dockerfile jenkinsfile

This commit is contained in:
Adrian Charkiewicz 2022-04-03 22:17:18 +02:00
parent b57954c1a2
commit c1d9cdb0d1
4 changed files with 59 additions and 2 deletions

23
Dockerfile Normal file
View File

@ -0,0 +1,23 @@
FROM ubuntu:latest
# Install required dependencies
RUN apt update
RUN apt-get update
RUN apt install -y figlet
RUN export PATH=$PATH:/usr/local/bin/python”
RUN apt install python3-pip -y
RUN apt install unzip -y
RUN pip3 install kaggle
RUN pip3 install pandas
RUN pip3 install scikit-learn
RUN pip3 install matplotlib
RUN mkdir ~/.kaggle/
RUN echo '{"username":"riraasaa","key":"1b1376b538ecd7da9e79b94d218ae3ec"}' > ~/.kaggle/kaggle.json
# Create app directory in image
WORKDIR /app
# Copy init dataset script to /app directory in image
COPY ./data_processing.py ./
# Download kaggle dataset
RUN kaggle datasets download -d uciml/red-wine-quality-cortez-et-al-2009
RUN unzip -o red-wine-quality-cortez-et-al-2009.zip
# Script executed after docker run
CMD python3 ./data_processing.py

10
Jenkinsfile vendored
View File

@ -1,5 +1,7 @@
pipeline {
agent any
agent {
docker { image 'ium' }
}
parameters{
password(
defaultValue: '',
@ -22,6 +24,12 @@ pipeline {
KAGGLE_KEY="$params.KAGGLE_KEY"
CUTOFF="$params.CUTOFF"
}
agent {
dockerfile {
additionalBuildArgs "-t ium"
}
}
stages {
stage("Check out from version control") {
steps {

View File

@ -1,5 +1,7 @@
pipeline {
agent any
agent {
docker { image 'ium' }
}
parameters{
buildSelector(
defaultSelector: lastSuccessful(),

24
data_processing.py Normal file
View File

@ -0,0 +1,24 @@
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
wine = pd.read_csv('winequality-red.csv')
X_train,X_rem,y_train,y_rem = train_test_split(wine.iloc[:,:-1],wine.iloc[:,-1], test_size=0.2, random_state=1,stratify=wine["quality"])
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print("Wielkosc danych: train,test,valid:")
print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)
print("wine describe:")
print(wine.describe())
norm = MinMaxScaler()
norm_fit = norm.fit(X_train)
norm_X_train = norm_fit.transform(X_train)
norm_X_test = norm_fit.transform(X_test)
norm_X_valid = norm_fit.transform(X_valid)