import torch import cv2 import torchvision import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch.optim as optim from PIL import Image transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 71 * 71, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 4) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(x.size(0), 16 * 71 * 71) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def train(): net = Net() trainset = torchvision.datasets.ImageFolder( root='./resources/zbior_uczacy', transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=2, shuffle=True, num_workers=2) classes = ('glass', 'metal', 'paper', 'plastic') criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss)) running_loss = 0.0 print('Finished Training') PATH = './wytrenowaned.pth' torch.save(net.state_dict(), PATH) def predict(img_path): net = Net() PATH = './wytrenowaned.pth' img = Image.open(img_path) pil_to_tensor = transforms.ToTensor()(img).unsqueeze_(0) classes = ('glass', 'metal', 'paper', 'plastic') net.load_state_dict(torch.load(PATH)) net.eval() outputs = net(pil_to_tensor) return classes[torch.max(outputs, 1)[1]]