zajecia8
This commit is contained in:
parent
45390c180b
commit
a16b81b525
BIN
zajecia8/.RData
Normal file
BIN
zajecia8/.RData
Normal file
Binary file not shown.
176
zajecia8/.Rhistory
Normal file
176
zajecia8/.Rhistory
Normal file
@ -0,0 +1,176 @@
|
||||
rok <- 1995:2002
|
||||
liczba_przypadkow <- c(39.7, 38.2, 34.7, 33.1, 30.1, 28.4, 26.3, 24.7)
|
||||
data_set <- data.frame(rok = rok, liczba_przypadkow = liczba_przypadkow)
|
||||
View(data_set)
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
model <- lm(liczba_przypadkow ~ rok, data = data_set)
|
||||
model$coefficients
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
summary(model)
|
||||
fitted(model)
|
||||
residuals(model)
|
||||
View(data_set)
|
||||
temp_rok <- data.frame(rok = seq(min(data_set$rok) - 10,
|
||||
max(data_set$rok) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_rok, interval = "prediction")
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_rok$rok, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_rok$rok, pred[, 3], lty = 2, col = "red")
|
||||
new_rok <- data.frame(rok = 2003:2007)
|
||||
(pred_2003_2007 <- stats::predict(model, new_rok, interval = 'prediction'))
|
||||
plot(data_set, main = "Wykres rozrzutu z predykcj<63> na lata 2003-2007", pch = 16,
|
||||
xlim = c(1995, 2007), ylim = c(10, 40))
|
||||
plot(data_set, main = "Wykres rozrzutu z predykcją na lata 2003-2007", pch = 16,
|
||||
xlim = c(1995, 2007), ylim = c(10, 40))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(2003:2007, pred_2003_2007[, 1], col = "blue", pch = 16)
|
||||
temp_rok <- data.frame(rok = seq(1994, 2008, length = 100))
|
||||
pred <- stats::predict(model, temp_rok, interval = "prediction")
|
||||
lines(temp_rok$rok, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_rok$rok, pred[, 3], lty = 2, col = "red")
|
||||
View(temp_rok)
|
||||
View(pred)
|
||||
load(url("http://ls.home.amu.edu.pl/data_sets/braking.RData"))
|
||||
load(url("http://ls.home.amu.edu.pl/data_sets/braking.RData"))
|
||||
head(braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
View(braking)
|
||||
which(braking$distance > 150)
|
||||
model <- lm(distance ~ speed, data = braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
summary(model)
|
||||
fitted(model)
|
||||
residuals(model)
|
||||
temp_speed <- data.frame(speed = seq(min(braking$speed) - 10,
|
||||
max(braking$speed) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50 <- stats::predict(model, new_speed, interval = 'prediction'))
|
||||
plot(braking, main = "Wykres rozrzutu z predykcj<63> dla pr<70>dko<6B>ci 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(30:50, pred_30_50[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
model <- lm(distance ~ speed - 1, data = braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
summary(model)
|
||||
temp_speed <- data.frame(speed = seq(min(braking$speed) - 10,
|
||||
max(braking$speed) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50 <- stats::predict(model, new_speed, interval = 'prediction'))
|
||||
plot(braking, main = "Wykres rozrzutu z predykcj<63> dla pr<70>dko<6B>ci 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(30:50, pred_30_50[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
summary(model_1)
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
temp_speed_1 <- data.frame(speed = seq(min(braking_1$speed) - 10,
|
||||
max(braking_1$speed) + 10,
|
||||
length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed_1, interval = "prediction")
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 120))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
lines(temp_speed_1$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed_1$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50_1 <- stats::predict(model_1, new_speed, interval = 'prediction'))
|
||||
plot(braking_1, main = "Wykres rozrzutu z predykcj<63> dla pr<70>dko<6B>ci 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
points(30:50, pred_30_50_1[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed - 1, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
summary(model_1)
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed - 1, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
summary(model_1)
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed - 1, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
summary(model_1)
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
temp_speed_1 <- data.frame(speed = seq(min(braking_1$speed) - 10,
|
||||
max(braking_1$speed) + 10,
|
||||
length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed_1, interval = "prediction")
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 120))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
lines(temp_speed_1$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed_1$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50_1 <- stats::predict(model_1, new_speed, interval = 'prediction'))
|
||||
plot(braking_1, main = "Wykres rozrzutu z predykcj<63> dla pr<70>dko<6B>ci 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
points(30:50, pred_30_50_1[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
summary(model_1)
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed, data = braking_1)
|
||||
summary(model_1)
|
||||
median(residuals(model_1))
|
18
zajecia8/README.md
Normal file
18
zajecia8/README.md
Normal file
@ -0,0 +1,18 @@
|
||||
# Zajęcia 8
|
||||
|
||||
|
||||
## Regresja
|
||||
Główną ideą regresji jest przewidywanie, prognozowanie danych dla pewnej zmiennej na podstawie innych zmiennych. Innymi słowy, jaką wartość przyjmie dana zmienna gdy będziemy znali wartość innej zmiennej. Oczywiście, aby móc "poszukiwać" wartości jednej zmiennej na podstawie innej zmiennej musimy za pomocą analizy regresji skonstruować model regresyjny, model, który będzie z założonym błędem statystycznym przewidywał wartość, poziom danej cechy.
|
||||
|
||||
|
||||
## Regresja liniowa
|
||||
Regresja liniowa jest najprostszym wariantem regresji w statystyce. Zakłada ona, że zależność pomiędzy zmienną objaśnianą a objaśniająca jest zależnością liniową.
|
||||
|
||||
|
||||
## Poziom ufoności
|
||||
Jak często mamy rację. Wyrażane w procentach.
|
||||
|
||||
|
||||
## Reszty
|
||||
To po prostu o ile różni się wynik zmierzony od przewidzianego.
|
||||
|
BIN
zajecia8/Zajęcia8.pdf
Normal file
BIN
zajecia8/Zajęcia8.pdf
Normal file
Binary file not shown.
175
zajecia8/zadania.R
Normal file
175
zajecia8/zadania.R
Normal file
@ -0,0 +1,175 @@
|
||||
|
||||
# ZAD1
|
||||
rok <- 1995:2002
|
||||
liczba_przypadkow <- c(39.7, 38.2, 34.7, 33.1, 30.1, 28.4, 26.3, 24.7)
|
||||
data_set <- data.frame(rok = rok, liczba_przypadkow = liczba_przypadkow)
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
|
||||
model <- lm(liczba_przypadkow ~ rok, data = data_set)
|
||||
model$coefficients
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
|
||||
summary(model)
|
||||
|
||||
fitted(model)
|
||||
residuals(model)
|
||||
|
||||
temp_rok <- data.frame(rok = seq(min(data_set$rok) - 10,
|
||||
max(data_set$rok) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_rok, interval = "prediction")
|
||||
plot(data_set, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_rok$rok, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_rok$rok, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
new_rok <- data.frame(rok = 2003:2007)
|
||||
(pred_2003_2007 <- stats::predict(model, new_rok, interval = 'prediction'))
|
||||
plot(data_set, main = "Wykres rozrzutu z predykcją na lata 2003-2007", pch = 16,
|
||||
xlim = c(1995, 2007), ylim = c(10, 40))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(2003:2007, pred_2003_2007[, 1], col = "blue", pch = 16)
|
||||
temp_rok <- data.frame(rok = seq(1994, 2008, length = 100))
|
||||
pred <- stats::predict(model, temp_rok, interval = "prediction")
|
||||
lines(temp_rok$rok, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_rok$rok, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
|
||||
# ZAD2
|
||||
|
||||
load(url("http://ls.home.amu.edu.pl/data_sets/braking.RData"))
|
||||
head(braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
# which(braking$distance > 150)
|
||||
|
||||
model <- lm(distance ~ speed, data = braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
|
||||
summary(model)
|
||||
|
||||
fitted(model)
|
||||
residuals(model)
|
||||
|
||||
temp_speed <- data.frame(speed = seq(min(braking$speed) - 10,
|
||||
max(braking$speed) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50 <- stats::predict(model, new_speed, interval = 'prediction'))
|
||||
plot(braking, main = "Wykres rozrzutu z predykcją dla prędkości 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(30:50, pred_30_50[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
# bez wyrazu wolnego
|
||||
model <- lm(distance ~ speed - 1, data = braking)
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model, col = "red", lwd = 2)
|
||||
coef(model)
|
||||
confint(model)
|
||||
|
||||
summary(model)
|
||||
|
||||
fitted(model)
|
||||
residuals(model)
|
||||
|
||||
temp_speed <- data.frame(speed = seq(min(braking$speed) - 10,
|
||||
max(braking$speed) + 10,
|
||||
length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
plot(braking, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50 <- stats::predict(model, new_speed, interval = 'prediction'))
|
||||
plot(braking, main = "Wykres rozrzutu z predykcją dla prędkości 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model, col = "red", lwd = 2)
|
||||
points(30:50, pred_30_50[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred <- stats::predict(model, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred[, 2], lty = 2, col = "red")
|
||||
lines(temp_speed$speed, pred[, 3], lty = 2, col = "red")
|
||||
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
|
||||
summary(model_1)
|
||||
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
|
||||
temp_speed_1 <- data.frame(speed = seq(min(braking_1$speed) - 10,
|
||||
max(braking_1$speed) + 10,
|
||||
length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed_1, interval = "prediction")
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 120))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
lines(temp_speed_1$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed_1$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50_1 <- stats::predict(model_1, new_speed, interval = 'prediction'))
|
||||
plot(braking_1, main = "Wykres rozrzutu z predykcją dla prędkości 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
points(30:50, pred_30_50_1[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
|
||||
# bez wyrazu wolnego
|
||||
braking_1 <- braking[-27, ]
|
||||
model_1 <- lm(distance ~ speed - 1, data = braking_1)
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16)
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
coef(model_1)
|
||||
confint(model_1)
|
||||
|
||||
summary(model_1)
|
||||
|
||||
fitted(model_1)
|
||||
residuals(model_1)
|
||||
|
||||
temp_speed_1 <- data.frame(speed = seq(min(braking_1$speed) - 10,
|
||||
max(braking_1$speed) + 10,
|
||||
length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed_1, interval = "prediction")
|
||||
plot(braking_1, main = "Wykres rozrzutu", pch = 16, ylim = c(-50, 120))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
lines(temp_speed_1$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed_1$speed, pred_1[, 3], lty = 2, col = "green")
|
||||
|
||||
|
||||
new_speed <- data.frame(speed = 30:50)
|
||||
(pred_30_50_1 <- stats::predict(model_1, new_speed, interval = 'prediction'))
|
||||
plot(braking_1, main = "Wykres rozrzutu z predykcją dla prędkości 30, 31, ..., 50", pch = 16,
|
||||
xlim = c(0, 50), ylim = c(-50, 200))
|
||||
abline(model_1, col = "green", lwd = 2)
|
||||
points(30:50, pred_30_50_1[, 1], col = "blue", pch = 16)
|
||||
temp_speed <- data.frame(speed = seq(-5, 55, length = 100))
|
||||
pred_1 <- stats::predict(model_1, temp_speed, interval = "prediction")
|
||||
lines(temp_speed$speed, pred_1[, 2], lty = 2, col = "green")
|
||||
lines(temp_speed$speed, pred_1[, 3], lty = 2, col = "green")
|
13
zajecia8/zajecia8.Rproj
Normal file
13
zajecia8/zajecia8.Rproj
Normal file
@ -0,0 +1,13 @@
|
||||
Version: 1.0
|
||||
|
||||
RestoreWorkspace: Default
|
||||
SaveWorkspace: Default
|
||||
AlwaysSaveHistory: Default
|
||||
|
||||
EnableCodeIndexing: Yes
|
||||
UseSpacesForTab: Yes
|
||||
NumSpacesForTab: 2
|
||||
Encoding: UTF-8
|
||||
|
||||
RnwWeave: Sweave
|
||||
LaTeX: pdfLaTeX
|
Loading…
Reference in New Issue
Block a user