2022-05-11 18:51:12 +02:00
|
|
|
import json
|
|
|
|
import mlflow
|
2022-05-11 20:05:49 +02:00
|
|
|
import sys
|
2022-05-11 20:10:38 +02:00
|
|
|
import numpy as np
|
2022-05-11 18:51:12 +02:00
|
|
|
|
2022-05-11 21:19:17 +02:00
|
|
|
#input = sys.argv[1]
|
2022-05-11 20:03:13 +02:00
|
|
|
|
2022-05-11 20:05:49 +02:00
|
|
|
logged_model = 'mlruns/1/70439eb482b54d56b54b0ecc6f1ca96f/artifacts/s444409'
|
2022-05-11 19:33:00 +02:00
|
|
|
loaded_model = mlflow.pyfunc.load_model(logged_model)
|
2022-05-11 18:51:12 +02:00
|
|
|
|
|
|
|
|
2022-05-11 21:16:05 +02:00
|
|
|
with open('input_example.json') as f:
|
2022-05-11 18:51:12 +02:00
|
|
|
data = json.load(f)
|
2022-05-11 20:18:32 +02:00
|
|
|
input_example = np.array([data['inputs'][0]], dtype=np.float32)
|
2022-05-11 18:51:12 +02:00
|
|
|
|
2022-05-11 20:36:54 +02:00
|
|
|
print(f'Prediction: {loaded_model.predict(input_example)}')
|