update Dockerfile and dllib.py
Some checks failed
s444356-training/pipeline/head There was a failure building this commit
Some checks failed
s444356-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
7fb85b4279
commit
f261c87e0b
@ -1,4 +1,6 @@
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
import torch
|
||||
import pandas as pd
|
||||
from torch import nn
|
||||
@ -8,6 +10,7 @@ from sklearn.metrics import accuracy_score
|
||||
import torch.nn.functional as F
|
||||
from datetime import datetime
|
||||
|
||||
EPOCHS = int(sys.argv[1])
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_dim):
|
||||
@ -39,7 +42,7 @@ def delete_tbd(games):
|
||||
index_list = []
|
||||
for i in range(0, len(games["platform"])):
|
||||
try:
|
||||
if games["user_review"][i] == "tbd":
|
||||
if games["user_review"][i] == 'tbd':
|
||||
index_list.append(i)
|
||||
except:
|
||||
continue
|
||||
@ -204,32 +207,79 @@ def platform_to_number(games):
|
||||
|
||||
return games
|
||||
|
||||
def remove_list(games):
|
||||
for i in range(0, len(games)):
|
||||
games['platform'][i] = games['platform'][i][0]
|
||||
games['release_date'][i] = games['release_date'][i][0]
|
||||
games['meta_score'][i] = games['meta_score'][i][0]
|
||||
games['user_review'][i] = games['user_review'][i][0]
|
||||
return games
|
||||
|
||||
games = pd.read_csv('/dane/all_games.csv', sep=',')
|
||||
games = platform_to_number(games)
|
||||
games = delete_stadia(games)
|
||||
games = delete_tbd(games)
|
||||
games = user_review_to_numeric(games)
|
||||
games = normalization(games)
|
||||
games.drop(['level_0', 'index'], axis='columns', inplace=True)
|
||||
# games = pd.read_csv('all_games.csv', sep=',')
|
||||
# games = platform_to_number(games)
|
||||
# games = delete_stadia(games)
|
||||
# games = delete_tbd(games)
|
||||
# games = user_review_to_numeric(games)
|
||||
# games = normalization(games)
|
||||
# games.drop(['level_0', 'index'], axis='columns', inplace=True)
|
||||
|
||||
labels_g = pd.DataFrame(games["platform"], dtype=np.int64)
|
||||
labels_g = labels_g.to_numpy()
|
||||
features_g = {'meta_score': games['meta_score'],
|
||||
'user_review': games['user_review']}
|
||||
features_g = pd.DataFrame(features_g, dtype=np.float64)
|
||||
features_g = features_g.to_numpy()
|
||||
# labels_g = pd.DataFrame(games["platform"], dtype=np.int64)
|
||||
# labels_g = labels_g.to_numpy()
|
||||
# features_g = {'meta_score': games['meta_score'],
|
||||
# 'user_review': games['user_review']}
|
||||
# features_g = pd.DataFrame(features_g, dtype=np.float64)
|
||||
# features_g = features_g.to_numpy()
|
||||
|
||||
features_train_g, features_test_g, labels_train_g, labels_test_g = train_test_split(features_g,
|
||||
labels_g,
|
||||
random_state=1,
|
||||
shuffle=True)
|
||||
platform = pd.read_csv('Data/all_games_train.csv', sep=',', usecols=[1], header=None).values.tolist()
|
||||
release_date = pd.read_csv('Data/all_games_train.csv', sep=',', usecols=[2], header=None).values.tolist()
|
||||
meta_score = pd.read_csv('Data/all_games_train.csv', sep=',', usecols=[4], header=None).values.tolist()
|
||||
user_review = pd.read_csv('Data/all_games_train.csv', sep=',', usecols=[5], header=None).values.tolist()
|
||||
|
||||
games_train = {'platform': platform,
|
||||
'release_date': release_date,
|
||||
'meta_score': meta_score,
|
||||
'user_review': user_review}
|
||||
games_train = pd.DataFrame(games_train)
|
||||
|
||||
games_test = {'platform': platform,
|
||||
'release_date': release_date,
|
||||
'meta_score': meta_score,
|
||||
'user_review': user_review}
|
||||
games_test = pd.DataFrame(games_test)
|
||||
|
||||
games_train = remove_list(games_train)
|
||||
games_train = platform_to_number(games_train)
|
||||
games_train = delete_stadia(games_train)
|
||||
games_train = delete_tbd(games_train)
|
||||
games_train = user_review_to_numeric(games_train)
|
||||
games_train = normalization(games_train)
|
||||
|
||||
games_test = remove_list(games_test)
|
||||
games_test = platform_to_number(games_test)
|
||||
games_test = delete_stadia(games_test)
|
||||
games_test = delete_tbd(games_test)
|
||||
games_test = user_review_to_numeric(games_test)
|
||||
games_test = normalization(games_test)
|
||||
|
||||
labels_train_g = pd.DataFrame(games_train["platform"], dtype=np.int64)
|
||||
labels_train_g = labels_train_g.to_numpy()
|
||||
features_train_g = {'meta_score': games_train['meta_score'],
|
||||
'user_review': games_train['user_review']}
|
||||
features_train_g = pd.DataFrame(features_train_g, dtype=np.float64)
|
||||
features_train_g = features_train_g.to_numpy()
|
||||
|
||||
labels_test_g = pd.DataFrame(games_test["platform"], dtype=np.int64)
|
||||
labels_test_g = labels_test_g.to_numpy()
|
||||
features_test_g = {'meta_score': games_test['meta_score'],
|
||||
'user_review': games_test['user_review']}
|
||||
features_test_g = pd.DataFrame(features_test_g, dtype=np.float64)
|
||||
features_test_g = features_test_g.to_numpy()
|
||||
|
||||
# Training
|
||||
model = Model(features_train_g.shape[1])
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
epochs = 1000
|
||||
epochs = EPOCHS
|
||||
|
||||
def print_(loss):
|
||||
print ("The loss calculated: ", loss)
|
||||
@ -258,3 +308,6 @@ pred = pred.detach().numpy()
|
||||
print("The accuracy is", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
|
||||
pred = pd.DataFrame(pred)
|
||||
pred.to_csv('result.csv')
|
||||
|
||||
# save model
|
||||
torch.save(model, "games_model.pkl")
|
||||
|
260
Biblioteka_DL/dllib_2.py
Normal file
260
Biblioteka_DL/dllib_2.py
Normal file
@ -0,0 +1,260 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import pandas as pd
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
import torch.nn.functional as F
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, input_dim):
|
||||
super(Model, self).__init__()
|
||||
self.layer1 = nn.Linear(input_dim, 50)
|
||||
self.layer2 = nn.Linear(50, 40)
|
||||
self.layer3 = nn.Linear(40, 3)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.layer1(x))
|
||||
x = F.relu(self.layer2(x))
|
||||
x = F.softmax(self.layer3(x)) # To check with the loss function
|
||||
return x
|
||||
|
||||
# funkcja usuwająca wiersze zawierające platformę "Stadia"
|
||||
def delete_stadia(games):
|
||||
index_list = []
|
||||
for i in range(0, len(games["platform"])):
|
||||
try:
|
||||
if games["platform"][i] == " Stadia":
|
||||
index_list.append(i)
|
||||
except:
|
||||
continue
|
||||
games.drop(index_list, inplace=True)
|
||||
return games.reset_index()
|
||||
|
||||
# funkcja usuwająca wiersze zawierające "tbd" w kolumnie "user_review"
|
||||
def delete_tbd(games):
|
||||
index_list = []
|
||||
for i in range(0, len(games["platform"])):
|
||||
try:
|
||||
if games["user_review"][i] == "tbd":
|
||||
index_list.append(i)
|
||||
except:
|
||||
continue
|
||||
games.drop(index_list, inplace=True)
|
||||
return games.reset_index()
|
||||
|
||||
def delete_PC(games):
|
||||
index_list = []
|
||||
for i in range(0, len(games["platform"])):
|
||||
try:
|
||||
if games["platform"][i] == " PC":
|
||||
index_list.append(i)
|
||||
except:
|
||||
continue
|
||||
games.drop(index_list, inplace=True)
|
||||
return games.reset_index()
|
||||
|
||||
# funkcja zmieniająca kolumnę "user_review" ze stringa na numeric
|
||||
def user_review_to_numeric(games):
|
||||
games["user_review"] = pd.to_numeric(games["user_review"])
|
||||
return games
|
||||
|
||||
# funkcja normalizująca wartości w kolumnie "meta_score" i "user_review"
|
||||
def normalization(games):
|
||||
games['meta_score'] = games['meta_score'] / 100.0
|
||||
games['user_review'] = games['user_review'] / 10.0
|
||||
return games
|
||||
|
||||
# PlayStation - 0
|
||||
# PlayStation 2 - 1
|
||||
# PlayStation 3 - 2
|
||||
# PlayStation 4 - 3
|
||||
# PlayStation 5 - 4
|
||||
# PlayStation Vita - 5
|
||||
# Xbox - 6
|
||||
# Xbox 360 - 7
|
||||
# Xbox Series X - 8
|
||||
# Nintendo 64 - 9
|
||||
# GameCube - 10
|
||||
# DS - 11
|
||||
# 3DS - 12
|
||||
# Wii - 13
|
||||
# Wii U - 14
|
||||
# Switch - 15
|
||||
# PC - 16
|
||||
# Dreamcast - 17
|
||||
# Game Boy Advance - 18
|
||||
# PSP - 19
|
||||
# Xbox One - 20
|
||||
|
||||
# def platform_to_number(games):
|
||||
# for i in range(0, len(games["platform"])):
|
||||
#
|
||||
# if games["platform"][i] == " PlayStation":
|
||||
# games["platform"][i] = 0
|
||||
# elif games["platform"][i] == " PlayStation 2":
|
||||
# games["platform"][i] = 1
|
||||
# elif games["platform"][i] == " PlayStation 3":
|
||||
# games["platform"][i] = 2
|
||||
# elif games["platform"][i] == " PlayStation 4":
|
||||
# games["platform"][i] = 3
|
||||
# elif games["platform"][i] == " PlayStation 5":
|
||||
# games["platform"][i] = 4
|
||||
# elif games["platform"][i] == " PlayStation Vita":
|
||||
# games["platform"][i] = 5
|
||||
# elif games["platform"][i] == " Xbox":
|
||||
# games["platform"][i] = 6
|
||||
# elif games["platform"][i] == " Xbox 360":
|
||||
# games["platform"][i] = 7
|
||||
# elif games["platform"][i] == " Xbox Series X":
|
||||
# games["platform"][i] = 8
|
||||
# elif games["platform"][i] == " Nintendo 64":
|
||||
# games["platform"][i] = 9
|
||||
# elif games["platform"][i] == " GameCube":
|
||||
# games["platform"][i] = 10
|
||||
# elif games["platform"][i] == " DS":
|
||||
# games["platform"][i] = 11
|
||||
# elif games["platform"][i] == " 3DS":
|
||||
# games["platform"][i] = 12
|
||||
# elif games["platform"][i] == " Wii":
|
||||
# games["platform"][i] = 13
|
||||
# elif games["platform"][i] == " Wii U":
|
||||
# games["platform"][i] = 14
|
||||
# elif games["platform"][i] == " Switch":
|
||||
# games["platform"][i] = 15
|
||||
# elif games["platform"][i] == " PC":
|
||||
# games["platform"][i] = 16
|
||||
# elif games["platform"][i] == " Dreamcast":
|
||||
# games["platform"][i] = 17
|
||||
# elif games["platform"][i] == " Game Boy Advance":
|
||||
# games["platform"][i] = 18
|
||||
# elif games["platform"][i] == " PSP":
|
||||
# games["platform"][i] = 19
|
||||
# elif games["platform"][i] == " Xbox One":
|
||||
# games["platform"][i] = 20
|
||||
#
|
||||
# return games
|
||||
|
||||
|
||||
# old - 0
|
||||
# mid - 1
|
||||
# new - 2
|
||||
|
||||
def platform_to_number(games):
|
||||
for i in range(0, len(games["platform"])):
|
||||
|
||||
if games["platform"][i] == " PlayStation":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " PlayStation 2":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " PlayStation 3":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " PlayStation 4":
|
||||
games["platform"][i] = 2
|
||||
elif games["platform"][i] == " PlayStation 5":
|
||||
games["platform"][i] = 2
|
||||
elif games["platform"][i] == " PlayStation Vita":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " Xbox":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " Xbox 360":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " Xbox Series X":
|
||||
games["platform"][i] = 2
|
||||
elif games["platform"][i] == " Nintendo 64":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " GameCube":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " DS":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " 3DS":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " Wii":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " Wii U":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " Switch":
|
||||
games["platform"][i] = 2
|
||||
elif games["platform"][i] == " PC":
|
||||
dt = datetime.strptime(games["release_date"][i], '%B %d, %Y')
|
||||
if (dt.year == 1995 or dt.year == 1996 or dt.year == 1997 or dt.year == 1998
|
||||
or dt.year == 1999 or dt.year == 2000 or dt.year == 2001 or dt.year == 2002
|
||||
or dt.year == 2003 or dt.year == 2004 or dt.year == 2005):
|
||||
games["platform"][i] = 0
|
||||
if (dt.year == 2006 or dt.year == 2007 or dt.year == 2008 or dt.year == 2009
|
||||
or dt.year == 2010 or dt.year == 2011 or dt.year == 2012 or dt.year == 2013
|
||||
or dt.year == 2014 or dt.year == 2015 or dt.year == 2016):
|
||||
games["platform"][i] = 1
|
||||
if (dt.year == 2017 or dt.year == 2018 or dt.year == 2019
|
||||
or dt.year == 2020 or dt.year == 2021):
|
||||
games["platform"][i] = 2
|
||||
|
||||
# games["platform"][i] = 0
|
||||
elif games["platform"][i] == " Dreamcast":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " Game Boy Advance":
|
||||
games["platform"][i] = 0
|
||||
elif games["platform"][i] == " PSP":
|
||||
games["platform"][i] = 1
|
||||
elif games["platform"][i] == " Xbox One":
|
||||
games["platform"][i] = 2
|
||||
|
||||
return games
|
||||
|
||||
|
||||
games = pd.read_csv('/dane/all_games.csv', sep=',')
|
||||
games = platform_to_number(games)
|
||||
games = delete_stadia(games)
|
||||
games = delete_tbd(games)
|
||||
games = user_review_to_numeric(games)
|
||||
games = normalization(games)
|
||||
games.drop(['level_0', 'index'], axis='columns', inplace=True)
|
||||
|
||||
labels_g = pd.DataFrame(games["platform"], dtype=np.int64)
|
||||
labels_g = labels_g.to_numpy()
|
||||
features_g = {'meta_score': games['meta_score'],
|
||||
'user_review': games['user_review']}
|
||||
features_g = pd.DataFrame(features_g, dtype=np.float64)
|
||||
features_g = features_g.to_numpy()
|
||||
|
||||
features_train_g, features_test_g, labels_train_g, labels_test_g = train_test_split(features_g,
|
||||
labels_g,
|
||||
random_state=1,
|
||||
shuffle=True)
|
||||
|
||||
# Training
|
||||
model = Model(features_train_g.shape[1])
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
epochs = 1000
|
||||
|
||||
def print_(loss):
|
||||
print ("The loss calculated: ", loss)
|
||||
|
||||
|
||||
# Not using dataloader
|
||||
x_train, y_train = Variable(torch.from_numpy(features_train_g)).float(), Variable(torch.from_numpy(labels_train_g)).long()
|
||||
for epoch in range(1, epochs + 1):
|
||||
print("Epoch #", epoch)
|
||||
y_pred = model(x_train)
|
||||
|
||||
loss = loss_fn(y_pred, y_train.squeeze(-1))
|
||||
print_(loss.item())
|
||||
|
||||
# Zero gradients
|
||||
optimizer.zero_grad()
|
||||
loss.backward() # Gradients
|
||||
optimizer.step() # Update
|
||||
|
||||
# Prediction
|
||||
x_test = Variable(torch.from_numpy(features_test_g)).float()
|
||||
pred = model(x_test)
|
||||
|
||||
pred = pred.detach().numpy()
|
||||
|
||||
print("The accuracy is", accuracy_score(labels_test_g, np.argmax(pred, axis=1)))
|
||||
pred = pd.DataFrame(pred)
|
||||
pred.to_csv('result.csv')
|
@ -28,8 +28,8 @@ WORKDIR /app
|
||||
|
||||
COPY download.sh .
|
||||
COPY Zajecia_2/main.py .
|
||||
COPY dllib.py .
|
||||
COPY all_games.csv .
|
||||
COPY Biblioteka_DL/dllib.py .
|
||||
COPY Biblioteka_DL/all_games.csv .
|
||||
|
||||
RUN ./download.sh $CUTOFF
|
||||
#CMD ["python3", "./dllib.py"]
|
||||
|
Loading…
Reference in New Issue
Block a user