2.0 KiB
2.0 KiB
Sztuczna Inteligencja
Temat projektu: Inteligenta Śmieciarka
Zespół: Kacper Borkowski, Adam Borowski, Adam Osiowy
Podprojekt: Kacper Borkowski
1. Model:
- Powyższa funkcja tworzy sekwencyjny model sieci neuronowej
- Składa się on z warstw
- Warstwa Conv2D jest to warstwa splotu, stosuje ona filtr na obrazku
- Warstwa Activation jest to warstwa aktywacji wykorzystująca funkcję aktywacji, relu jest to funkcja zwracająca 0 dla x < 0 oraz x dla pozostałych argumentów; softmax to funkcja pozwalająca na poznanie rozkładu prawdopodobieństwa na kategorie
- Warstwa MaxPooling wyciąga największą wartość z wycinka obrazka, w tym przypadku z kawałka 2x2 piksele
- Warstwa Flatten spłaszcza macierz do wektorów
- Warstwa Dense to połączone ze sobą neurony
- Warstwa Dropout przepuszcza część danych, w tym przypadku 50% w celu uniknięcia przeuczenia sieci
2. Uczenie modelu:
- Model uczy się na 1599 zdjęciach śmieci podzielonych na 4 kategorie
- Wszystkie zdjęcia mają rozmiar 299x299 pikseli
- Podczas uczenia zbiór dzielony jest na paczki po 16 elementów
- Zastosowana funkcja straty to categorical_crossentropy ponieważ mamy więcej niż dwie klasy śmieci
2. Przewidywanie:
- Obrazki są zamieniane na macierze
- Prediction zawiera rozkład prawdopodobieństwa obrazka na kategorie
- Funkcja zwraca konkretny typ śmiecia w zależności od przewidzianego prawdopodobieństwa
2. Integracja w projekcie:
- Podczas wizyty śmieciarki w domu wykonywana jest funkcja przewidzenia kategorii na każdym ze śmieci w danym domu
- Zależnie od wyniku przewidywania śmieć jest umieszczany na odpowiedniej liście śmieci w śmieciarce
- Śmieci z wszystkich list są wyładowywane na wysypisku do kontenerów odpowiadających listom
- Zdjęcia śmieci znajdują się finalnie w posortowanych folderach