import json import mlflow import sys import numpy as np input = sys.argv[1] logged_model = 'mlruns/1/70439eb482b54d56b54b0ecc6f1ca96f/artifacts/s444409' loaded_model = mlflow.pyfunc.load_model(logged_model) with open('input_example.json') as f: data = json.load(f) input_example = np.array([data['inputs'][0]], dtype=np.float32) print(f'Prediction: {loaded_model.predict(input_example)}')