Compare commits

...

12 Commits

Author SHA1 Message Date
Kacper E. Dudzic
4ff281954f
Update README.md 2023-06-29 13:26:39 +02:00
Kacper
04eac5ac2f add elements from the presentation version 2023-06-29 13:16:17 +02:00
s444417
8a1677d02a fix requirements 2023-06-29 12:45:32 +02:00
s444417
cadd564387 fix instruction bug 2023-06-28 23:28:38 +02:00
s444417
6fa7ff4820 add instruction 2023-06-28 23:00:54 +02:00
s444417
0c8e63d488 move files to root 2023-06-28 22:55:54 +02:00
6a8f83f2b7 unnecessary tab in graph generation deleted 2023-06-18 09:30:16 +02:00
0cb506fe38 select role from frontend 2023-06-17 17:54:27 +02:00
s444417
21710fccd2 change character format 2023-06-17 16:55:23 +02:00
s444417
04868e022d move api to state 2023-06-17 10:44:39 +02:00
“Kacper
44da2b26e2 add char dict 2023-06-16 21:56:35 +02:00
“Kacper
bd96acf7ea add generative component to dst/dp 2023-06-16 21:49:27 +02:00
536 changed files with 202 additions and 96 deletions

View File

@ -1,5 +1,7 @@
RECIPE_PATH=AMUseBotFront/ai_talks/AMUseBotBackend/recipe/
DIALOG_PATH=AMUseBotFront/ai_talks/AMUseBotBackend/dialog/
INTENT_DICT_PATH=ai_talks/AMUseBotBackend/utils/intent_dict.json
MODEL_IDENTIFIER_PATH=ai_talks/AMUseBotBackend/models/NLU/roberta-base-cookdial.txt
INGREDIENTS_RECIPES_MERGED=
RECIPE_PATH=recipe/
DIALOG_PATH=dialog/
INTENT_DICT_PATH=intent_dict.json
MODEL_IDENTIFIER_PATH=roberta-base-cookdial-v1_1.txt
INGREDIENTS_RECIPES_MERGED=ingredients_recipes_merged.csv
CHARACTERS_DICT=characters_dict.json
API_KEY=

36
README.md Normal file
View File

@ -0,0 +1,36 @@
# Cooking taskbot project
## Run system
#### With Conda
conda create -n "my_env" python=3.9.12 ipython
conda activate my_env
pip install -r requirements.txt
streamlit run ai_talks\chat.py
After running system, model saves in dir:
Linux
~/.cache/huggingface/transformers
Windows
C:\Users\username\.cache\huggingface\transformers
To use the purely experimental generative features, for now, an OpenAI API key is needed. Insert it into the following file:
AMUseBot/.env_template
## Requirements
Python 3.9.12
## Dataset
[YiweiJiang2015/CookDial](https://github.com/YiweiJiang2015/CookDial)
## NLU model HF repo
[kedudzic/roberta-base-cookdial](https://huggingface.co/AMUseBot/roberta-base-cookdial-v1_1)

View File

@ -4,14 +4,16 @@ from AMUseBotBackend.src.NLG.nlg import NLG
from AMUseBotBackend.src.tools.search import search_recipe
import AMUseBotBackend.consts as c
import json
import streamlit as st
class DP:
def __init__(self, dst: DST):
def __init__(self, dst: DST, llm_rephrasing=True, character='default'): #TODO: a way to set llm_rephrasing status and a character
self.dst_module = dst
self.llm_rephrasing = llm_rephrasing
self.character = character
def generate_response(self, intents: List[str]) -> str:
@ -31,8 +33,13 @@ class DP:
if found_recipe:
recipe_name = self.dst_module.set_recipe(found_recipe)
self.dst_module.set_next_step()
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
+ self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
if self.llm_rephrasing:
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
+ NLG.llm_rephrase_recipe(self.character, self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)])
else:
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
+ self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
if not found_recipe:
return NLG.MESSAGE_NOT_UNDERSTAND_SUGGEST_RECIPE(self.dst_module.get_random_recipes(3))
# not understand ask recipe
@ -41,6 +48,8 @@ class DP:
# Recipe choosen
if (None != self.dst_module.generate_state(c.RECIPE_ID_KEY) and "" != self.dst_module.generate_state(
c.RECIPE_ID_KEY)):
if ("req_substitute" in intents):
return NLG.llm_substitute_product(self.character, self.dst_module.generate_state(c.DIALOG_HISTORY_KEY)[-1][c.USER_MESSAGE_KEY])
if ("req_ingredient_list" in intents
or "req_ingredient" in intents):
return NLG.MESSAGE_INGREDIENTS(self.dst_module.generate_state(c.INGREDIENTS_KEY))
@ -51,7 +60,10 @@ class DP:
or "req_instruction" in intents):
next_step = self.dst_module.set_next_step()
if (next_step):
return self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
if self.llm_rephrasing:
return NLG.llm_rephrase_recipe(self.character, self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)])
else:
return self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
if (not next_step):
self.dst_module.restart()
return NLG.RECIPE_OVER_ANSWER

View File

@ -77,19 +77,21 @@ class DST:
return [self.recipes[id] for id in recipes_id]
def __set_steps(self):
dialog_files = []
dialog_files = []
steps = {}
for (_, _, filenames) in walk(self.__dialog_path):
for (_, _, filenames) in walk(self.__recipe_path):
dialog_files.extend(filenames)
break
for dialog_title in dialog_files:
if dialog_title.startswith(f"{self.__recipe_id:03d}"):
with open(self.__dialog_path + "/" + dialog_title) as f:
with open(self.__recipe_path + dialog_title) as f:
data = json.load(f)
for message in data["messages"]:
if "inform_instruction" in message["annotations"]:
steps[len(steps)] = message["utterance"]
for row in data['content']:
if row['type']=='instruction':
steps[len(steps)] = row['text'].split(maxsplit=1)[1]
self.__steps = steps
def __set_ingredients(self):
dialog_files = []

View File

@ -1,3 +1,4 @@
import streamlit as st
class NLG:
MESSAGE_PROMPT = "Hello! I'm AMUseBot, a virtual cooking assistant. Please tell me the name of the dish that you'd like to prepare today."
MESSAGE_HI = "Hi! What do you want to make today?"
@ -5,6 +6,7 @@ class NLG:
BYE_ANSWER = "Bye, hope to see you soon!"
RECIPE_OVER_ANSWER = "Congratulations! You finished preparing the dish, bon appetit!"
NOT_UNDERSTAND_ANSWER = "I'm sorry, I don't understand. Could you rephrase?"
CANNOT_HELP_ANSWER = "I'm sorry I can't help you with that."
@staticmethod
def MESSAGE_INGREDIENTS(ingr_list):
@ -24,3 +26,38 @@ class NLG:
suggestions = ", ".join(recipes_list[0:-1]) + f" or {recipes_list[-1]}"
return f"I'm sorry, I don't know a recipe like that. Instead, I can suggest you {suggestions}."
def llm_create_response(character, input):
model = st.session_state.characters_dict['model']
prompt = st.session_state.characters_dict['characters'][character]['prompt']
message = [{'role': 'system', 'content': prompt}, {'role': 'user', 'content': input}]
response = st.session_state.openai.ChatCompletion.create(
model=model, messages=message, temperature=1, max_tokens=128
)
rephrased_response = response.choices[0].message.content
return rephrased_response
def llm_rephrase_recipe(character, response):
input = st.session_state.characters_dict['task_paraphrase'] + f'"{response}".' + st.session_state.characters_dict['characters'][character]['task_specification']
try:
return NLG.llm_create_response(character, input)
except:
print('OpenAI API call failed during response paraphrasing! Returning input response')
return response
def llm_substitute_product(character, user_message):
input = st.session_state.characters_dict['task_substitute'] + f'"{user_message}".' + st.session_state.characters_dict['characters'][character]['task_specification']
try:
return NLG.llm_create_response(character, input)
except:
print('OpenAI API call failed during response paraphrasing! Returning input response')
return NLG.CANNOT_HELP_ANSWER

View File

@ -7,7 +7,7 @@ from rank_bm25 import BM25Okapi
import os
from dotenv import load_dotenv
load_dotenv()
load_dotenv('.env_template')
INGREDIENTS_RECIPES_MERGED = os.getenv('INGREDIENTS_RECIPES_MERGED')

View File

@ -9,7 +9,12 @@ import streamlit as st
from PIL import Image
from src.utils.conversation import get_user_input, show_chat_buttons, show_conversation
from src.utils.lang import en
import openai
import copy
import json
import string
import streamlit.components.v1 as components
import re
import os
from dotenv import load_dotenv
@ -25,11 +30,6 @@ if __name__ == '__main__':
favicon: Path = icons_dir / "favicons/0.png"
# --- GENERAL SETTINGS ---
LANG_PL: str = "Pl"
AI_MODEL_OPTIONS: list[str] = [
"gpt-3.5-turbo",
"gpt-4",
"gpt-4-32k",
]
CONFIG = {"page_title": "AMUsebot", "page_icon": Image.open(favicon)}
@ -39,10 +39,12 @@ if __name__ == '__main__':
with open(css_file) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
load_dotenv()
load_dotenv('.env_template')
DIALOG_PATH = os.getenv('DIALOG_PATH')
RECIPE_PATH = os.getenv('RECIPE_PATH')
CHARACTERS_DICT = os.getenv('CHARACTERS_DICT')
API_KEY = os.getenv('API_KEY')
# Storing The Context
if "locale" not in st.session_state:
@ -55,8 +57,6 @@ if __name__ == '__main__':
st.session_state.messages = []
if "user_text" not in st.session_state:
st.session_state.user_text = ""
if "input_kind" not in st.session_state:
st.session_state.input_kind = st.session_state.locale.input_kind_1
if "seed" not in st.session_state:
st.session_state.seed = randrange(10 ** 3) # noqa: S311
if "costs" not in st.session_state:
@ -67,51 +67,69 @@ if __name__ == '__main__':
st.session_state.dst = DST(recipe_path=RECIPE_PATH, dialog_path=DIALOG_PATH)
if "dp" not in st.session_state:
st.session_state.dp = DP(dst=st.session_state.dst)
if "openai" not in st.session_state:
st.session_state.openai = openai
st.session_state.openai.api_key = API_KEY
if "characters_dict" not in st.session_state:
with open(CHARACTERS_DICT) as f:
st.session_state.characters_dict = json.load(f)
def mermaid(code: str) -> None:
components.html(
f"""
<pre class="mermaid">
%%{{init: {{'themeVariables': {{ 'edgeLabelBackground': 'transparent'}}}}}}%%
flowchart TD;
{code}
linkStyle default fill:white,color:white,stroke-width:2px,background-color:lime;
</pre>
<script type="module">
import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs';
mermaid.initialize({{ startOnLoad: true }});
</script>
""", height=1000
)
def show_graph():
def graph():
# Create a graphlib graph object
if st.session_state.generated:
user, chatbot = [], []
graph = graphviz.Digraph()
for i in range(len(st.session_state.past)):
chatbot.append(st.session_state.generated[i])
user.append(st.session_state.past[i])
for x in range(len(user)):
chatbot_text = [word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.generated[x].split(' '))]
user_text = [word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.past[x].split(' '))]
graph.edge(' '.join(chatbot_text), ' '.join(user_text))
try:
graph.edge(' '.join(user_text), ' '.join([word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.generated[x + 1].split(' '))]))
except:
pass
st.graphviz_chart(graph)
system = [utterance for utterance in st.session_state.generated][-3:]
user = [utterance for utterance in st.session_state.past][-2:]
graph = ""
for i, utterance in enumerate(system):
utterance = utterance.strip('\n')
utterance = " ".join([word + '<br>' if i % 5 == 0 and i > 0 else word for i, word in enumerate(utterance.split(" "))])
utterance = utterance.replace('\"', '')
if i < len(user):
user[i] = user[i].strip('\n')
user[i] = user[i].replace('\"', '')
user[i] = " ".join([word + '<br>' if i % 5 == 0 and i > 0 else word for i, word in enumerate(user[i].split(' '))])
graph += f"{string.ascii_uppercase[i]}(\"{utterance}\") --> |{user[i]}| {string.ascii_uppercase[i+1]};"
else:
graph += f"{string.ascii_uppercase[i]}(\"{utterance}\") --> {string.ascii_uppercase[i+1]}(...);style {string.ascii_uppercase[i+1]} fill:none,color:white;"
graph = graph.replace('\n', ' ')#replace(')','').replace('(','')
#print(graph)
return graph
def main() -> None:
c1, c2 = st.columns(2)
with c1, c2:
st.session_state.input_kind = c2.radio(
label=st.session_state.locale.input_kind,
options=(st.session_state.locale.input_kind_1, st.session_state.locale.input_kind_2),
horizontal=True,
)
role_kind = c1.radio(
label=st.session_state.locale.radio_placeholder,
options=(st.session_state.locale.radio_text1, st.session_state.locale.radio_text2),
horizontal=True,
)
if role_kind == st.session_state.locale.radio_text1:
c2.selectbox(label=st.session_state.locale.select_placeholder2, key="role",
options=st.session_state.locale.ai_role_options)
elif role_kind == st.session_state.locale.radio_text2:
c2.text_input(label=st.session_state.locale.select_placeholder3, key="role")
character_type = c1.selectbox(label=st.session_state.locale.select_placeholder2, key="role",
options=st.session_state.locale.ai_role_options)
st.session_state.dp.character = character_type
if character_type == 'default':
st.session_state.dp.llm_rephrasing = False
else:
st.session_state.dp.llm_rephrasing = True
get_user_input()
show_chat_buttons()
show_conversation()
with st.sidebar:
show_graph()
mermaid(graph())
#show_graph()
if __name__ == "__main__":

View File

@ -1,16 +1,6 @@
AI_ROLE_OPTIONS_EN: list[str] = [
"helpful assistant",
"code assistant",
"code reviewer",
"text improver",
"cinema expert",
"sport expert",
"online games expert",
"food recipes expert",
"English grammar expert",
"friendly and helpful teaching assistant",
"laconic assistant",
"helpful, pattern-following assistant",
"translate corporate jargon into plain English",
"default",
"helpful_chef",
"ramsay",
]

View File

@ -12,7 +12,7 @@ from AMUseBotBackend.src.NLU.nlu import NLU
import os
from dotenv import load_dotenv
load_dotenv()
load_dotenv('.env_template')
INTENT_DICT_PATH = os.getenv('INTENT_DICT_PATH')
MODEL_IDENTIFIER_PATH = os.getenv('MODEL_IDENTIFIER_PATH')
@ -23,7 +23,8 @@ def get_nlu_model(intent_dict_path = INTENT_DICT_PATH, model_identifier_path = M
model_identifier_path=model_identifier_path)
def clear_chat() -> None:
st.session_state.generated = []
st.session_state.generated = ["Hello! I'm AMUseBot, a virtual cooking assistant. Please tell me the name of the dish that you'd like to prepare today."]
st.session_state.dst.restart()
st.session_state.past = []
st.session_state.messages = []
st.session_state.user_text = ""

View File

@ -20,15 +20,8 @@ class Locale:
chat_clear_btn: str
chat_save_btn: str
speak_btn: str
input_kind: str
input_kind_1: str
input_kind_2: str
select_placeholder1: str
select_placeholder2: str
select_placeholder3: str
radio_placeholder: str
radio_text1: str
radio_text2: str
stt_placeholder: str
footer_title: str
footer_option0: str
@ -55,15 +48,8 @@ en = Locale(
chat_clear_btn="Clear",
chat_save_btn="Save",
speak_btn="Push to Speak",
input_kind="Input Kind",
input_kind_1="Text",
input_kind_2="Voice [test mode]",
select_placeholder1="Select Model",
select_placeholder2="Select Role",
select_placeholder3="Create Role",
radio_placeholder="Role Interaction",
radio_text1="Select",
radio_text2="Create",
stt_placeholder="To Hear The Voice Of AI Press Play",
footer_title="Support & Feedback",
footer_option0="Chat",

21
characters_dict.json Normal file
View File

@ -0,0 +1,21 @@
{
"task_paraphrase": "You're currently reading a step of a recipe, paraphrase it so that it matches your character: ",
"task_substitute": "A user has just asked for a substitute for a missing ingredient, answer him according to your character in one short sentence with at most 3 alternatives: ",
"model": "gpt-3.5-turbo-0613",
"characters": {
"default": {
"prompt": "",
"task_specification": ""
},
"helpful_chef": {
"prompt": "You're a master chef known for treating everyone like your equal. ",
"task_specification": " Give your answer as a natural sounding, full English sentence. Keep the sentence length similar and do not make the language flowery."
},
"ramsay": {
"prompt": "You're Gordon Ramsay, a famous British chef known for his short temper and routinely insulting people. ",
"task_specification": ""
}
}
}

Some files were not shown because too many files have changed in this diff Show More