Compare commits
12 Commits
integrate_
...
master
Author | SHA1 | Date | |
---|---|---|---|
|
4ff281954f | ||
|
04eac5ac2f | ||
|
8a1677d02a | ||
|
cadd564387 | ||
|
6fa7ff4820 | ||
|
0c8e63d488 | ||
6a8f83f2b7 | |||
0cb506fe38 | |||
|
21710fccd2 | ||
|
04868e022d | ||
|
44da2b26e2 | ||
|
bd96acf7ea |
@ -1,5 +1,7 @@
|
||||
RECIPE_PATH=AMUseBotFront/ai_talks/AMUseBotBackend/recipe/
|
||||
DIALOG_PATH=AMUseBotFront/ai_talks/AMUseBotBackend/dialog/
|
||||
INTENT_DICT_PATH=ai_talks/AMUseBotBackend/utils/intent_dict.json
|
||||
MODEL_IDENTIFIER_PATH=ai_talks/AMUseBotBackend/models/NLU/roberta-base-cookdial.txt
|
||||
INGREDIENTS_RECIPES_MERGED=
|
||||
RECIPE_PATH=recipe/
|
||||
DIALOG_PATH=dialog/
|
||||
INTENT_DICT_PATH=intent_dict.json
|
||||
MODEL_IDENTIFIER_PATH=roberta-base-cookdial-v1_1.txt
|
||||
INGREDIENTS_RECIPES_MERGED=ingredients_recipes_merged.csv
|
||||
CHARACTERS_DICT=characters_dict.json
|
||||
API_KEY=
|
36
README.md
Normal file
36
README.md
Normal file
@ -0,0 +1,36 @@
|
||||
# Cooking taskbot project
|
||||
|
||||
## Run system
|
||||
|
||||
#### With Conda
|
||||
|
||||
conda create -n "my_env" python=3.9.12 ipython
|
||||
conda activate my_env
|
||||
pip install -r requirements.txt
|
||||
streamlit run ai_talks\chat.py
|
||||
|
||||
After running system, model saves in dir:
|
||||
|
||||
Linux
|
||||
|
||||
~/.cache/huggingface/transformers
|
||||
|
||||
Windows
|
||||
|
||||
C:\Users\username\.cache\huggingface\transformers
|
||||
|
||||
To use the purely experimental generative features, for now, an OpenAI API key is needed. Insert it into the following file:
|
||||
|
||||
AMUseBot/.env_template
|
||||
|
||||
## Requirements
|
||||
|
||||
Python 3.9.12
|
||||
|
||||
## Dataset
|
||||
|
||||
[YiweiJiang2015/CookDial](https://github.com/YiweiJiang2015/CookDial)
|
||||
|
||||
## NLU model HF repo
|
||||
|
||||
[kedudzic/roberta-base-cookdial](https://huggingface.co/AMUseBot/roberta-base-cookdial-v1_1)
|
@ -4,14 +4,16 @@ from AMUseBotBackend.src.NLG.nlg import NLG
|
||||
from AMUseBotBackend.src.tools.search import search_recipe
|
||||
|
||||
import AMUseBotBackend.consts as c
|
||||
import json
|
||||
|
||||
import streamlit as st
|
||||
|
||||
class DP:
|
||||
|
||||
def __init__(self, dst: DST):
|
||||
def __init__(self, dst: DST, llm_rephrasing=True, character='default'): #TODO: a way to set llm_rephrasing status and a character
|
||||
self.dst_module = dst
|
||||
|
||||
|
||||
self.llm_rephrasing = llm_rephrasing
|
||||
self.character = character
|
||||
|
||||
def generate_response(self, intents: List[str]) -> str:
|
||||
|
||||
@ -31,8 +33,13 @@ class DP:
|
||||
if found_recipe:
|
||||
recipe_name = self.dst_module.set_recipe(found_recipe)
|
||||
self.dst_module.set_next_step()
|
||||
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
|
||||
+ self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
|
||||
if self.llm_rephrasing:
|
||||
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
|
||||
+ NLG.llm_rephrase_recipe(self.character, self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)])
|
||||
else:
|
||||
return NLG.MESSAGE_CHOOSEN_RECIPE(recipe_name=recipe_name) + "\n" \
|
||||
+ self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
|
||||
|
||||
if not found_recipe:
|
||||
return NLG.MESSAGE_NOT_UNDERSTAND_SUGGEST_RECIPE(self.dst_module.get_random_recipes(3))
|
||||
# not understand ask recipe
|
||||
@ -41,6 +48,8 @@ class DP:
|
||||
# Recipe choosen
|
||||
if (None != self.dst_module.generate_state(c.RECIPE_ID_KEY) and "" != self.dst_module.generate_state(
|
||||
c.RECIPE_ID_KEY)):
|
||||
if ("req_substitute" in intents):
|
||||
return NLG.llm_substitute_product(self.character, self.dst_module.generate_state(c.DIALOG_HISTORY_KEY)[-1][c.USER_MESSAGE_KEY])
|
||||
if ("req_ingredient_list" in intents
|
||||
or "req_ingredient" in intents):
|
||||
return NLG.MESSAGE_INGREDIENTS(self.dst_module.generate_state(c.INGREDIENTS_KEY))
|
||||
@ -51,7 +60,10 @@ class DP:
|
||||
or "req_instruction" in intents):
|
||||
next_step = self.dst_module.set_next_step()
|
||||
if (next_step):
|
||||
return self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
|
||||
if self.llm_rephrasing:
|
||||
return NLG.llm_rephrase_recipe(self.character, self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)])
|
||||
else:
|
||||
return self.dst_module.generate_state(c.STEPS_KEY)[self.dst_module.generate_state(c.CURR_STEP_KEY)]
|
||||
if (not next_step):
|
||||
self.dst_module.restart()
|
||||
return NLG.RECIPE_OVER_ANSWER
|
||||
|
@ -77,19 +77,21 @@ class DST:
|
||||
return [self.recipes[id] for id in recipes_id]
|
||||
|
||||
def __set_steps(self):
|
||||
dialog_files = []
|
||||
dialog_files = []
|
||||
steps = {}
|
||||
for (_, _, filenames) in walk(self.__dialog_path):
|
||||
for (_, _, filenames) in walk(self.__recipe_path):
|
||||
dialog_files.extend(filenames)
|
||||
break
|
||||
for dialog_title in dialog_files:
|
||||
if dialog_title.startswith(f"{self.__recipe_id:03d}"):
|
||||
with open(self.__dialog_path + "/" + dialog_title) as f:
|
||||
with open(self.__recipe_path + dialog_title) as f:
|
||||
data = json.load(f)
|
||||
for message in data["messages"]:
|
||||
if "inform_instruction" in message["annotations"]:
|
||||
steps[len(steps)] = message["utterance"]
|
||||
for row in data['content']:
|
||||
if row['type']=='instruction':
|
||||
steps[len(steps)] = row['text'].split(maxsplit=1)[1]
|
||||
|
||||
self.__steps = steps
|
||||
|
||||
|
||||
def __set_ingredients(self):
|
||||
dialog_files = []
|
||||
|
@ -1,3 +1,4 @@
|
||||
import streamlit as st
|
||||
class NLG:
|
||||
MESSAGE_PROMPT = "Hello! I'm AMUseBot, a virtual cooking assistant. Please tell me the name of the dish that you'd like to prepare today."
|
||||
MESSAGE_HI = "Hi! What do you want to make today?"
|
||||
@ -5,6 +6,7 @@ class NLG:
|
||||
BYE_ANSWER = "Bye, hope to see you soon!"
|
||||
RECIPE_OVER_ANSWER = "Congratulations! You finished preparing the dish, bon appetit!"
|
||||
NOT_UNDERSTAND_ANSWER = "I'm sorry, I don't understand. Could you rephrase?"
|
||||
CANNOT_HELP_ANSWER = "I'm sorry I can't help you with that."
|
||||
|
||||
@staticmethod
|
||||
def MESSAGE_INGREDIENTS(ingr_list):
|
||||
@ -24,3 +26,38 @@ class NLG:
|
||||
suggestions = ", ".join(recipes_list[0:-1]) + f" or {recipes_list[-1]}"
|
||||
|
||||
return f"I'm sorry, I don't know a recipe like that. Instead, I can suggest you {suggestions}."
|
||||
|
||||
|
||||
def llm_create_response(character, input):
|
||||
model = st.session_state.characters_dict['model']
|
||||
prompt = st.session_state.characters_dict['characters'][character]['prompt']
|
||||
|
||||
message = [{'role': 'system', 'content': prompt}, {'role': 'user', 'content': input}]
|
||||
|
||||
response = st.session_state.openai.ChatCompletion.create(
|
||||
model=model, messages=message, temperature=1, max_tokens=128
|
||||
)
|
||||
rephrased_response = response.choices[0].message.content
|
||||
|
||||
return rephrased_response
|
||||
|
||||
def llm_rephrase_recipe(character, response):
|
||||
|
||||
input = st.session_state.characters_dict['task_paraphrase'] + f'"{response}".' + st.session_state.characters_dict['characters'][character]['task_specification']
|
||||
try:
|
||||
return NLG.llm_create_response(character, input)
|
||||
except:
|
||||
print('OpenAI API call failed during response paraphrasing! Returning input response')
|
||||
return response
|
||||
|
||||
def llm_substitute_product(character, user_message):
|
||||
|
||||
input = st.session_state.characters_dict['task_substitute'] + f'"{user_message}".' + st.session_state.characters_dict['characters'][character]['task_specification']
|
||||
|
||||
try:
|
||||
return NLG.llm_create_response(character, input)
|
||||
except:
|
||||
print('OpenAI API call failed during response paraphrasing! Returning input response')
|
||||
return NLG.CANNOT_HELP_ANSWER
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ from rank_bm25 import BM25Okapi
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
load_dotenv('.env_template')
|
||||
|
||||
INGREDIENTS_RECIPES_MERGED = os.getenv('INGREDIENTS_RECIPES_MERGED')
|
||||
|
||||
|
@ -9,7 +9,12 @@ import streamlit as st
|
||||
from PIL import Image
|
||||
from src.utils.conversation import get_user_input, show_chat_buttons, show_conversation
|
||||
from src.utils.lang import en
|
||||
|
||||
import openai
|
||||
import copy
|
||||
import json
|
||||
import string
|
||||
import streamlit.components.v1 as components
|
||||
import re
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
@ -25,11 +30,6 @@ if __name__ == '__main__':
|
||||
favicon: Path = icons_dir / "favicons/0.png"
|
||||
# --- GENERAL SETTINGS ---
|
||||
LANG_PL: str = "Pl"
|
||||
AI_MODEL_OPTIONS: list[str] = [
|
||||
"gpt-3.5-turbo",
|
||||
"gpt-4",
|
||||
"gpt-4-32k",
|
||||
]
|
||||
|
||||
CONFIG = {"page_title": "AMUsebot", "page_icon": Image.open(favicon)}
|
||||
|
||||
@ -39,10 +39,12 @@ if __name__ == '__main__':
|
||||
with open(css_file) as f:
|
||||
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
||||
|
||||
load_dotenv()
|
||||
load_dotenv('.env_template')
|
||||
|
||||
DIALOG_PATH = os.getenv('DIALOG_PATH')
|
||||
RECIPE_PATH = os.getenv('RECIPE_PATH')
|
||||
CHARACTERS_DICT = os.getenv('CHARACTERS_DICT')
|
||||
API_KEY = os.getenv('API_KEY')
|
||||
|
||||
# Storing The Context
|
||||
if "locale" not in st.session_state:
|
||||
@ -55,8 +57,6 @@ if __name__ == '__main__':
|
||||
st.session_state.messages = []
|
||||
if "user_text" not in st.session_state:
|
||||
st.session_state.user_text = ""
|
||||
if "input_kind" not in st.session_state:
|
||||
st.session_state.input_kind = st.session_state.locale.input_kind_1
|
||||
if "seed" not in st.session_state:
|
||||
st.session_state.seed = randrange(10 ** 3) # noqa: S311
|
||||
if "costs" not in st.session_state:
|
||||
@ -67,51 +67,69 @@ if __name__ == '__main__':
|
||||
st.session_state.dst = DST(recipe_path=RECIPE_PATH, dialog_path=DIALOG_PATH)
|
||||
if "dp" not in st.session_state:
|
||||
st.session_state.dp = DP(dst=st.session_state.dst)
|
||||
if "openai" not in st.session_state:
|
||||
st.session_state.openai = openai
|
||||
st.session_state.openai.api_key = API_KEY
|
||||
if "characters_dict" not in st.session_state:
|
||||
with open(CHARACTERS_DICT) as f:
|
||||
st.session_state.characters_dict = json.load(f)
|
||||
|
||||
def mermaid(code: str) -> None:
|
||||
components.html(
|
||||
f"""
|
||||
<pre class="mermaid">
|
||||
%%{{init: {{'themeVariables': {{ 'edgeLabelBackground': 'transparent'}}}}}}%%
|
||||
flowchart TD;
|
||||
{code}
|
||||
linkStyle default fill:white,color:white,stroke-width:2px,background-color:lime;
|
||||
</pre>
|
||||
<script type="module">
|
||||
import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.esm.min.mjs';
|
||||
mermaid.initialize({{ startOnLoad: true }});
|
||||
</script>
|
||||
""", height=1000
|
||||
)
|
||||
|
||||
def show_graph():
|
||||
def graph():
|
||||
# Create a graphlib graph object
|
||||
if st.session_state.generated:
|
||||
user, chatbot = [], []
|
||||
graph = graphviz.Digraph()
|
||||
for i in range(len(st.session_state.past)):
|
||||
chatbot.append(st.session_state.generated[i])
|
||||
user.append(st.session_state.past[i])
|
||||
for x in range(len(user)):
|
||||
chatbot_text = [word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.generated[x].split(' '))]
|
||||
user_text = [word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.past[x].split(' '))]
|
||||
graph.edge(' '.join(chatbot_text), ' '.join(user_text))
|
||||
try:
|
||||
graph.edge(' '.join(user_text), ' '.join([word + '\n' if i % 5 == 0 and i > 0 else word for i, word in enumerate(st.session_state.generated[x + 1].split(' '))]))
|
||||
except:
|
||||
pass
|
||||
st.graphviz_chart(graph)
|
||||
system = [utterance for utterance in st.session_state.generated][-3:]
|
||||
user = [utterance for utterance in st.session_state.past][-2:]
|
||||
graph = ""
|
||||
for i, utterance in enumerate(system):
|
||||
utterance = utterance.strip('\n')
|
||||
utterance = " ".join([word + '<br>' if i % 5 == 0 and i > 0 else word for i, word in enumerate(utterance.split(" "))])
|
||||
utterance = utterance.replace('\"', '')
|
||||
if i < len(user):
|
||||
user[i] = user[i].strip('\n')
|
||||
user[i] = user[i].replace('\"', '')
|
||||
user[i] = " ".join([word + '<br>' if i % 5 == 0 and i > 0 else word for i, word in enumerate(user[i].split(' '))])
|
||||
graph += f"{string.ascii_uppercase[i]}(\"{utterance}\") --> |{user[i]}| {string.ascii_uppercase[i+1]};"
|
||||
else:
|
||||
graph += f"{string.ascii_uppercase[i]}(\"{utterance}\") --> {string.ascii_uppercase[i+1]}(...);style {string.ascii_uppercase[i+1]} fill:none,color:white;"
|
||||
graph = graph.replace('\n', ' ')#replace(')','').replace('(','')
|
||||
#print(graph)
|
||||
return graph
|
||||
|
||||
|
||||
def main() -> None:
|
||||
c1, c2 = st.columns(2)
|
||||
with c1, c2:
|
||||
st.session_state.input_kind = c2.radio(
|
||||
label=st.session_state.locale.input_kind,
|
||||
options=(st.session_state.locale.input_kind_1, st.session_state.locale.input_kind_2),
|
||||
horizontal=True,
|
||||
)
|
||||
role_kind = c1.radio(
|
||||
label=st.session_state.locale.radio_placeholder,
|
||||
options=(st.session_state.locale.radio_text1, st.session_state.locale.radio_text2),
|
||||
horizontal=True,
|
||||
)
|
||||
if role_kind == st.session_state.locale.radio_text1:
|
||||
c2.selectbox(label=st.session_state.locale.select_placeholder2, key="role",
|
||||
options=st.session_state.locale.ai_role_options)
|
||||
elif role_kind == st.session_state.locale.radio_text2:
|
||||
c2.text_input(label=st.session_state.locale.select_placeholder3, key="role")
|
||||
character_type = c1.selectbox(label=st.session_state.locale.select_placeholder2, key="role",
|
||||
options=st.session_state.locale.ai_role_options)
|
||||
st.session_state.dp.character = character_type
|
||||
if character_type == 'default':
|
||||
st.session_state.dp.llm_rephrasing = False
|
||||
else:
|
||||
st.session_state.dp.llm_rephrasing = True
|
||||
|
||||
get_user_input()
|
||||
show_chat_buttons()
|
||||
|
||||
show_conversation()
|
||||
with st.sidebar:
|
||||
show_graph()
|
||||
mermaid(graph())
|
||||
#show_graph()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,16 +1,6 @@
|
||||
AI_ROLE_OPTIONS_EN: list[str] = [
|
||||
"helpful assistant",
|
||||
"code assistant",
|
||||
"code reviewer",
|
||||
"text improver",
|
||||
"cinema expert",
|
||||
"sport expert",
|
||||
"online games expert",
|
||||
"food recipes expert",
|
||||
"English grammar expert",
|
||||
"friendly and helpful teaching assistant",
|
||||
"laconic assistant",
|
||||
"helpful, pattern-following assistant",
|
||||
"translate corporate jargon into plain English",
|
||||
"default",
|
||||
"helpful_chef",
|
||||
"ramsay",
|
||||
]
|
||||
|
||||
|
@ -12,7 +12,7 @@ from AMUseBotBackend.src.NLU.nlu import NLU
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
load_dotenv('.env_template')
|
||||
|
||||
INTENT_DICT_PATH = os.getenv('INTENT_DICT_PATH')
|
||||
MODEL_IDENTIFIER_PATH = os.getenv('MODEL_IDENTIFIER_PATH')
|
||||
@ -23,7 +23,8 @@ def get_nlu_model(intent_dict_path = INTENT_DICT_PATH, model_identifier_path = M
|
||||
model_identifier_path=model_identifier_path)
|
||||
|
||||
def clear_chat() -> None:
|
||||
st.session_state.generated = []
|
||||
st.session_state.generated = ["Hello! I'm AMUseBot, a virtual cooking assistant. Please tell me the name of the dish that you'd like to prepare today."]
|
||||
st.session_state.dst.restart()
|
||||
st.session_state.past = []
|
||||
st.session_state.messages = []
|
||||
st.session_state.user_text = ""
|
||||
|
@ -20,15 +20,8 @@ class Locale:
|
||||
chat_clear_btn: str
|
||||
chat_save_btn: str
|
||||
speak_btn: str
|
||||
input_kind: str
|
||||
input_kind_1: str
|
||||
input_kind_2: str
|
||||
select_placeholder1: str
|
||||
select_placeholder2: str
|
||||
select_placeholder3: str
|
||||
radio_placeholder: str
|
||||
radio_text1: str
|
||||
radio_text2: str
|
||||
stt_placeholder: str
|
||||
footer_title: str
|
||||
footer_option0: str
|
||||
@ -55,15 +48,8 @@ en = Locale(
|
||||
chat_clear_btn="Clear",
|
||||
chat_save_btn="Save",
|
||||
speak_btn="Push to Speak",
|
||||
input_kind="Input Kind",
|
||||
input_kind_1="Text",
|
||||
input_kind_2="Voice [test mode]",
|
||||
select_placeholder1="Select Model",
|
||||
select_placeholder2="Select Role",
|
||||
select_placeholder3="Create Role",
|
||||
radio_placeholder="Role Interaction",
|
||||
radio_text1="Select",
|
||||
radio_text2="Create",
|
||||
stt_placeholder="To Hear The Voice Of AI Press Play",
|
||||
footer_title="Support & Feedback",
|
||||
footer_option0="Chat",
|
||||
|
21
characters_dict.json
Normal file
21
characters_dict.json
Normal file
@ -0,0 +1,21 @@
|
||||
{
|
||||
"task_paraphrase": "You're currently reading a step of a recipe, paraphrase it so that it matches your character: ",
|
||||
"task_substitute": "A user has just asked for a substitute for a missing ingredient, answer him according to your character in one short sentence with at most 3 alternatives: ",
|
||||
"model": "gpt-3.5-turbo-0613",
|
||||
"characters": {
|
||||
"default": {
|
||||
"prompt": "",
|
||||
"task_specification": ""
|
||||
|
||||
},
|
||||
"helpful_chef": {
|
||||
"prompt": "You're a master chef known for treating everyone like your equal. ",
|
||||
"task_specification": " Give your answer as a natural sounding, full English sentence. Keep the sentence length similar and do not make the language flowery."
|
||||
|
||||
},
|
||||
"ramsay": {
|
||||
"prompt": "You're Gordon Ramsay, a famous British chef known for his short temper and routinely insulting people. ",
|
||||
"task_specification": ""
|
||||
}
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user