212 lines
7.4 KiB
Python
212 lines
7.4 KiB
Python
|
import numpy as np
|
||
|
import sys
|
||
|
import os
|
||
|
import torch
|
||
|
import pandas as pd
|
||
|
from torch import nn
|
||
|
from torch.autograd import Variable
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
import torch.nn.functional as F
|
||
|
from datetime import datetime
|
||
|
from sklearn.metrics import precision_recall_fscore_support
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, input_dim):
|
||
|
super(Model, self).__init__()
|
||
|
self.layer1 = nn.Linear(input_dim, 50)
|
||
|
self.layer2 = nn.Linear(50, 40)
|
||
|
self.layer3 = nn.Linear(40, 3)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.relu(self.layer1(x))
|
||
|
x = F.relu(self.layer2(x))
|
||
|
x = F.softmax(self.layer3(x)) # To check with the loss function
|
||
|
return x
|
||
|
|
||
|
# funkcja usuwająca wiersze zawierające platformę "Stadia"
|
||
|
def delete_stadia(games):
|
||
|
index_list = []
|
||
|
for i in range(0, len(games["platform"])):
|
||
|
try:
|
||
|
if games["platform"][i] == " Stadia":
|
||
|
index_list.append(i)
|
||
|
except:
|
||
|
continue
|
||
|
games.drop(index_list, inplace=True)
|
||
|
return games.reset_index()
|
||
|
|
||
|
# funkcja usuwająca wiersze zawierające "tbd" w kolumnie "user_review"
|
||
|
def delete_tbd(games):
|
||
|
index_list = []
|
||
|
for i in range(0, len(games["platform"])):
|
||
|
try:
|
||
|
if games["user_review"][i] == 'tbd':
|
||
|
index_list.append(i)
|
||
|
except:
|
||
|
continue
|
||
|
games.drop(index_list, inplace=True)
|
||
|
return games.reset_index()
|
||
|
|
||
|
def delete_PC(games):
|
||
|
index_list = []
|
||
|
for i in range(0, len(games["platform"])):
|
||
|
try:
|
||
|
if games["platform"][i] == " PC":
|
||
|
index_list.append(i)
|
||
|
except:
|
||
|
continue
|
||
|
games.drop(index_list, inplace=True)
|
||
|
return games.reset_index()
|
||
|
|
||
|
# funkcja zmieniająca kolumnę "user_review" ze stringa na numeric
|
||
|
def user_review_to_numeric(games):
|
||
|
games["user_review"] = pd.to_numeric(games["user_review"])
|
||
|
return games
|
||
|
|
||
|
# funkcja normalizująca wartości w kolumnie "meta_score" i "user_review"
|
||
|
def normalization(games):
|
||
|
games['meta_score'] = games['meta_score'] / 100.0
|
||
|
games['user_review'] = games['user_review'] / 10.0
|
||
|
return games
|
||
|
|
||
|
# old - 0
|
||
|
# mid - 1
|
||
|
# new - 2
|
||
|
|
||
|
def platform_to_number(games):
|
||
|
for i in range(0, len(games["platform"])):
|
||
|
|
||
|
if games["platform"][i] == " PlayStation":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " PlayStation 2":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " PlayStation 3":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " PlayStation 4":
|
||
|
games["platform"][i] = 2
|
||
|
elif games["platform"][i] == " PlayStation 5":
|
||
|
games["platform"][i] = 2
|
||
|
elif games["platform"][i] == " PlayStation Vita":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " Xbox":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " Xbox 360":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " Xbox Series X":
|
||
|
games["platform"][i] = 2
|
||
|
elif games["platform"][i] == " Nintendo 64":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " GameCube":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " DS":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " 3DS":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " Wii":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " Wii U":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " Switch":
|
||
|
games["platform"][i] = 2
|
||
|
elif games["platform"][i] == " PC":
|
||
|
dt = datetime.strptime(games["release_date"][i], '%B %d, %Y')
|
||
|
if (dt.year == 1995 or dt.year == 1996 or dt.year == 1997 or dt.year == 1998
|
||
|
or dt.year == 1999 or dt.year == 2000 or dt.year == 2001 or dt.year == 2002
|
||
|
or dt.year == 2003 or dt.year == 2004 or dt.year == 2005):
|
||
|
games["platform"][i] = 0
|
||
|
if (dt.year == 2006 or dt.year == 2007 or dt.year == 2008 or dt.year == 2009
|
||
|
or dt.year == 2010 or dt.year == 2011 or dt.year == 2012 or dt.year == 2013
|
||
|
or dt.year == 2014 or dt.year == 2015 or dt.year == 2016):
|
||
|
games["platform"][i] = 1
|
||
|
if (dt.year == 2017 or dt.year == 2018 or dt.year == 2019
|
||
|
or dt.year == 2020 or dt.year == 2021):
|
||
|
games["platform"][i] = 2
|
||
|
|
||
|
# games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " Dreamcast":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " Game Boy Advance":
|
||
|
games["platform"][i] = 0
|
||
|
elif games["platform"][i] == " PSP":
|
||
|
games["platform"][i] = 1
|
||
|
elif games["platform"][i] == " Xbox One":
|
||
|
games["platform"][i] = 2
|
||
|
|
||
|
return games
|
||
|
|
||
|
def remove_list(games):
|
||
|
for i in range(0, len(games)):
|
||
|
games['platform'][i] = games['platform'][i][0]
|
||
|
games['release_date'][i] = games['release_date'][i][0]
|
||
|
games['meta_score'][i] = games['meta_score'][i][0]
|
||
|
games['user_review'][i] = games['user_review'][i][0]
|
||
|
return games
|
||
|
|
||
|
platform = pd.read_csv('all_games.train.csv', sep=',', usecols=[1], header=None).values.tolist()
|
||
|
release_date = pd.read_csv('all_games.train.csv', sep=',', usecols=[2], header=None).values.tolist()
|
||
|
meta_score = pd.read_csv('all_games.train.csv', sep=',', usecols=[4], header=None).values.tolist()
|
||
|
user_review = pd.read_csv('all_games.train.csv', sep=',', usecols=[5], header=None).values.tolist()
|
||
|
|
||
|
games_test = {'platform': platform,
|
||
|
'release_date': release_date,
|
||
|
'meta_score': meta_score,
|
||
|
'user_review': user_review}
|
||
|
games_test = pd.DataFrame(games_test)
|
||
|
|
||
|
games_test = remove_list(games_test)
|
||
|
games_test = platform_to_number(games_test)
|
||
|
games_test = delete_stadia(games_test)
|
||
|
games_test = delete_tbd(games_test)
|
||
|
games_test = user_review_to_numeric(games_test)
|
||
|
games_test = normalization(games_test)
|
||
|
|
||
|
labels_test_g = pd.DataFrame(games_test["platform"], dtype=np.int64)
|
||
|
labels_test_g = labels_test_g.to_numpy()
|
||
|
features_test_g = {'meta_score': games_test['meta_score'],
|
||
|
'user_review': games_test['user_review']}
|
||
|
features_test_g = pd.DataFrame(features_test_g, dtype=np.float64)
|
||
|
features_test_g = features_test_g.to_numpy()
|
||
|
|
||
|
# Training
|
||
|
model = torch.load("games_model.pkl")
|
||
|
|
||
|
# Prediction
|
||
|
x_test = Variable(torch.from_numpy(features_test_g)).float()
|
||
|
pred = model(x_test)
|
||
|
|
||
|
pred = pred.detach().numpy()
|
||
|
|
||
|
accuracy = accuracy_score(labels_test_g, np.argmax(pred, axis=1))
|
||
|
|
||
|
pred = pd.DataFrame(pred)
|
||
|
|
||
|
predicted = []
|
||
|
expected = []
|
||
|
|
||
|
for i in range(0, len(x_test)):
|
||
|
predicted.append(np.argmax(model(x_test[i]).detach().numpy(), axis=0))
|
||
|
expected.append(labels_test_g[i])
|
||
|
|
||
|
for i in range(0, len(expected)):
|
||
|
expected[i] = expected[i][0]
|
||
|
|
||
|
precision, recall, fscore, support = precision_recall_fscore_support(expected, predicted, average="micro")
|
||
|
|
||
|
res = f"Accuracy: {accuracy}, Precision: {precision}, Recall: {recall}, F-score: {fscore}"
|
||
|
|
||
|
with open('metrics.txt', 'a+') as f:
|
||
|
f.write(str(accuracy) + '\n')
|
||
|
|
||
|
with open('metrics.txt') as f:
|
||
|
accuracy_val = [float(line) for line in f if line]
|
||
|
builds = list(range(1, len(accuracy_val) + 1))
|
||
|
|
||
|
plt.xlabel('Build')
|
||
|
plt.ylabel('Accuracy')
|
||
|
plt.plot(builds, accuracy_val, label='Accuracy')
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
plt.savefig('metrics.png')
|