2022-05-03 22:47:51 +02:00
|
|
|
import pandas as pd
|
|
|
|
import re
|
|
|
|
from sklearn import metrics
|
|
|
|
import numpy as np
|
2022-05-07 04:46:30 +02:00
|
|
|
import csv
|
2022-05-07 05:17:49 +02:00
|
|
|
import matplotlib.pyplot as plt
|
2022-05-03 22:47:51 +02:00
|
|
|
f = open("result.txt", "r")
|
|
|
|
|
|
|
|
list_result, list_predicted=[],[]
|
|
|
|
for x in f:
|
|
|
|
data = x.split(' ')
|
|
|
|
result = re.findall(r'\d+', data[1])
|
|
|
|
predicted = re.findall(r'\d+', data[5])
|
|
|
|
|
|
|
|
result=int(result[0])
|
|
|
|
predicted=float('.'.join(predicted))
|
|
|
|
|
|
|
|
list_result.append(result)
|
|
|
|
list_predicted.append(predicted)
|
2022-05-07 04:46:30 +02:00
|
|
|
metrics = metrics.mean_absolute_error(list_result, list_predicted), metrics.mean_squared_error(list_result, list_predicted),np.sqrt(metrics.mean_absolute_error(list_result, list_predicted))
|
|
|
|
print("MAE: ", metrics[0])
|
|
|
|
print("MSE: ",metrics[1])
|
|
|
|
print("RMSE: ",metrics[2])
|
|
|
|
|
|
|
|
|
|
|
|
|
2022-05-07 11:37:19 +02:00
|
|
|
with open('eval.csv', 'a+', newline='') as f:
|
2022-05-07 04:46:30 +02:00
|
|
|
writer = csv.writer(f)
|
|
|
|
writer.writerow((metrics[0],metrics[1], metrics[2]))
|
2022-05-07 05:17:49 +02:00
|
|
|
|
|
|
|
|
|
|
|
MAE,MSE,RMSE=[],[],[]
|
|
|
|
with open('eval.csv', 'r') as r:
|
|
|
|
for row in r:
|
|
|
|
# row variable is a list that represents a row in csv
|
|
|
|
row=row.split(',')
|
|
|
|
MAE.append(float(row[0]))
|
|
|
|
MSE.append(float(row[1]))
|
|
|
|
RMSE.append(float(row[2]))
|
|
|
|
|
2022-05-07 05:30:34 +02:00
|
|
|
plt.xlabel('build')
|
2022-05-07 05:25:40 +02:00
|
|
|
plt.plot(np.arange(0, len(MAE)), MAE, label="MAE")
|
|
|
|
plt.plot(np.arange(0, len(MSE)), MSE, label="MSE")
|
|
|
|
plt.plot(np.arange(0, len(RMSE)), RMSE, label="RMSE")
|
2022-05-07 05:30:34 +02:00
|
|
|
plt.legend()
|
2022-05-07 05:17:49 +02:00
|
|
|
plt.savefig('metrics.png')
|