run
This commit is contained in:
parent
8d55493d9b
commit
6a6204e613
6
.ipynb_checkpoints/run-checkpoint.ipynb
Normal file
6
.ipynb_checkpoints/run-checkpoint.ipynb
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
20000
dev-0/out.tsv
Normal file
20000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
11563
dev-1/out.tsv
Normal file
11563
dev-1/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
129
run.ipynb
Normal file
129
run.ipynb
Normal file
@ -0,0 +1,129 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "f844d81d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import lzma\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"from sklearn.pipeline import make_pipeline\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.metrics import mean_squared_error\n",
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "e18dcd2f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with lzma.open('train/train.tsv.xz', 'rt', encoding=\"utf-8\") as f:\n",
|
||||
" df = pd.read_csv(f, sep='\\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "23006157",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def readFile(filename):\n",
|
||||
" result = []\n",
|
||||
" with open(filename, 'r', encoding=\"utf-8\") as f:\n",
|
||||
" for line in f:\n",
|
||||
" text = line.split(\"\\t\")[0].strip()\n",
|
||||
" result.append(text)\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "7fc3427f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(filename, predictions):\n",
|
||||
" with open(filename, \"w\") as f:\n",
|
||||
" for p in predictions:\n",
|
||||
" f.write(str(p) + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "b92a45ce",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = df[['Text', 'Begin']]\n",
|
||||
"X_train = df['Text']\n",
|
||||
"y_train = df['Begin']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "7c6d4186",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),\n",
|
||||
" ('linearregression', LinearRegression())])"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = make_pipeline(TfidfVectorizer(), LinearRegression())\n",
|
||||
"model.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "7497ecb0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"filenames=[('dev-0/in.tsv',\"dev-0/out.tsv\"), ('dev-1/in.tsv', \"dev-1/out.tsv\"), ('test-A/in.tsv', 'test-A/out.tsv')]\n",
|
||||
"for filename in filenames:\n",
|
||||
" f=readFile(filename[0])\n",
|
||||
" y_predict=model.predict(f)\n",
|
||||
" predict(filename[1],y_predict)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
66
run.py
Normal file
66
run.py
Normal file
@ -0,0 +1,66 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[16]:
|
||||
|
||||
|
||||
import lzma
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.metrics import mean_squared_error
|
||||
import pandas as pd
|
||||
|
||||
|
||||
# In[18]:
|
||||
|
||||
|
||||
with lzma.open('train/train.tsv.xz', 'rt', encoding="utf-8") as f:
|
||||
df = pd.read_csv(f, sep='\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])
|
||||
|
||||
|
||||
# In[19]:
|
||||
|
||||
|
||||
def readFile(filename):
|
||||
result = []
|
||||
with open(filename, 'r', encoding="utf-8") as f:
|
||||
for line in f:
|
||||
text = line.split("\t")[0].strip()
|
||||
result.append(text)
|
||||
return result
|
||||
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
def predict(filename, predictions):
|
||||
with open(filename, "w") as f:
|
||||
for p in predictions:
|
||||
f.write(str(p) + "\n")
|
||||
|
||||
|
||||
# In[22]:
|
||||
|
||||
|
||||
df = df[['Text', 'Begin']]
|
||||
X_train = df['Text']
|
||||
y_train = df['Begin']
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
model = make_pipeline(TfidfVectorizer(), LinearRegression())
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
|
||||
# In[30]:
|
||||
|
||||
|
||||
filenames=[('dev-0/in.tsv',"dev-0/out.tsv"), ('dev-1/in.tsv', "dev-1/out.tsv"), ('test-A/in.tsv', 'test-A/out.tsv')]
|
||||
for filename in filenames:
|
||||
f=readFile(filename[0])
|
||||
y_predict=model.predict(f)
|
||||
predict(filename[1],y_predict)
|
||||
|
14220
test-A/out.tsv
Normal file
14220
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user