import torch import cv2 import torchvision import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch.optim as optim from PIL import Image transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # def imshow(img): # img = img / 2 + 0.5 # npimg = img.numpy() # plt.imshow(np.transpose(npimg, (1, 2, 0))) # plt.show() # dataiter = iter(trainloader) # images, labels = dataiter.next() # # show images # imshow(torchvision.utils.make_grid(images)) # # print labels # print(' '.join('%5s' % classes[labels[j]] for j in range(4))) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 71 * 71, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(x.size(0), 16 * 71 * 71) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def train(): trainset = torchvision.datasets.ImageFolder( root='./resources/zbior_uczacy', transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=1, shuffle=True, num_workers=2) classes = ('glass', 'metal', 'paper', 'plastic') criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): # loop over the dataset multiple times print("siema") running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss)) running_loss = 0.0 print("kyrw") print('Finished Training') PATH = './wytrenowaned.pth' torch.save(net.state_dict(), PATH) def predict(img_path): net = Net() PATH = './wytrenowaned.pth' img = Image.open(img_path) pil_to_tensor = transforms.ToTensor()(img).unsqueeze_(0) if(pil_to_tensor.shape[1] == 1): print(img_path) classes = ('glass', 'metal', 'paper', 'plastic') # testset = torchvision.datasets.ImageFolder( # root='./resources/smieci', transform=transform) # testloader = torch.utils.data.DataLoader( # testset, batch_size=4, shuffle=True, num_workers=2) # dataiter = iter(testloader) # images, labels = dataiter.next() # print images # imshow(torchvision.utils.make_grid(images)) # print('GroundTruth: ', ' '.join('%5s' % # classes[labels[j]] for j in range(4))) # print('---') # print(images) # print('---') net.load_state_dict(torch.load(PATH)) outputs = net(pil_to_tensor) return classes[torch.max(outputs, 1)[1]] # print(classes[torch.max(outputs, 1)[1]]) # print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] # for j in range(1))) # correct = 0 # total = 0 # with torch.no_grad(): # for data in testloader: # images, labels = data # outputs = net(images) # _, predicted = torch.max(outputs.data, 1) # total += labels.size(0) # correct += (predicted == labels).sum().item() # print('Accuracy of the network on the test images: %d %%' % ( # 100 * correct / total)) # class_correct = list(0. for i in range(4)) # class_total = list(0. for i in range(4)) # with torch.no_grad(): # for data in testloader: # images, labels = data # outputs = net(images) # _, predicted = torch.max(outputs, 1) # c = (predicted == labels).squeeze() # for i in range(3): # label = labels[i] # print(labels) # class_correct[label] += c[i].item() # class_total[label] += 1 # for i in range(4): # print('Accuracy of %5s : %2d %%' % ( # classes[i], 100 * class_correct[i] / class_total[i])) # train()