update dllib-mlflow.py
All checks were successful
s444356-evaluation/pipeline/head This commit looks good
s444356-training/pipeline/head This commit looks good

This commit is contained in:
Maciej Czajka 2022-05-09 22:25:23 +02:00
parent 5f9785d4fd
commit c2a7fbbf25

View File

@ -296,34 +296,34 @@ def my_main(epochs):
print ("The loss calculated: ", loss)
# Not using dataloader
x_train, y_train = Variable(torch.from_numpy(features_train_g)).float(), Variable(torch.from_numpy(labels_train_g)).long()
for epoch in range(1, epochs + 1):
print("Epoch #", epoch)
y_pred = model(x_train)
with mlflow.start_run() as run:
x_train, y_train = Variable(torch.from_numpy(features_train_g)).float(), Variable(torch.from_numpy(labels_train_g)).long()
for epoch in range(1, epochs + 1):
print("Epoch #", epoch)
y_pred = model(x_train)
loss = loss_fn(y_pred, y_train.squeeze(-1))
print_(loss.item())
loss = loss_fn(y_pred, y_train.squeeze(-1))
print_(loss.item())
# Zero gradients
optimizer.zero_grad()
loss.backward() # Gradients
optimizer.step() # Update
# Zero gradients
optimizer.zero_grad()
loss.backward() # Gradients
optimizer.step() # Update
# Prediction
x_test = Variable(torch.from_numpy(features_test_g)).float()
pred = model(x_test)
# Prediction
x_test = Variable(torch.from_numpy(features_test_g)).float()
pred = model(x_test)
pred = pred.detach().numpy()
pred = pred.detach().numpy()
print("The accuracy is", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
mlflow.log_metric("accuracy", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
print("The accuracy is", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
mlflow.log_metric("accuracy", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
pred = pd.DataFrame(pred)
pred = pd.DataFrame(pred)
pred.to_csv('result.csv')
pred.to_csv('result.csv')
# save model
torch.save(model, "games_model.pkl")
# save model
torch.save(model, "games_model.pkl")