16 lines
381 B
Python
16 lines
381 B
Python
import json
|
|
import mlflow
|
|
import sys
|
|
import numpy as np
|
|
|
|
input = sys.argv[1]
|
|
|
|
logged_model = 'mlruns/1/70439eb482b54d56b54b0ecc6f1ca96f/artifacts/s444409'
|
|
loaded_model = mlflow.pyfunc.load_model(logged_model)
|
|
|
|
|
|
with open(f'{logged_model}/'+input) as f:
|
|
data = json.load(f)
|
|
input_example = np.array([data['inputs'][0]], dtype=np.float32)
|
|
|
|
loaded_model.predict(input_example) |