacb8a7ab70c8", "1e464642d1a046eba08a6b5b94dfd060", "02f6d5269ce6403b93301e1cc0810c2e", "93d7c900c84b488ba7fc0e801e8db5a7", "a0bc131511d941189e834a4c6eab91ad", "585307a3684a47cc8f0bd1f92b682373", "b2e8a810e8c54e6b99ef5f9597a20077", "c61939fef83c4cb987192a3aaccc64fe", "412fe82e08214f89804c8d68a599ac78", "d0b28111954e4a2abba91a096c19f06c", "d5b8ded6476744a3b935d167d44b3b56", "1f5be997bd8641afbd3e0534387fe378", "99e4648ab3bb4068afabf5bb441dbd43", "52a54be01e8f48a180e966021b38a629", "c8c5f72bee734aeca1019c11bedf1b3b", "e302c57ba0a14ba8bed6825155dac372", "a4c5260f6e89479088a3e22e48e2dfe3", "38a5be06cf344b1ba233bcb4b380ef40", "aebaeada4ced48058c2aeeb825b43d12", "67dd29a08bb549dfb8515bbb55a83c63", "ca258a0856da4668a6efaae834984f1a", "5b334b7e24224d0291c68a765bee7a83", "ef04044742d64af2becb6fd4561c871e" ] }, "id": "hmnlC_hubLmP", "outputId": "b3f7d069-4987-4d61-bc02-cab0f8508af0" }, "execution_count": 5, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "dd1ec83063aa42faacf6e996dee95a58" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "1e464642d1a046eba08a6b5b94dfd060" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "99e4648ab3bb4068afabf5bb441dbd43" } }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "sms = dataset['train'][0]['sms']\n", "print('Original: ', sms)\n", "print('Tokenized: ', tokenizer.tokenize(sms))\n", "print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sms)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZxigrpcQdWCF", "outputId": "6db555e8-0670-48e0-e2af-f89c7e49a011" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original: Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\n", "\n", "Tokenized: ['go', 'until', 'ju', '##rong', 'point', ',', 'crazy', '.', '.', 'available', 'only', 'in', 'bug', '##is', 'n', 'great', 'world', 'la', 'e', 'buffet', '.', '.', '.', 'ci', '##ne', 'there', 'got', 'amore', 'wat', '.', '.', '.']\n", "Token IDs: [2175, 2127, 18414, 17583, 2391, 1010, 4689, 1012, 1012, 2800, 2069, 1999, 11829, 2483, 1050, 2307, 2088, 2474, 1041, 28305, 1012, 1012, 1012, 25022, 2638, 2045, 2288, 26297, 28194, 1012, 1012, 1012]\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Check maximum length of a sentence" ], "metadata": { "id": "wVT0m8T7evoz" } }, { "cell_type": "code", "source": [ "max_len = 0\n", "\n", "for sentence in dataset['train']:\n", " input_ids = tokenizer.encode(sentence['sms'], add_special_tokens=True)\n", " max_len = max(max_len, len(input_ids))\n", "\n", "print('Max sentence length: ', max_len)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 34 }, "id": "cmUVPrQYez3J", "outputId": "511e415a-8544-441f-a650-89d5cb4b4115" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Max sentence length: 238\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Special tokenization" ], "metadata": { "id": "2NfXDfYifX5S" } }, { "cell_type": "code", "source": [ "input_ids = []\n", "attention_masks = []\n", "\n", "for sentence in dataset['train']:\n", " encoded_dict = tokenizer.encode_plus(\n", " sentence['sms'],\n", " add_special_tokens = True,\n", " max_length = 240,\n", " padding = 'max_length',\n", " truncation=True,\n", " return_attention_mask = True,\n", " return_tensors = 'pt',\n", " )\n", " \n", " input_ids.append(encoded_dict['input_ids'])\n", " attention_masks.append(encoded_dict['attention_mask'])\n", "\n", "input_ids = torch.cat(input_ids, dim=0)\n", "attention_masks = torch.cat(attention_masks, dim=0)\n", "labels = torch.tensor([sentence['label'] for sentence in dataset['train']])\n", "\n", "print('Original: ', dataset['train'][0])\n", "print('Token IDs:', input_ids[0])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4u03dIS1fbKU", "outputId": "32ddbde0-eced-48b1-a78b-8d835236143f" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original: {'sms': 'Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\\n', 'label': 0}\n", "Token IDs: tensor([ 101, 2175, 2127, 18414, 17583, 2391, 1010, 4689, 1012, 1012,\n", " 2800, 2069, 1999, 11829, 2483, 1050, 2307, 2088, 2474, 1041,\n", " 28305, 1012, 1012, 1012, 25022, 2638, 2045, 2288, 26297, 28194,\n", " 1012, 1012, 1012, 102, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Split dataset\n", "Class balance ratio should be similar to base dataset ratio." ], "metadata": { "id": "Z6cC0YjAhmw_" } }, { "cell_type": "code", "source": [ "def check_class_balance(dataset):\n", " spam_count = 0.0\n", " not_spam_count = 0.0\n", " for row in dataset:\n", " if row[2].item() == 1:\n", " spam_count += 1.0\n", " else:\n", " not_spam_count += 1.0\n", " return spam_count / not_spam_count " ], "metadata": { "id": "QrEm9LLfvaDq" }, "execution_count": 16, "outputs": [] }, { "cell_type": "code", "source": [ "dataset = TensorDataset(input_ids, attention_masks, labels)\n", "print(\"Spam to not spam messages ratio: {}\\n\".format(check_class_balance(dataset)))\n", "\n", "test_size = 1000\n", "dataset_len = len(dataset)\n", "train_size = int(0.9 * (dataset_len-test_size))\n", "val_size = (dataset_len-test_size) - train_size\n", "\n", "test_dataset, train_dataset, val_dataset = random_split(dataset, [test_size, train_size, val_size])\n", "\n", "print('{:>5,} test samples'.format(test_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(test_dataset)))\n", "print('{:>5,} training samples'.format(train_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(train_dataset)))\n", "print('{:>5,} validation samples'.format(val_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(val_dataset)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vH3yXhA0hT3n", "outputId": "4fc01e6d-5f37-4fd0-f7d6-a6ba43e6875d" }, "execution_count": 23, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Spam to not spam messages ratio: 0.15475450590428838\n", "\n", "1,000 test samples\n", "Ratio: 0.1792452830188679\n", "\n", "4,116 training samples\n", "Ratio: 0.15100671140939598\n", "\n", " 458 validation samples\n", "Ratio: 0.13647642679900746\n", "\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Create train and validation loaders" ], "metadata": { "id": "z1hVsejihpO2" } }, { "cell_type": "code", "source": [ "batch_size = 32\n", "\n", "train_dataloader = DataLoader(\n", " train_dataset,\n", " sampler = RandomSampler(train_dataset),\n", " batch_size = batch_size\n", " )\n", "\n", "validation_dataloader = DataLoader(\n", " val_dataset,\n", " sampler = SequentialSampler(val_dataset),\n", " batch_size = batch_size\n", " )" ], "metadata": { "id": "k4pXght6hre3" }, "execution_count": 24, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Device check" ], "metadata": { "id": "MnErwHAbl_rF" } }, { "cell_type": "code", "source": [ "if torch.cuda.is_available(): \n", " device = torch.device(\"cuda\")\n", "\n", " print('There are %d GPU(s) available.' % torch.cuda.device_count())\n", " print('We will use the GPU:', torch.cuda.get_device_name(0))\n", "\n", "else:\n", " print('No GPU available, using the CPU instead.')\n", " device = torch.device(\"cpu\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "aUvyBFxzmBUy", "outputId": "24abe05a-2dd4-46ae-90ed-b0b775aecfc2" }, "execution_count": 25, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "There are 1 GPU(s) available.\n", "We will use the GPU: Tesla T4\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Custom BERT for classification\n", "Compared to default BertForSequenceClassification - additional linear layer.\n", "https://github.com/huggingface/transformers/blob/bd469c40659ce76c81f69c7726759d249b4aef49/src/transformers/models/bert/modeling_bert.py#L1506" ], "metadata": { "id": "o-YrojT-iIfY" } }, { "cell_type": "code", "source": [ "from transformers import BertForSequenceClassification, BertConfig, BertModel\n", "from torch import nn" ], "metadata": { "id": "GlTdPmbxtMPI" }, "execution_count": 27, "outputs": [] }, { "cell_type": "code", "source": [ "# in original model - no custom head just linear layer\n", "# self.classifier = nn.Linear(config.hidden_size, config.num_labels)\n", "\n", "class BertClassificationHeadCustom(nn.Module):\n", " def __init__(self, config):\n", " super().__init__()\n", " self.dense_1 = nn.Linear(config.hidden_size, config.hidden_size)\n", " self.dense_2 = nn.Linear(config.hidden_size, config.num_labels)\n", "\n", " def forward(self, x):\n", " x = self.dense_1(x)\n", " x = torch.relu(x)\n", "\n", " x = self.dense_2(x)\n", " x = torch.relu(x)\n", " return x\n", "\n", "\n", "class BertForSequenceClassificationCustom(BertForSequenceClassification):\n", " def __init__(self, config):\n", " super().__init__(config)\n", " self.num_labels = config.num_labels\n", " self.config = config\n", "\n", " self.bert = BertModel(config)\n", " classifier_dropout = (\n", " config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob\n", " )\n", " self.dropout = nn.Dropout(classifier_dropout)\n", " self.classifier = BertClassificationHeadCustom(config)\n", "\n", " # Initialize weights and apply final processing\n", " self.post_init()\n", "\n", "\n", "\n", "model = BertForSequenceClassificationCustom.from_pretrained(\n", " \"bert-base-uncased\",\n", " num_labels = 2,\n", " output_attentions = False,\n", " output_hidden_states = False,\n", ")\n", "\n", "model.cuda()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "d92c1e0371f44bf1a09ab322f66e37af", "9fb44ba6139b41849d40fb5ac20301da", "81efef51b9d245bba85c978f34b4b945", "4db1c74d5d5b4ea3a9bf298a30f69dfe", "9c1441d4a6594e1894af6554ea357453", "90fd9ee5752a498bb1fe1e85469c86f5", "ba8f4bb285154ca08194c4dc912b0d8f", "dd2a99f30f4e403e89cde06b1acab3d4", "018f52dd2214404c85a53593f0e2ebc3", "d65dd677908d4e6c873291c59d94b729", "5a2347b2bca94f798434ec43fbd41028" ] }, "id": "sIP3VGZmiK9s", "outputId": "bc2ef8ba-1a9d-4d83-fc07-82d09d188630" }, "execution_count": 28, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)\"pytorch_model.bin\";: 0%| | 0.00/440M [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "d92c1e0371f44bf1a09ab322f66e37af" } }, "metadata": {} }, { "output_type": "stream", "name": "stderr", "text": [ "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassificationCustom: ['cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight']\n", "- This IS expected if you are initializing BertForSequenceClassificationCustom from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BertForSequenceClassificationCustom from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", "Some weights of BertForSequenceClassificationCustom were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.dense_1.weight', 'classifier.dense_2.weight', 'classifier.dense_2.bias', 'classifier.dense_1.bias']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "BertForSequenceClassificationCustom(\n", " (bert): BertModel(\n", " (embeddings): BertEmbeddings(\n", " (word_embeddings): Embedding(30522, 768, padding_idx=0)\n", " (position_embeddings): Embedding(512, 768)\n", " (token_type_embeddings): Embedding(2, 768)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (encoder): BertEncoder(\n", " (layer): ModuleList(\n", " (0): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (1): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (2): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (3): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (4): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (5): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (6): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (7): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (8): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (9): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (10): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (11): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (pooler): BertPooler(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (activation): Tanh()\n", " )\n", " )\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (classifier): BertClassificationHeadCustom(\n", " (dense_1): Linear(in_features=768, out_features=768, bias=True)\n", " (dense_2): Linear(in_features=768, out_features=2, bias=True)\n", " )\n", ")" ] }, "metadata": {}, "execution_count": 28 } ] }, { "cell_type": "markdown", "source": [ "# Init training parameters" ], "metadata": { "id": "NZDC4iiQizdX" } }, { "cell_type": "code", "source": [ "optimizer = torch.optim.AdamW(model.parameters(),\n", " lr = 2e-5,\n", " eps = 1e-8\n", " )\n", "\n", "epochs = 4\n", "\n", "total_steps = len(train_dataloader) * epochs\n", "\n", "scheduler = get_linear_schedule_with_warmup(optimizer, \n", " num_warmup_steps = 0,\n", " num_training_steps = total_steps)" ], "metadata": { "id": "_uffUPNEi3S5" }, "execution_count": 29, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Helper functions" ], "metadata": { "id": "bnAwgfZekeYD" } }, { "cell_type": "code", "source": [ "def flat_accuracy(preds, labels):\n", " pred_flat = np.argmax(preds, axis=1).flatten()\n", " labels_flat = labels.flatten()\n", " return np.sum(pred_flat == labels_flat) / len(labels_flat)\n", "\n", "def format_time(elapsed):\n", " '''\n", " Takes a time in seconds and returns a string hh:mm:ss\n", " '''\n", " elapsed_rounded = int(round((elapsed)))\n", " \n", " return str(datetime.timedelta(seconds=elapsed_rounded))" ], "metadata": { "id": "Z3XSZuFmkgVr" }, "execution_count": 30, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Training" ], "metadata": { "id": "L-ZeLPfbkqy9" } }, { "cell_type": "code", "source": [ "# This training code is based on the `run_glue.py` script here:\n", "# https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128\n", "\n", "seed_val = 42\n", "\n", "random.seed(seed_val)\n", "np.random.seed(seed_val)\n", "torch.manual_seed(seed_val)\n", "torch.cuda.manual_seed_all(seed_val)\n", "\n", "training_stats = []\n", "total_t0 = time.time()\n", "\n", "for epoch_i in range(0, epochs):\n", " \n", " # ========================================\n", " # Training\n", " # ========================================\n", "\n", " print(\"\")\n", " print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))\n", " print('Training...')\n", "\n", " t0 = time.time()\n", " total_train_loss = 0\n", "\n", " model.train()\n", "\n", " for step, batch in enumerate(train_dataloader):\n", " if step % 40 == 0 and not step == 0:\n", " elapsed = format_time(time.time() - t0)\n", " print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))\n", "\n", " b_input_ids = batch[0].to(device)\n", " b_input_mask = batch[1].to(device)\n", " b_labels = batch[2].to(device)\n", "\n", " model.zero_grad() \n", "\n", " outputs = model(b_input_ids, \n", " token_type_ids=None, \n", " attention_mask=b_input_mask, \n", " labels=b_labels)\n", "\n", " loss = outputs['loss']\n", " total_train_loss += loss.item()\n", "\n", " loss.backward()\n", " torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", "\n", " optimizer.step()\n", " scheduler.step()\n", "\n", " avg_train_loss = total_train_loss / len(train_dataloader) \n", " training_time = format_time(time.time() - t0)\n", "\n", " print(\"\")\n", " print(\" Average training loss: {0:.2f}\".format(avg_train_loss))\n", " print(\" Training epcoh took: {:}\".format(training_time))\n", " \n", " # ========================================\n", " # Validation\n", " # ========================================\n", "\n", " print(\"\")\n", " print(\"Running Validation...\")\n", "\n", " t0 = time.time()\n", " model.eval()\n", "\n", " total_eval_accuracy = 0\n", " total_eval_loss = 0\n", " nb_eval_steps = 0\n", "\n", " for batch in validation_dataloader:\n", " b_input_ids = batch[0].to(device)\n", " b_input_mask = batch[1].to(device)\n", " b_labels = batch[2].to(device)\n", " \n", " with torch.no_grad(): \n", " outputs = model(b_input_ids, \n", " token_type_ids=None, \n", " attention_mask=b_input_mask,\n", " labels=b_labels)\n", " loss = outputs['loss']\n", " logits = outputs['logits']\n", " \n", " total_eval_loss += loss.item()\n", "\n", " logits = logits.detach().cpu().numpy()\n", " label_ids = b_labels.to('cpu').numpy()\n", "\n", " total_eval_accuracy += flat_accuracy(logits, label_ids)\n", " \n", "\n", " avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)\n", " print(\" Accuracy: {0:.2f}\".format(avg_val_accuracy))\n", "\n", " avg_val_loss = total_eval_loss / len(validation_dataloader)\n", " validation_time = format_time(time.time() - t0)\n", " \n", " print(\" Validation Loss: {0:.2f}\".format(avg_val_loss))\n", " print(\" Validation took: {:}\".format(validation_time))\n", "\n", " training_stats.append(\n", " {\n", " 'epoch': epoch_i + 1,\n", " 'Training Loss': avg_train_loss,\n", " 'Valid. Loss': avg_val_loss,\n", " 'Valid. Accur.': avg_val_accuracy,\n", " 'Training Time': training_time,\n", " 'Validation Time': validation_time\n", " }\n", " )\n", "\n", "print(\"\")\n", "print(\"Training complete!\")\n", "\n", "print(\"Total training took {:} (h:mm:ss)\".format(format_time(time.time()-total_t0)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QZ9H2EJNksT_", "outputId": "ad4bce2c-b443-4fe7-fdf2-99d678821d46" }, "execution_count": 31, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "======== Epoch 1 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:48.\n", " Batch 80 of 129. Elapsed: 0:01:35.\n", " Batch 120 of 129. Elapsed: 0:02:23.\n", "\n", " Average training loss: 0.13\n", " Training epcoh took: 0:02:34\n", "\n", "Running Validation...\n", " Accuracy: 0.98\n", " Validation Loss: 0.08\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 2 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:49.\n", " Batch 80 of 129. Elapsed: 0:01:38.\n", " Batch 120 of 129. Elapsed: 0:02:27.\n", "\n", " Average training loss: 0.03\n", " Training epcoh took: 0:02:38\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.06\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 3 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:49.\n", " Batch 80 of 129. Elapsed: 0:01:37.\n", " Batch 120 of 129. Elapsed: 0:02:26.\n", "\n", " Average training loss: 0.01\n", " Training epcoh took: 0:02:37\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.06\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 4 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:49.\n", " Batch 80 of 129. Elapsed: 0:01:37.\n", " Batch 120 of 129. Elapsed: 0:02:26.\n", "\n", " Average training loss: 0.01\n", " Training epcoh took: 0:02:36\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.06\n", " Validation took: 0:00:06\n", "\n", "Training complete!\n", "Total training took 0:10:50 (h:mm:ss)\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Train summary" ], "metadata": { "id": "eZ1fmJMjrRgc" } }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "pd.set_option('precision', 2)\n", "df_stats = pd.DataFrame(data=training_stats)\n", "\n", "df_stats = df_stats.set_index('epoch')\n", "df_stats" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 204 }, "id": "w4ov2mClrLGW", "outputId": "b574eb2f-90ff-47b2-ac8f-99682c9b938d" }, "execution_count": 32, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Training Loss Valid. Loss Valid. Accur. Training Time Validation Time\n", "epoch \n", "1 1.26e-01 0.08 0.98 0:02:34 0:00:06\n", "2 2.58e-02 0.06 0.99 0:02:38 0:00:06\n", "3 1.26e-02 0.06 0.99 0:02:37 0:00:06\n", "4 9.73e-03 0.06 0.99 0:02:36 0:00:06" ], "text/html": [ "\n", "
\n", " | Training Loss | \n", "Valid. Loss | \n", "Valid. Accur. | \n", "Training Time | \n", "Validation Time | \n", "
---|---|---|---|---|---|
epoch | \n", "\n", " | \n", " | \n", " | \n", " | \n", " |
1 | \n", "1.26e-01 | \n", "0.08 | \n", "0.98 | \n", "0:02:34 | \n", "0:00:06 | \n", "
2 | \n", "2.58e-02 | \n", "0.06 | \n", "0.99 | \n", "0:02:38 | \n", "0:00:06 | \n", "
3 | \n", "1.26e-02 | \n", "0.06 | \n", "0.99 | \n", "0:02:37 | \n", "0:00:06 | \n", "
4 | \n", "9.73e-03 | \n", "0.06 | \n", "0.99 | \n", "0:02:36 | \n", "0:00:06 | \n", "