no need for copy of pytorch.py
Some checks failed
s444354-training/pipeline/head There was a failure building this commit
Some checks failed
s444354-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
a949fcc726
commit
54d71d631e
@ -1,204 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding: utf-8
|
|
||||||
|
|
||||||
# In[18]:
|
|
||||||
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import jovian
|
|
||||||
import torchvision
|
|
||||||
import matplotlib
|
|
||||||
import torch.nn as nn
|
|
||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torchvision.datasets.utils import download_url
|
|
||||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
|
||||||
import random
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from sacred import Experiment
|
|
||||||
from sacred.observers import FileStorageObserver
|
|
||||||
from sacred.observers import MongoObserver
|
|
||||||
|
|
||||||
|
|
||||||
# In[2]:
|
|
||||||
|
|
||||||
ex = Experiment(save_git_info=False)
|
|
||||||
ex.observers.append(FileStorageObserver('runs'))
|
|
||||||
@ex.config
|
|
||||||
def config():
|
|
||||||
epochs = 1500
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
dataframe_raw = pd.read_csv("winequality-red.csv")
|
|
||||||
dataframe_raw.head()
|
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
|
||||||
|
|
||||||
|
|
||||||
input_cols=list(dataframe_raw.columns)[:-1]
|
|
||||||
output_cols = ['quality']
|
|
||||||
input_cols,output_cols
|
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
|
||||||
|
|
||||||
|
|
||||||
def dataframe_to_arrays(dataframe):
|
|
||||||
dataframe1 = dataframe_raw.copy(deep=True)
|
|
||||||
inputs_array = dataframe1[input_cols].to_numpy()
|
|
||||||
targets_array = dataframe1[output_cols].to_numpy()
|
|
||||||
return inputs_array, targets_array
|
|
||||||
|
|
||||||
inputs_array, targets_array = dataframe_to_arrays(dataframe_raw)
|
|
||||||
inputs_array, targets_array
|
|
||||||
|
|
||||||
|
|
||||||
# In[5]:
|
|
||||||
|
|
||||||
|
|
||||||
inputs = torch.from_numpy(inputs_array).type(torch.float)
|
|
||||||
targets = torch.from_numpy(targets_array).type(torch.float)
|
|
||||||
inputs,targets
|
|
||||||
|
|
||||||
|
|
||||||
# In[6]:
|
|
||||||
|
|
||||||
|
|
||||||
dataset = TensorDataset(inputs, targets)
|
|
||||||
dataset
|
|
||||||
|
|
||||||
|
|
||||||
# In[7]:
|
|
||||||
|
|
||||||
|
|
||||||
train_ds, val_ds = random_split(dataset, [1300, 299])
|
|
||||||
batch_size=50
|
|
||||||
train_loader = DataLoader(train_ds, batch_size, shuffle=True)
|
|
||||||
val_loader = DataLoader(val_ds, batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
# In[8]:
|
|
||||||
|
|
||||||
|
|
||||||
class WineQuality(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__()
|
|
||||||
self.linear = nn.Linear(input_size,output_size)
|
|
||||||
|
|
||||||
def forward(self, xb):
|
|
||||||
out = self.linear(xb)
|
|
||||||
return out
|
|
||||||
|
|
||||||
def training_step(self, batch):
|
|
||||||
inputs, targets = batch
|
|
||||||
# Generate predictions
|
|
||||||
out = self(inputs)
|
|
||||||
# Calcuate loss
|
|
||||||
loss = F.l1_loss(out,targets)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
def validation_step(self, batch):
|
|
||||||
inputs, targets = batch
|
|
||||||
# Generate predictions
|
|
||||||
out = self(inputs)
|
|
||||||
# Calculate loss
|
|
||||||
loss = F.l1_loss(out,targets)
|
|
||||||
return {'val_loss': loss.detach()}
|
|
||||||
|
|
||||||
def validation_epoch_end(self, outputs):
|
|
||||||
batch_losses = [x['val_loss'] for x in outputs]
|
|
||||||
epoch_loss = torch.stack(batch_losses).mean()
|
|
||||||
return {'val_loss': epoch_loss.item()}
|
|
||||||
|
|
||||||
def epoch_end(self, epoch, result, num_epochs):
|
|
||||||
# Print result every 100th epoch
|
|
||||||
if (epoch+1) % 100 == 0 or epoch == num_epochs-1:
|
|
||||||
print("Epoch [{}], val_loss: {:.4f}".format(epoch+1, result['val_loss']))
|
|
||||||
|
|
||||||
|
|
||||||
# In[9]:
|
|
||||||
|
|
||||||
|
|
||||||
input_size = len(input_cols)
|
|
||||||
output_size = len(output_cols)
|
|
||||||
|
|
||||||
|
|
||||||
# In[10]:
|
|
||||||
|
|
||||||
|
|
||||||
model=WineQuality()
|
|
||||||
|
|
||||||
|
|
||||||
# In[11]:
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate(model, val_loader):
|
|
||||||
outputs = [model.validation_step(batch) for batch in val_loader]
|
|
||||||
return model.validation_epoch_end(outputs)
|
|
||||||
|
|
||||||
@ex.capture
|
|
||||||
def fit(lr, model, train_loader, val_loader, opt_func=torch.optim.SGD, epochs, _run):
|
|
||||||
history = []
|
|
||||||
optimizer = opt_func(model.parameters(), lr)
|
|
||||||
for epoch in range(epochs):
|
|
||||||
for batch in train_loader:
|
|
||||||
loss = model.training_step(batch)
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
optimizer.zero_grad()
|
|
||||||
result = evaluate(model, val_loader)
|
|
||||||
model.epoch_end(epoch, result, epochs)
|
|
||||||
history.append(result)
|
|
||||||
return history
|
|
||||||
|
|
||||||
|
|
||||||
# In[12]:
|
|
||||||
|
|
||||||
|
|
||||||
#epochs = int(sys.argv[1])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# In[27]:
|
|
||||||
|
|
||||||
|
|
||||||
def predict_single(input, target, model):
|
|
||||||
inputs = input.unsqueeze(0)
|
|
||||||
predictions = model(inputs)
|
|
||||||
prediction = predictions[0].detach()
|
|
||||||
|
|
||||||
return "Target: "+str(target)+"----- Prediction: "+str(prediction)+"\n"
|
|
||||||
|
|
||||||
|
|
||||||
# In[32]:
|
|
||||||
|
|
||||||
|
|
||||||
#wylosuj 10 próbek predykcji
|
|
||||||
for i in random.sample(range(0, len(val_ds)), 10):
|
|
||||||
input_, target = val_ds[i]
|
|
||||||
print(predict_single(input_, target, model),end="")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# In[36]:
|
|
||||||
|
|
||||||
|
|
||||||
with open("result.txt", "w+") as file:
|
|
||||||
for i in range(0, len(val_ds), 1):
|
|
||||||
input_, target = val_ds[i]
|
|
||||||
file.write(str(predict_single(input_, target, model)))
|
|
||||||
|
|
||||||
@ex.main
|
|
||||||
def main():
|
|
||||||
lr = 1e-6
|
|
||||||
history5 = fit(lr, model, train_loader, val_loader, epochs)
|
|
||||||
|
|
||||||
ex.run()
|
|
||||||
|
|
@ -143,7 +143,7 @@ def evaluate(model, val_loader):
|
|||||||
return model.validation_epoch_end(outputs)
|
return model.validation_epoch_end(outputs)
|
||||||
|
|
||||||
@ex.capture
|
@ex.capture
|
||||||
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD, _run):
|
def fit(lr, model, train_loader, val_loader, opt_func=torch.optim.SGD, epochs, _run):
|
||||||
history = []
|
history = []
|
||||||
optimizer = opt_func(model.parameters(), lr)
|
optimizer = opt_func(model.parameters(), lr)
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
@ -198,7 +198,7 @@ with open("result.txt", "w+") as file:
|
|||||||
@ex.main
|
@ex.main
|
||||||
def main():
|
def main():
|
||||||
lr = 1e-6
|
lr = 1e-6
|
||||||
history5 = fit(epochs, lr, model, train_loader, val_loader)
|
history5 = fit(lr, model, train_loader, val_loader, epochs)
|
||||||
|
|
||||||
ex.run()
|
ex.run()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user