Praca nad raportem

This commit is contained in:
andrzej 2020-05-11 13:09:57 +02:00
parent 400fa1cb6b
commit 4d8b438723
2 changed files with 43 additions and 14 deletions

View File

@ -29,19 +29,48 @@ W świecie projektu różny rodzaj towarów ma różne "progi", od których moż
na przykład kładąc paczkę z lakierem/benzyną na regale lepiej mieć trochę większą pewność, że towar nie nagrzeje się nadmiernie, aniżeli na przykład kładąc paczkę z lakierem/benzyną na regale lepiej mieć trochę większą pewność, że towar nie nagrzeje się nadmiernie, aniżeli
kładąc książkę - że nie zniszczeje od wilgoci. W związku z tym zamiast prostej odpowiedzi Tak/Nie na pytanie kładąc książkę - że nie zniszczeje od wilgoci. W związku z tym zamiast prostej odpowiedzi Tak/Nie na pytanie
czy dany obiekt można położyć na danym regale potrzebna była przewidywana wartość prawdopodobieństwa że w danym miejscu czy dany obiekt można położyć na danym regale potrzebna była przewidywana wartość prawdopodobieństwa że w danym miejscu
zachowa się on w dobrym stanie. Wszystkie te progi wynoszą odpowiednio: zachowa się on w dobrym stanie. Wszystkie te progi wynoszą odpowiednio: \
``
PACKAGE_PLACE_TRESHOLD = {
"normal": 0.8,
"freezed": 0.85,
"fragile": 0.85,
"flammable": 0.9,
"keep_dry": 0.8
}
`` ``
PACKAGE_PLACE_TRESHOLD = {
"normal": 0.8,
"freezed": 0.85,
"fragile": 0.85,
"flammable": 0.9,
"keep_dry": 0.8
}
``\
Zdecydowałem się więc na wybór drzewa regresyjnego. Zdecydowałem się więc na wybór drzewa regresyjnego.
Biblioteką której użyłem w celu implementacji drzewa jest scikit-learn. Biblioteką której użyłem w celu implementacji drzewa jest scikit-learn.
Najważniejszym problemem oprócz dokładności oszacowań dokonanych przy pomocy drzewa było uniknięcie overfittingu(przepasowania), Najważniejszym problemem oprócz dokładności oszacowań dokonanych przy pomocy drzewa było uniknięcie overfittingu(przepasowania),
czyli sytuacji, w której drzewo perfekcyjnie dopasuje się do danych ze zbioru uczącego, jednak czyli sytuacji, w której drzewo perfekcyjnie dopasuje się do danych ze zbioru uczącego, jednak
z danymi spoza tego zbioru poradzi sobie już dużo gorzej. Oprócz błędnej oceny danych innych niż ze zbioru uczącego sygnałem wskazującym na overfitting drzewa z danymi spoza tego zbioru poradzi sobie już dużo gorzej. Oprócz błędnej oceny danych innych niż ze zbioru uczącego sygnałem wskazującym na overfitting drzewa
jest zbyt duża jego głębokość drzewa (odległość od korzenia do najdalszego liścia), oraz liście zawierające tylko 1 rekord. jest zbyt duża jego głębokość drzewa (odległość od korzenia do najdalszego liścia), oraz liście zawierające tylko 1 rekord.
W celu uniknięcia overfittingu zdecydowałem się na ograniczenie maksymalnej głębokości drzewa, oraz na ustawienie minimalnej
ilości rekordów w liściu. Drzewo wraz z odpowiednimi ograniczeniami zdefiniowane jest w następujący sposób \
``clf = DecisionTreeRegressor(ccp_alpha=0.02, min_samples_leaf=5, max_depth=5)``\
gdzie argumenty min_samples_leaf, oraz max_depth oznaczają odpowiednio minimalną ilość rekordów(przykładów ze zbioru uczącego) w liściu, oraz maksymalną głębokość drzewa.
Kryterium według którego mierzona jest "jakość" rozgałęzienia jest tzw. MSE(Mean Squared Error), czyli kwadrat odchylenia standardowego wartości przewidywanej wobec faktycznej.
Dobierając te parametry wyszedłem z założenia że jeżeli 5 rekordów będzie w jednym liściu, to znaczy że najprawdopodbniej zachodzi
już w ich przypadku pewna prawidłowość, i mają one jakieś wspólne cechy, które determinują taką, a nie inną wartość przewidywaną,
w odróżnieniu od sytuacji gdy liść zawierałby tylko 1-2 rekordy, co wskazywałoby na bardzo specyficzne parametry takiego/ich rekordu/ów,
i prawdopodobnie oznaczało overfitting drzewa. W przypadku głębokości chodziło o uniknięcie nadmiernego rozrostu drzewa.
Zastosowany zbiór uczący obejmuje 373 rekordy zapisane w formacie .csv, w którym poszczególne kolumny oznaczają odpowiednio:
produkt, kategorię produktu, temperature na regale, wilgotność powietrza na danym regale, szansę że przedmiot po dłuższym czasie przechowywania będzie w dobrym stanie, oraz informację czy można bezpiecznie go tu położyć.
Przykładowy rekord: ``frozen food,freezed,21, 0.5, 0.01, 0 `` . Zbiór testowy z kolei zawiera 26 rekordów w tym samym formacie.
Przygotowanie zbioru uczącego i testowego dla drzewa: \
``
products = pd.read_csv("package_location_classifier/trainset/trainset.csv", header=0, sep=",", names=cols_names)
testset = pd.read_csv("package_location_classifier/testset/testset.csv", header=None, sep=",", names=cols_names)
products = products.round({"chance_of_survive": 1})
testset = testset.round({"chance_of_survive": 1})
products.chance_of_survive *= 10
testset.chance_of_survive *= 10
test_X = pd.get_dummies(testset[feature_cols])
test_y = testset.chance_of_survive
products = products.sample(frac=1)
X_train = pd.get_dummies(products[feature_cols])
y_train = products.chance_of_survive
``
Drzewo wygenerowane dla tego zbioru uczącego: \
[Przykładowe drzewo](Drzewo.png)

View File

@ -49,10 +49,10 @@ class PackageLocationClassifier():
evaluation = pd.DataFrame({'category': testset.category, 'temperature': testset.temperature , 'humid': testset.humidity ,'Actual': test_y, 'Predicted': y_pred}) evaluation = pd.DataFrame({'category': testset.category, 'temperature': testset.temperature , 'humid': testset.humidity ,'Actual': test_y, 'Predicted': y_pred})
evaluation['Prediction_diff'] = abs(evaluation['Actual'] - evaluation['Predicted']) evaluation['Prediction_diff'] = abs(evaluation['Actual'] - evaluation['Predicted'])
print("Prediction differs from actual value by average {}".format(round(evaluation['Prediction_diff'].mean(), 2))) print("Prediction differs from actual value by average {}".format(round(evaluation['Prediction_diff'].mean(), 2)))
# export_graphviz(clf, out_file=data, filled=True, rounded=True, special_characters=True, feature_names=dummies_names) export_graphviz(clf, out_file=data, filled=True, rounded=True, special_characters=True, feature_names=dummies_names)
# graph = pydotplus.graph_from_dot_data(data.getvalue()) graph = pydotplus.graph_from_dot_data(data.getvalue())
# graph.write_png('Drzewo.png') graph.write_png('Drzewo.png')
# Image(graph.create_png()) Image(graph.create_png())
def check_if_can_place(self, package, tile): def check_if_can_place(self, package, tile):
category = package.category category = package.category