{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "gpuClass": "standard", "widgets": { "application/vnd.jupyter.widget-state+json": { "371154699498422189229c97ccbfa508": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_51de31720ffc40ba8067dd2c2033851b", "IPY_MODEL_8c1eaf11c9db4c09aa6936a201615412", "IPY_MODEL_57ac64a5a8534de889c977d558fb81b8" ], "layout": "IPY_MODEL_7fb1c882a0524cbd8a71ab42cf54d02a" } }, "51de31720ffc40ba8067dd2c2033851b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_981ae04516214af6995cd9f846f5f45a", "placeholder": "", "style": "IPY_MODEL_815a8f36e137412aa54aa012adb7306d", "value": "Downloading (…)"pytorch_model.bin";: 100%" } }, "8c1eaf11c9db4c09aa6936a201615412": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_83723a5f3104486193880e58b7e9228c", "max": 440473133, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9947d9cd0a124c26b132c75e3bcafd2b", "value": 440473133 } }, "57ac64a5a8534de889c977d558fb81b8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a323a1744edb4e84b7f2b80530abc097", "placeholder": "", "style": "IPY_MODEL_665af58d5b5349f1a85dd4493407020f", "value": " 440M/440M [00:02<00:00, 145MB/s]" } }, "7fb1c882a0524cbd8a71ab42cf54d02a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "981ae04516214af6995cd9f846f5f45a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "815a8f36e137412aa54aa012adb7306d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "83723a5f3104486193880e58b7e9228c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9947d9cd0a124c26b132c75e3bcafd2b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a323a1744edb4e84b7f2b80530abc097": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "665af58d5b5349f1a85dd4493407020f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1877adc7cb1a4525b016c4b623b0e26c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_4f6fc3da4b70433db4e51fd5f9d36aac", "IPY_MODEL_b01f51fbdeb64732acf4c379b9d98872", "IPY_MODEL_a9c6b1eeba6c43e69660ef104f1b162a" ], "layout": "IPY_MODEL_aed474ff4bed4e3a85632768c6269341" } }, "4f6fc3da4b70433db4e51fd5f9d36aac": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_591dc81957d844429bd99dc17803b22d", "placeholder": "", "style": "IPY_MODEL_bd9ecb19f63d422392467475e8a18d84", "value": "Downloading builder script: 100%" } }, "b01f51fbdeb64732acf4c379b9d98872": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_99d7eae0a8a54d47a9bb8a7f29d6fdcd", "max": 3208, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f88729c7de1c4138bf47254d06577652", "value": 3208 } }, "a9c6b1eeba6c43e69660ef104f1b162a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6370e81644df40cea0207b1551a6221b", "placeholder": "", "style": "IPY_MODEL_c5ad3afe82e04e50bbd66e8e8e84ebd5", "value": " 3.21k/3.21k [00:00<00:00, 40.6kB/s]" } }, "aed474ff4bed4e3a85632768c6269341": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "591dc81957d844429bd99dc17803b22d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bd9ecb19f63d422392467475e8a18d84": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "99d7eae0a8a54d47a9bb8a7f29d6fdcd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f88729c7de1c4138bf47254d06577652": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6370e81644df40cea0207b1551a6221b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c5ad3afe82e04e50bbd66e8e8e84ebd5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "cdeea076963c4466805f2db30f8dadae": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cf01a082efe7471eabf0958cf9ad8fe7", "IPY_MODEL_97147e507dbb4f17a43c674ed459f363", "IPY_MODEL_49c4cea660db4cd0a23591ff718ca506" ], "layout": "IPY_MODEL_93047e8d99924f8cac15aaf46953e20a" } }, "cf01a082efe7471eabf0958cf9ad8fe7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_40849aa7220b42b899a09d787afc0f7c", "placeholder": "", "style": "IPY_MODEL_3d74c20c83c3474dbe85d61b1b5232f0", "value": "Downloading metadata: 100%" } }, "97147e507dbb4f17a43c674ed459f363": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9690c5ff99bb46cdb72b639461f3983f", "max": 1687, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a90d0945cb13456889b97368eaba4851", "value": 1687 } }, "49c4cea660db4cd0a23591ff718ca506": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1ee19fd8ea7747e4814096d3c24db483", "placeholder": "", "style": "IPY_MODEL_16a3d55eccad4f2c844ce98bddb49b1b", "value": " 1.69k/1.69k [00:00<00:00, 18.5kB/s]" } }, "93047e8d99924f8cac15aaf46953e20a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "40849aa7220b42b899a09d787afc0f7c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3d74c20c83c3474dbe85d61b1b5232f0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "9690c5ff99bb46cdb72b639461f3983f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a90d0945cb13456889b97368eaba4851": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "1ee19fd8ea7747e4814096d3c24db483": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "16a3d55eccad4f2c844ce98bddb49b1b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "67f9ea537f544a67bd791cd7afb931ce": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f3916037b6ba454a88b28175e42afb95", "IPY_MODEL_b95bf142874f4259b598970ab04969d0", "IPY_MODEL_b61d99fe6cfa4557849c02259ac53185" ], "layout": "IPY_MODEL_600e74e43b71416284652475cc72e86a" } }, "f3916037b6ba454a88b28175e42afb95": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e83f9fbe6f2345868ff5f52b1e718684", "placeholder": "", "style": "IPY_MODEL_7985caa4f03e43aabd664b812329704b", "value": "Downloading readme: 100%" } }, "b95bf142874f4259b598970ab04969d0": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_76342fc1b67d442ea1d5e7b14d3b6c2b", "max": 4872, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_64d332e261c24520af234d9014052789", "value": 4872 } }, "b61d99fe6cfa4557849c02259ac53185": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_871154eda162439fb31323272ef7189e", "placeholder": "", "style": "IPY_MODEL_276d93f3c4404d8b8ad29292a58cbe78", "value": " 4.87k/4.87k [00:00<00:00, 101kB/s]" } }, "600e74e43b71416284652475cc72e86a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e83f9fbe6f2345868ff5f52b1e718684": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7985caa4f03e43aabd664b812329704b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "76342fc1b67d442ea1d5e7b14d3b6c2b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "64d332e261c24520af234d9014052789": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "871154eda162439fb31323272ef7189e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "276d93f3c4404d8b8ad29292a58cbe78": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ed5b0b0708de49f5ba826e4e72e51e0c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1786fefd8f7045fe94288c47aefcb1ef", "IPY_MODEL_bb729621dd3045caa18a648dbdae5c42", "IPY_MODEL_e31faab315654a86a831ae9561a4ebcb" ], "layout": "IPY_MODEL_f635fbb6aa304b4abfd04ca248fd63da" } }, "1786fefd8f7045fe94288c47aefcb1ef": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_99e2b2ca8ba5476d92ac2c8c740ac747", "placeholder": "", "style": "IPY_MODEL_9e24e28b5490432f982195e3fcec6e9f", "value": "Downloading data: 100%" } }, "bb729621dd3045caa18a648dbdae5c42": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4782fddda552489eaf98ef72ee2cb33b", "max": 203415, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8844bf52874b4e2e8c89e4074d046c0c", "value": 203415 } }, "e31faab315654a86a831ae9561a4ebcb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da71ed4edff047f2b0077716cdb34559", "placeholder": "", "style": "IPY_MODEL_e48116245d9249c6a44783022ac07e7c", "value": " 203k/203k [00:00<00:00, 8.67kB/s]" } }, "f635fbb6aa304b4abfd04ca248fd63da": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "99e2b2ca8ba5476d92ac2c8c740ac747": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9e24e28b5490432f982195e3fcec6e9f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4782fddda552489eaf98ef72ee2cb33b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8844bf52874b4e2e8c89e4074d046c0c": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "da71ed4edff047f2b0077716cdb34559": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e48116245d9249c6a44783022ac07e7c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c9fbec63c320439ca6885333433e74f6": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cee19025ed0b4ac1a58d0fc330797cd5", "IPY_MODEL_c93158c8990b482ead12b98d05e59340", "IPY_MODEL_dcdc267085844396b9007043e950b802" ], "layout": "IPY_MODEL_216e0797bc3149579085f302d06d071a" } }, "cee19025ed0b4ac1a58d0fc330797cd5": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7818aa6b2a084f2da4360013566d0829", "placeholder": "", "style": "IPY_MODEL_8955e603436a49668108af16167216ba", "value": "Generating train split: 100%" } }, "c93158c8990b482ead12b98d05e59340": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_31a2dc6a5482499e89ea453f6d2d8b99", "max": 5574, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_12e95793269647518e10cee66da26495", "value": 5574 } }, "dcdc267085844396b9007043e950b802": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b21104130e9541bf8f3227f1bd0a82a8", "placeholder": "", "style": "IPY_MODEL_a8d77fd8c4f64e5a9e00e6406f68fe21", "value": " 5574/5574 [00:17<00:00, 6668.87 examples/s]" } }, "216e0797bc3149579085f302d06d071a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7818aa6b2a084f2da4360013566d0829": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8955e603436a49668108af16167216ba": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "31a2dc6a5482499e89ea453f6d2d8b99": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "12e95793269647518e10cee66da26495": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b21104130e9541bf8f3227f1bd0a82a8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a8d77fd8c4f64e5a9e00e6406f68fe21": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "87d89b350a3a4999a6a0041e43a4e3f8": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cf47e047462c4bc5ba703d95ffe12e97", "IPY_MODEL_9013b8c8201d497b86b17bf7bb7a1ed2", "IPY_MODEL_66e4c8f41a5b49d5b415b51ffd30e27c" ], "layout": "IPY_MODEL_d580b92217d240c68dc5427fbfbdce17" } }, "cf47e047462c4bc5ba703d95ffe12e97": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d62f4230216449388902b9fb729ec97d", "placeholder": "", "style": "IPY_MODEL_80dd56148030406dba141f3447d4f548", "value": "100%" } }, "9013b8c8201d497b86b17bf7bb7a1ed2": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c869a3fb7575433bbeb60d6a48166bb9", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_120c856683be4d20ab86722f7cb898d9", "value": 1 } }, "66e4c8f41a5b49d5b415b51ffd30e27c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_52cd03195e5845988a042c54c834dfc1", "placeholder": "", "style": "IPY_MODEL_6a0e53c32e934b75aa9b877fcf630371", "value": " 1/1 [00:00<00:00, 23.67it/s]" } }, "d580b92217d240c68dc5427fbfbdce17": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d62f4230216449388902b9fb729ec97d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "80dd56148030406dba141f3447d4f548": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c869a3fb7575433bbeb60d6a48166bb9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "120c856683be4d20ab86722f7cb898d9": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "52cd03195e5845988a042c54c834dfc1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6a0e53c32e934b75aa9b877fcf630371": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "99bf66d8aec6450d9ff5fd26d500494c": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_890923e10c5d4e64affa391a71ce7282", "IPY_MODEL_ff4c790f333b42ed96bf437662131b4c", "IPY_MODEL_a5373b2df3d348dabb2277e56774793f" ], "layout": "IPY_MODEL_ea84d4faa4714f609474394fe01803e1" } }, "890923e10c5d4e64affa391a71ce7282": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f87538bb318a4682a1efca4f29c88995", "placeholder": "", "style": "IPY_MODEL_0ad66419e2304c6daa9812cf5d0b0d05", "value": "Downloading (…)solve/main/vocab.txt: 100%" } }, "ff4c790f333b42ed96bf437662131b4c": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c9bafe9fdc2a44a9b5bf0cc69dad81ce", "max": 231508, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_314d4cb8e2bc4f2fa54f63742f974806", "value": 231508 } }, "a5373b2df3d348dabb2277e56774793f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_346386cf68cc4fa3aad1ea30613480f4", "placeholder": "", "style": "IPY_MODEL_c1f18d2eceaf4ea289e520fd603851b8", "value": " 232k/232k [00:00<00:00, 931kB/s]" } }, "ea84d4faa4714f609474394fe01803e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f87538bb318a4682a1efca4f29c88995": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0ad66419e2304c6daa9812cf5d0b0d05": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c9bafe9fdc2a44a9b5bf0cc69dad81ce": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "314d4cb8e2bc4f2fa54f63742f974806": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "346386cf68cc4fa3aad1ea30613480f4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c1f18d2eceaf4ea289e520fd603851b8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ad09da5aaf0c40488d4bc6e542e135c7": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_7f2c407700df4b78b47025722b791731", "IPY_MODEL_50462493f96845cda39002a9199690c1", "IPY_MODEL_682fa8fe6782431d9541974cb1fddcb8" ], "layout": "IPY_MODEL_fc66f507ecef46a089c7ab5ddd4cc221" } }, "7f2c407700df4b78b47025722b791731": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bd5d850ab6fc4bf7ba2547639af6787d", "placeholder": "", "style": "IPY_MODEL_5d0aa841704d4b1d8041a486c9836010", "value": "Downloading (…)okenizer_config.json: 100%" } }, "50462493f96845cda39002a9199690c1": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f6cb7c5b730947699012901130fc3873", "max": 28, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9ef0d4e16597499f91b8c0ec000699c9", "value": 28 } }, "682fa8fe6782431d9541974cb1fddcb8": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_914a002878364acda89a024bd56ae215", "placeholder": "", "style": "IPY_MODEL_e3c5222bfc1c42669990caf5664c2181", "value": " 28.0/28.0 [00:00<00:00, 213B/s]" } }, "fc66f507ecef46a089c7ab5ddd4cc221": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bd5d850ab6fc4bf7ba2547639af6787d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5d0aa841704d4b1d8041a486c9836010": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f6cb7c5b730947699012901130fc3873": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9ef0d4e16597499f91b8c0ec000699c9": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "914a002878364acda89a024bd56ae215": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e3c5222bfc1c42669990caf5664c2181": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6ba96781e3e2463580fa9f2453c6857a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1ffdb4bfc9c94c4f9d2fe8e367e93b9c", "IPY_MODEL_06e9256f06b046fe8566d5edae45c1ba", "IPY_MODEL_da726d2194cd4231afbf5922129eb8ec" ], "layout": "IPY_MODEL_b0b91057028745da92696106688bd770" } }, "1ffdb4bfc9c94c4f9d2fe8e367e93b9c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_20d0b0999c1c42209aea4a38993ecba9", "placeholder": "", "style": "IPY_MODEL_d9a753e4053b4e9994a88dd41df5ad46", "value": "Downloading (…)lve/main/config.json: 100%" } }, "06e9256f06b046fe8566d5edae45c1ba": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d0327ba72cee4dddb6198875f0bb68bc", "max": 570, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6a7ddd28b45f4ad9a4ddf308c3d78f6e", "value": 570 } }, "da726d2194cd4231afbf5922129eb8ec": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_64405aeef9104a79a02d048cf3e0b1b3", "placeholder": "", "style": "IPY_MODEL_0f524bc971724924bc4085abaf7d3781", "value": " 570/570 [00:00<00:00, 8.75kB/s]" } }, "b0b91057028745da92696106688bd770": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "20d0b0999c1c42209aea4a38993ecba9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9a753e4053b4e9994a88dd41df5ad46": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d0327ba72cee4dddb6198875f0bb68bc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6a7ddd28b45f4ad9a4ddf308c3d78f6e": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "64405aeef9104a79a02d048cf3e0b1b3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0f524bc971724924bc4085abaf7d3781": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "markdown", "source": [ "# Instalacja pakietów" ], "metadata": { "id": "t2xXKpOpcZg_" } }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fdpN7ugfauLD", "outputId": "2b2e545d-314d-4917-82d7-420e7d9f1c07" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting transformers\n", " Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting datasets\n", " Downloading datasets-2.9.0-py3-none-any.whl (462 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m462.8/462.8 KB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: torch in /usr/local/lib/python3.8/dist-packages (1.13.1+cu116)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (23.0)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.9.0)\n", "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n", "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n", " Downloading tokenizers-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n", "Collecting huggingface-hub<1.0,>=0.11.0\n", " Downloading huggingface_hub-0.12.1-py3-none-any.whl (190 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.3/190.3 KB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.25.1)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n", "Collecting xxhash\n", " Downloading xxhash-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (213 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m213.0/213.0 KB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting responses<0.19\n", " Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n", "Requirement already satisfied: dill<0.3.7 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.3.6)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets) (3.8.4)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from datasets) (1.3.5)\n", "Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (9.0.0)\n", "Collecting multiprocess\n", " Downloading multiprocess-0.70.14-py38-none-any.whl (132 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.0/132.0 KB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (2023.1.0)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch) (4.5.0)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (4.0.2)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (22.2.0)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.8.2)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (6.0.4)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.1)\n", "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (3.0.1)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n", "Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (4.0.0)\n", "Collecting urllib3<1.27,>=1.21.1\n", " Downloading urllib3-1.26.14-py2.py3-none-any.whl (140 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.6/140.6 KB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2022.7.1)\n", "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2.8.2)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n", "Installing collected packages: tokenizers, xxhash, urllib3, multiprocess, responses, huggingface-hub, transformers, datasets\n", " Attempting uninstall: urllib3\n", " Found existing installation: urllib3 1.24.3\n", " Uninstalling urllib3-1.24.3:\n", " Successfully uninstalled urllib3-1.24.3\n", "Successfully installed datasets-2.9.0 huggingface-hub-0.12.1 multiprocess-0.70.14 responses-0.18.0 tokenizers-0.13.2 transformers-4.26.1 urllib3-1.26.14 xxhash-3.2.0\n" ] } ], "source": [ "!pip install transformers datasets torch" ] }, { "cell_type": "markdown", "source": [ "# Załadowanie pakietów" ], "metadata": { "id": "s8cfdy_6ldCn" } }, { "cell_type": "code", "source": [ "from datasets import load_dataset\n", "from transformers import BertTokenizer\n", "import torch\n", "from torch.utils.data import TensorDataset, random_split\n", "from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n", "from transformers import BertForSequenceClassification, BertConfig\n", "from transformers import get_linear_schedule_with_warmup\n", "import numpy as np\n", "import time\n", "import datetime\n", "import random" ], "metadata": { "id": "yLS_x9DIlgSs" }, "execution_count": 2, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Załadowanie datasetu\n", "sms_spam" ], "metadata": { "id": "fPwDyJd5cdaE" } }, { "cell_type": "code", "source": [ "dataset = load_dataset(\"sms_spam\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 263, "referenced_widgets": [ "1877adc7cb1a4525b016c4b623b0e26c", "4f6fc3da4b70433db4e51fd5f9d36aac", "b01f51fbdeb64732acf4c379b9d98872", "a9c6b1eeba6c43e69660ef104f1b162a", "aed474ff4bed4e3a85632768c6269341", "591dc81957d844429bd99dc17803b22d", "bd9ecb19f63d422392467475e8a18d84", "99d7eae0a8a54d47a9bb8a7f29d6fdcd", "f88729c7de1c4138bf47254d06577652", "6370e81644df40cea0207b1551a6221b", "c5ad3afe82e04e50bbd66e8e8e84ebd5", "cdeea076963c4466805f2db30f8dadae", "cf01a082efe7471eabf0958cf9ad8fe7", "97147e507dbb4f17a43c674ed459f363", "49c4cea660db4cd0a23591ff718ca506", "93047e8d99924f8cac15aaf46953e20a", "40849aa7220b42b899a09d787afc0f7c", "3d74c20c83c3474dbe85d61b1b5232f0", "9690c5ff99bb46cdb72b639461f3983f", "a90d0945cb13456889b97368eaba4851", "1ee19fd8ea7747e4814096d3c24db483", "16a3d55eccad4f2c844ce98bddb49b1b", "67f9ea537f544a67bd791cd7afb931ce", "f3916037b6ba454a88b28175e42afb95", "b95bf142874f4259b598970ab04969d0", "b61d99fe6cfa4557849c02259ac53185", "600e74e43b71416284652475cc72e86a", "e83f9fbe6f2345868ff5f52b1e718684", "7985caa4f03e43aabd664b812329704b", "76342fc1b67d442ea1d5e7b14d3b6c2b", "64d332e261c24520af234d9014052789", "871154eda162439fb31323272ef7189e", "276d93f3c4404d8b8ad29292a58cbe78", "ed5b0b0708de49f5ba826e4e72e51e0c", "1786fefd8f7045fe94288c47aefcb1ef", "bb729621dd3045caa18a648dbdae5c42", "e31faab315654a86a831ae9561a4ebcb", "f635fbb6aa304b4abfd04ca248fd63da", "99e2b2ca8ba5476d92ac2c8c740ac747", "9e24e28b5490432f982195e3fcec6e9f", "4782fddda552489eaf98ef72ee2cb33b", "8844bf52874b4e2e8c89e4074d046c0c", "da71ed4edff047f2b0077716cdb34559", "e48116245d9249c6a44783022ac07e7c", "c9fbec63c320439ca6885333433e74f6", "cee19025ed0b4ac1a58d0fc330797cd5", "c93158c8990b482ead12b98d05e59340", "dcdc267085844396b9007043e950b802", "216e0797bc3149579085f302d06d071a", "7818aa6b2a084f2da4360013566d0829", "8955e603436a49668108af16167216ba", "31a2dc6a5482499e89ea453f6d2d8b99", "12e95793269647518e10cee66da26495", "b21104130e9541bf8f3227f1bd0a82a8", "a8d77fd8c4f64e5a9e00e6406f68fe21", "87d89b350a3a4999a6a0041e43a4e3f8", "cf47e047462c4bc5ba703d95ffe12e97", "9013b8c8201d497b86b17bf7bb7a1ed2", "66e4c8f41a5b49d5b415b51ffd30e27c", "d580b92217d240c68dc5427fbfbdce17", "d62f4230216449388902b9fb729ec97d", "80dd56148030406dba141f3447d4f548", "c869a3fb7575433bbeb60d6a48166bb9", "120c856683be4d20ab86722f7cb898d9", "52cd03195e5845988a042c54c834dfc1", "6a0e53c32e934b75aa9b877fcf630371" ] }, "id": "N1EWeM0KcYtO", "outputId": "77762bad-8bed-4d2e-bd81-b8acc5927f0a" }, "execution_count": 3, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading builder script: 0%| | 0.00/3.21k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "1877adc7cb1a4525b016c4b623b0e26c" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading metadata: 0%| | 0.00/1.69k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "cdeea076963c4466805f2db30f8dadae" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading readme: 0%| | 0.00/4.87k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "67f9ea537f544a67bd791cd7afb931ce" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Downloading and preparing dataset sms_spam/plain_text to /root/.cache/huggingface/datasets/sms_spam/plain_text/1.0.0/53f051d3b5f62d99d61792c91acefe4f1577ad3e4c216fb0ad39e30b9f20019c...\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading data: 0%| | 0.00/203k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "ed5b0b0708de49f5ba826e4e72e51e0c" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Generating train split: 0%| | 0/5574 [00:00, ? examples/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "c9fbec63c320439ca6885333433e74f6" } }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Dataset sms_spam downloaded and prepared to /root/.cache/huggingface/datasets/sms_spam/plain_text/1.0.0/53f051d3b5f62d99d61792c91acefe4f1577ad3e4c216fb0ad39e30b9f20019c. Subsequent calls will reuse this data.\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " 0%| | 0/1 [00:00, ?it/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "87d89b350a3a4999a6a0041e43a4e3f8" } }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "dataset['train'][0]" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Mf1QIM_dlp2x", "outputId": "4faede3d-adc1-4d95-b7e7-8f75394c01dc" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "{'sms': 'Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\\n',\n", " 'label': 0}" ] }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "markdown", "source": [ "# Tokenizer BERT" ], "metadata": { "id": "Qc7CIjSOchir" } }, { "cell_type": "code", "source": [ "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 113, "referenced_widgets": [ "99bf66d8aec6450d9ff5fd26d500494c", "890923e10c5d4e64affa391a71ce7282", "ff4c790f333b42ed96bf437662131b4c", "a5373b2df3d348dabb2277e56774793f", "ea84d4faa4714f609474394fe01803e1", "f87538bb318a4682a1efca4f29c88995", "0ad66419e2304c6daa9812cf5d0b0d05", "c9bafe9fdc2a44a9b5bf0cc69dad81ce", "314d4cb8e2bc4f2fa54f63742f974806", "346386cf68cc4fa3aad1ea30613480f4", "c1f18d2eceaf4ea289e520fd603851b8", "ad09da5aaf0c40488d4bc6e542e135c7", "7f2c407700df4b78b47025722b791731", "50462493f96845cda39002a9199690c1", "682fa8fe6782431d9541974cb1fddcb8", "fc66f507ecef46a089c7ab5ddd4cc221", "bd5d850ab6fc4bf7ba2547639af6787d", "5d0aa841704d4b1d8041a486c9836010", "f6cb7c5b730947699012901130fc3873", "9ef0d4e16597499f91b8c0ec000699c9", "914a002878364acda89a024bd56ae215", "e3c5222bfc1c42669990caf5664c2181", "6ba96781e3e2463580fa9f2453c6857a", "1ffdb4bfc9c94c4f9d2fe8e367e93b9c", "06e9256f06b046fe8566d5edae45c1ba", "da726d2194cd4231afbf5922129eb8ec", "b0b91057028745da92696106688bd770", "20d0b0999c1c42209aea4a38993ecba9", "d9a753e4053b4e9994a88dd41df5ad46", "d0327ba72cee4dddb6198875f0bb68bc", "6a7ddd28b45f4ad9a4ddf308c3d78f6e", "64405aeef9104a79a02d048cf3e0b1b3", "0f524bc971724924bc4085abaf7d3781" ] }, "id": "hmnlC_hubLmP", "outputId": "2b20ce23-5568-4b0f-f4fe-eefa5fce266e" }, "execution_count": 5, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)solve/main/vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "99bf66d8aec6450d9ff5fd26d500494c" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)okenizer_config.json: 0%| | 0.00/28.0 [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "ad09da5aaf0c40488d4bc6e542e135c7" } }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)lve/main/config.json: 0%| | 0.00/570 [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "6ba96781e3e2463580fa9f2453c6857a" } }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "sms = dataset['train'][0]['sms']\n", "print('Original: ', sms)\n", "print('Tokenized: ', tokenizer.tokenize(sms))\n", "print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sms)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZxigrpcQdWCF", "outputId": "60c33065-3487-4a2b-c9d1-b975d29d4b18" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original: Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\n", "\n", "Tokenized: ['go', 'until', 'ju', '##rong', 'point', ',', 'crazy', '.', '.', 'available', 'only', 'in', 'bug', '##is', 'n', 'great', 'world', 'la', 'e', 'buffet', '.', '.', '.', 'ci', '##ne', 'there', 'got', 'amore', 'wat', '.', '.', '.']\n", "Token IDs: [2175, 2127, 18414, 17583, 2391, 1010, 4689, 1012, 1012, 2800, 2069, 1999, 11829, 2483, 1050, 2307, 2088, 2474, 1041, 28305, 1012, 1012, 1012, 25022, 2638, 2045, 2288, 26297, 28194, 1012, 1012, 1012]\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Check maximum length of a sentence" ], "metadata": { "id": "wVT0m8T7evoz" } }, { "cell_type": "code", "source": [ "max_len = 0\n", "\n", "for sentence in dataset['train']:\n", " input_ids = tokenizer.encode(sentence['sms'], add_special_tokens=True)\n", " max_len = max(max_len, len(input_ids))\n", "\n", "print('Max sentence length: ', max_len)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "cmUVPrQYez3J", "outputId": "9e5f5ef6-4551-4cc8-de91-25991002ebae" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Max sentence length: 238\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Special tokenization" ], "metadata": { "id": "2NfXDfYifX5S" } }, { "cell_type": "code", "source": [ "input_ids = []\n", "attention_masks = []\n", "\n", "for sentence in dataset['train']:\n", " encoded_dict = tokenizer.encode_plus(\n", " sentence['sms'],\n", " add_special_tokens = True,\n", " max_length = 240,\n", " padding = 'max_length',\n", " truncation=True,\n", " return_attention_mask = True,\n", " return_tensors = 'pt',\n", " )\n", " \n", " input_ids.append(encoded_dict['input_ids'])\n", " attention_masks.append(encoded_dict['attention_mask'])\n", "\n", "input_ids = torch.cat(input_ids, dim=0)\n", "attention_masks = torch.cat(attention_masks, dim=0)\n", "labels = torch.tensor([sentence['label'] for sentence in dataset['train']])\n", "\n", "print('Original: ', dataset['train'][0])\n", "print('Token IDs:', input_ids[0])" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4u03dIS1fbKU", "outputId": "3faafb89-6c7e-4485-9fb3-cc6d2cb89e27" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Original: {'sms': 'Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\\n', 'label': 0}\n", "Token IDs: tensor([ 101, 2175, 2127, 18414, 17583, 2391, 1010, 4689, 1012, 1012,\n", " 2800, 2069, 1999, 11829, 2483, 1050, 2307, 2088, 2474, 1041,\n", " 28305, 1012, 1012, 1012, 25022, 2638, 2045, 2288, 26297, 28194,\n", " 1012, 1012, 1012, 102, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Split dataset\n", "Class balance ratio should be similar to base dataset ratio." ], "metadata": { "id": "Z6cC0YjAhmw_" } }, { "cell_type": "code", "source": [ "def check_class_balance(dataset):\n", " spam_count = 0.0\n", " not_spam_count = 0.0\n", " for row in dataset:\n", " if row[2].item() == 1:\n", " spam_count += 1.0\n", " else:\n", " not_spam_count += 1.0\n", " return spam_count / not_spam_count " ], "metadata": { "id": "IhwCBeAjvGdm" }, "execution_count": 9, "outputs": [] }, { "cell_type": "code", "source": [ "dataset = TensorDataset(input_ids, attention_masks, labels)\n", "print(\"Spam to not spam messages ratio: {}\\n\".format(check_class_balance(dataset)))\n", "\n", "test_size = 1000\n", "dataset_len = len(dataset)\n", "train_size = int(0.9 * (dataset_len-test_size))\n", "val_size = (dataset_len-test_size) - train_size\n", "\n", "test_dataset, train_dataset, val_dataset = random_split(dataset, [test_size, train_size, val_size])\n", "\n", "print('{:>5,} test samples'.format(test_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(test_dataset)))\n", "print('{:>5,} training samples'.format(train_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(train_dataset)))\n", "print('{:>5,} validation samples'.format(val_size))\n", "print(\"Ratio: {}\\n\".format(check_class_balance(val_dataset)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vH3yXhA0hT3n", "outputId": "f03cb870-88ba-4adc-b85c-ece5a704060a" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Spam to not spam messages ratio: 0.15475450590428838\n", "\n", "1,000 test samples\n", "Ratio: 0.17370892018779344\n", "\n", "4,116 training samples\n", "Ratio: 0.149399609047752\n", "\n", " 458 validation samples\n", "Ratio: 0.16243654822335024\n", "\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Create train and validation loaders" ], "metadata": { "id": "z1hVsejihpO2" } }, { "cell_type": "code", "source": [ "batch_size = 32\n", "\n", "train_dataloader = DataLoader(\n", " train_dataset,\n", " sampler = RandomSampler(train_dataset),\n", " batch_size = batch_size\n", " )\n", "\n", "validation_dataloader = DataLoader(\n", " val_dataset,\n", " sampler = SequentialSampler(val_dataset),\n", " batch_size = batch_size\n", " )" ], "metadata": { "id": "k4pXght6hre3" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Device check" ], "metadata": { "id": "MnErwHAbl_rF" } }, { "cell_type": "code", "source": [ "if torch.cuda.is_available(): \n", " device = torch.device(\"cuda\")\n", "\n", " print('There are %d GPU(s) available.' % torch.cuda.device_count())\n", " print('We will use the GPU:', torch.cuda.get_device_name(0))\n", "\n", "else:\n", " print('No GPU available, using the CPU instead.')\n", " device = torch.device(\"cpu\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "aUvyBFxzmBUy", "outputId": "830f843f-f1ab-47ee-def7-0dfa3943b264" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "There are 1 GPU(s) available.\n", "We will use the GPU: Tesla T4\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Load BERT model" ], "metadata": { "id": "o-YrojT-iIfY" } }, { "cell_type": "code", "source": [ "model = BertForSequenceClassification.from_pretrained(\n", " \"bert-base-uncased\",\n", " num_labels = 2,\n", " output_attentions = False,\n", " output_hidden_states = False,\n", ")\n", "\n", "model.cuda()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "371154699498422189229c97ccbfa508", "51de31720ffc40ba8067dd2c2033851b", "8c1eaf11c9db4c09aa6936a201615412", "57ac64a5a8534de889c977d558fb81b8", "7fb1c882a0524cbd8a71ab42cf54d02a", "981ae04516214af6995cd9f846f5f45a", "815a8f36e137412aa54aa012adb7306d", "83723a5f3104486193880e58b7e9228c", "9947d9cd0a124c26b132c75e3bcafd2b", "a323a1744edb4e84b7f2b80530abc097", "665af58d5b5349f1a85dd4493407020f" ] }, "id": "sIP3VGZmiK9s", "outputId": "2f4e0a13-f379-4033-cca7-92dfc0155cd5" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Downloading (…)\"pytorch_model.bin\";: 0%| | 0.00/440M [00:00, ?B/s]" ], "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, "model_id": "371154699498422189229c97ccbfa508" } }, "metadata": {} }, { "output_type": "stream", "name": "stderr", "text": [ "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias']\n", "- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "BertForSequenceClassification(\n", " (bert): BertModel(\n", " (embeddings): BertEmbeddings(\n", " (word_embeddings): Embedding(30522, 768, padding_idx=0)\n", " (position_embeddings): Embedding(512, 768)\n", " (token_type_embeddings): Embedding(2, 768)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (encoder): BertEncoder(\n", " (layer): ModuleList(\n", " (0): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (1): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (2): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (3): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (4): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (5): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (6): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (7): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (8): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (9): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (10): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (11): BertLayer(\n", " (attention): BertAttention(\n", " (self): BertSelfAttention(\n", " (query): Linear(in_features=768, out_features=768, bias=True)\n", " (key): Linear(in_features=768, out_features=768, bias=True)\n", " (value): Linear(in_features=768, out_features=768, bias=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " (output): BertSelfOutput(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " (intermediate): BertIntermediate(\n", " (dense): Linear(in_features=768, out_features=3072, bias=True)\n", " (intermediate_act_fn): GELUActivation()\n", " )\n", " (output): BertOutput(\n", " (dense): Linear(in_features=3072, out_features=768, bias=True)\n", " (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " )\n", " )\n", " )\n", " )\n", " (pooler): BertPooler(\n", " (dense): Linear(in_features=768, out_features=768, bias=True)\n", " (activation): Tanh()\n", " )\n", " )\n", " (dropout): Dropout(p=0.1, inplace=False)\n", " (classifier): Linear(in_features=768, out_features=2, bias=True)\n", ")" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "markdown", "source": [ "# Model architecture" ], "metadata": { "id": "l5WEUOO_igvM" } }, { "cell_type": "code", "source": [ "params = list(model.named_parameters())\n", "\n", "print('The BERT model has {:} different named parameters.\\n'.format(len(params)))\n", "\n", "print('==== Embedding Layer ====\\n')\n", "\n", "for p in params[0:5]:\n", " print(\"{:<55} {:>12}\".format(p[0], str(tuple(p[1].size()))))\n", "\n", "print('\\n==== First Transformer ====\\n')\n", "\n", "for p in params[5:21]:\n", " print(\"{:<55} {:>12}\".format(p[0], str(tuple(p[1].size()))))\n", "\n", "print('\\n==== Output Layer ====\\n')\n", "\n", "for p in params[-4:]:\n", " print(\"{:<55} {:>12}\".format(p[0], str(tuple(p[1].size()))))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QRAQLbNuigcW", "outputId": "b01b3fc8-1c72-4529-bd88-cc019c097361" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The BERT model has 201 different named parameters.\n", "\n", "==== Embedding Layer ====\n", "\n", "bert.embeddings.word_embeddings.weight (30522, 768)\n", "bert.embeddings.position_embeddings.weight (512, 768)\n", "bert.embeddings.token_type_embeddings.weight (2, 768)\n", "bert.embeddings.LayerNorm.weight (768,)\n", "bert.embeddings.LayerNorm.bias (768,)\n", "\n", "==== First Transformer ====\n", "\n", "bert.encoder.layer.0.attention.self.query.weight (768, 768)\n", "bert.encoder.layer.0.attention.self.query.bias (768,)\n", "bert.encoder.layer.0.attention.self.key.weight (768, 768)\n", "bert.encoder.layer.0.attention.self.key.bias (768,)\n", "bert.encoder.layer.0.attention.self.value.weight (768, 768)\n", "bert.encoder.layer.0.attention.self.value.bias (768,)\n", "bert.encoder.layer.0.attention.output.dense.weight (768, 768)\n", "bert.encoder.layer.0.attention.output.dense.bias (768,)\n", "bert.encoder.layer.0.attention.output.LayerNorm.weight (768,)\n", "bert.encoder.layer.0.attention.output.LayerNorm.bias (768,)\n", "bert.encoder.layer.0.intermediate.dense.weight (3072, 768)\n", "bert.encoder.layer.0.intermediate.dense.bias (3072,)\n", "bert.encoder.layer.0.output.dense.weight (768, 3072)\n", "bert.encoder.layer.0.output.dense.bias (768,)\n", "bert.encoder.layer.0.output.LayerNorm.weight (768,)\n", "bert.encoder.layer.0.output.LayerNorm.bias (768,)\n", "\n", "==== Output Layer ====\n", "\n", "bert.pooler.dense.weight (768, 768)\n", "bert.pooler.dense.bias (768,)\n", "classifier.weight (2, 768)\n", "classifier.bias (2,)\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Init training parameters" ], "metadata": { "id": "NZDC4iiQizdX" } }, { "cell_type": "code", "source": [ "optimizer = torch.optim.AdamW(model.parameters(),\n", " lr = 2e-5,\n", " eps = 1e-8\n", " )\n", "\n", "epochs = 4\n", "\n", "total_steps = len(train_dataloader) * epochs\n", "\n", "scheduler = get_linear_schedule_with_warmup(optimizer, \n", " num_warmup_steps = 0,\n", " num_training_steps = total_steps)" ], "metadata": { "id": "_uffUPNEi3S5" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Helper functions" ], "metadata": { "id": "bnAwgfZekeYD" } }, { "cell_type": "code", "source": [ "def flat_accuracy(preds, labels):\n", " pred_flat = np.argmax(preds, axis=1).flatten()\n", " labels_flat = labels.flatten()\n", " return np.sum(pred_flat == labels_flat) / len(labels_flat)\n", "\n", "def format_time(elapsed):\n", " '''\n", " Takes a time in seconds and returns a string hh:mm:ss\n", " '''\n", " elapsed_rounded = int(round((elapsed)))\n", " \n", " return str(datetime.timedelta(seconds=elapsed_rounded))" ], "metadata": { "id": "Z3XSZuFmkgVr" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Training" ], "metadata": { "id": "L-ZeLPfbkqy9" } }, { "cell_type": "code", "source": [ "# This training code is based on the `run_glue.py` script here:\n", "# https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128\n", "\n", "seed_val = 42\n", "\n", "random.seed(seed_val)\n", "np.random.seed(seed_val)\n", "torch.manual_seed(seed_val)\n", "torch.cuda.manual_seed_all(seed_val)\n", "\n", "training_stats = []\n", "total_t0 = time.time()\n", "\n", "for epoch_i in range(0, epochs):\n", " \n", " # ========================================\n", " # Training\n", " # ========================================\n", "\n", " print(\"\")\n", " print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))\n", " print('Training...')\n", "\n", " t0 = time.time()\n", " total_train_loss = 0\n", "\n", " model.train()\n", "\n", " for step, batch in enumerate(train_dataloader):\n", " if step % 40 == 0 and not step == 0:\n", " elapsed = format_time(time.time() - t0)\n", " print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))\n", "\n", " b_input_ids = batch[0].to(device)\n", " b_input_mask = batch[1].to(device)\n", " b_labels = batch[2].to(device)\n", "\n", " model.zero_grad() \n", "\n", " outputs = model(b_input_ids, \n", " token_type_ids=None, \n", " attention_mask=b_input_mask, \n", " labels=b_labels)\n", "\n", " loss = outputs['loss']\n", " total_train_loss += loss.item()\n", "\n", " loss.backward()\n", " torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", "\n", " optimizer.step()\n", " scheduler.step()\n", "\n", " avg_train_loss = total_train_loss / len(train_dataloader) \n", " training_time = format_time(time.time() - t0)\n", "\n", " print(\"\")\n", " print(\" Average training loss: {0:.2f}\".format(avg_train_loss))\n", " print(\" Training epcoh took: {:}\".format(training_time))\n", " \n", " # ========================================\n", " # Validation\n", " # ========================================\n", "\n", " print(\"\")\n", " print(\"Running Validation...\")\n", "\n", " t0 = time.time()\n", " model.eval()\n", "\n", " total_eval_accuracy = 0\n", " total_eval_loss = 0\n", " nb_eval_steps = 0\n", "\n", " for batch in validation_dataloader:\n", " b_input_ids = batch[0].to(device)\n", " b_input_mask = batch[1].to(device)\n", " b_labels = batch[2].to(device)\n", " \n", " with torch.no_grad(): \n", " outputs = model(b_input_ids, \n", " token_type_ids=None, \n", " attention_mask=b_input_mask,\n", " labels=b_labels)\n", " loss = outputs['loss']\n", " logits = outputs['logits']\n", " \n", " total_eval_loss += loss.item()\n", "\n", " logits = logits.detach().cpu().numpy()\n", " label_ids = b_labels.to('cpu').numpy()\n", "\n", " total_eval_accuracy += flat_accuracy(logits, label_ids)\n", " \n", "\n", " avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)\n", " print(\" Accuracy: {0:.2f}\".format(avg_val_accuracy))\n", "\n", " avg_val_loss = total_eval_loss / len(validation_dataloader)\n", " validation_time = format_time(time.time() - t0)\n", " \n", " print(\" Validation Loss: {0:.2f}\".format(avg_val_loss))\n", " print(\" Validation took: {:}\".format(validation_time))\n", "\n", " training_stats.append(\n", " {\n", " 'epoch': epoch_i + 1,\n", " 'Training Loss': avg_train_loss,\n", " 'Valid. Loss': avg_val_loss,\n", " 'Valid. Accur.': avg_val_accuracy,\n", " 'Training Time': training_time,\n", " 'Validation Time': validation_time\n", " }\n", " )\n", "\n", "print(\"\")\n", "print(\"Training complete!\")\n", "\n", "print(\"Total training took {:} (h:mm:ss)\".format(format_time(time.time()-total_t0)))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QZ9H2EJNksT_", "outputId": "7c5d39fb-13d3-48c0-8d04-1dba8740bfcd" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", "======== Epoch 1 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:49.\n", " Batch 80 of 129. Elapsed: 0:01:34.\n", " Batch 120 of 129. Elapsed: 0:02:19.\n", "\n", " Average training loss: 0.11\n", " Training epcoh took: 0:02:29\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.07\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 2 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:46.\n", " Batch 80 of 129. Elapsed: 0:01:30.\n", " Batch 120 of 129. Elapsed: 0:02:15.\n", "\n", " Average training loss: 0.02\n", " Training epcoh took: 0:02:25\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.08\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 3 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:45.\n", " Batch 80 of 129. Elapsed: 0:01:30.\n", " Batch 120 of 129. Elapsed: 0:02:15.\n", "\n", " Average training loss: 0.00\n", " Training epcoh took: 0:02:25\n", "\n", "Running Validation...\n", " Accuracy: 0.98\n", " Validation Loss: 0.10\n", " Validation took: 0:00:06\n", "\n", "======== Epoch 4 / 4 ========\n", "Training...\n", " Batch 40 of 129. Elapsed: 0:00:45.\n", " Batch 80 of 129. Elapsed: 0:01:30.\n", " Batch 120 of 129. Elapsed: 0:02:15.\n", "\n", " Average training loss: 0.00\n", " Training epcoh took: 0:02:25\n", "\n", "Running Validation...\n", " Accuracy: 0.99\n", " Validation Loss: 0.09\n", " Validation took: 0:00:06\n", "\n", "Training complete!\n", "Total training took 0:10:06 (h:mm:ss)\n" ] } ] }, { "cell_type": "markdown", "source": [ "# Train summary" ], "metadata": { "id": "eZ1fmJMjrRgc" } }, { "cell_type": "code", "source": [ "import pandas as pd\n", "\n", "pd.set_option('precision', 2)\n", "df_stats = pd.DataFrame(data=training_stats)\n", "\n", "df_stats = df_stats.set_index('epoch')\n", "df_stats" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "id": "w4ov2mClrLGW", "outputId": "ad5057e3-f0e5-44c0-8c5a-bf4d69c600ab" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Training Loss Valid. Loss Valid. Accur. Training Time Validation Time\n", "epoch \n", "1 1.07e-01 0.07 0.99 0:02:29 0:00:06\n", "2 1.89e-02 0.08 0.99 0:02:25 0:00:06\n", "3 4.73e-03 0.10 0.98 0:02:25 0:00:06\n", "4 1.93e-03 0.09 0.99 0:02:25 0:00:06" ], "text/html": [ "\n", "
\n", " | Training Loss | \n", "Valid. Loss | \n", "Valid. Accur. | \n", "Training Time | \n", "Validation Time | \n", "
---|---|---|---|---|---|
epoch | \n", "\n", " | \n", " | \n", " | \n", " | \n", " |
1 | \n", "1.07e-01 | \n", "0.07 | \n", "0.99 | \n", "0:02:29 | \n", "0:00:06 | \n", "
2 | \n", "1.89e-02 | \n", "0.08 | \n", "0.99 | \n", "0:02:25 | \n", "0:00:06 | \n", "
3 | \n", "4.73e-03 | \n", "0.10 | \n", "0.98 | \n", "0:02:25 | \n", "0:00:06 | \n", "
4 | \n", "1.93e-03 | \n", "0.09 | \n", "0.99 | \n", "0:02:25 | \n", "0:00:06 | \n", "