Merge branch 'master' of https://git.wmi.amu.edu.pl/s444360/SI_2020
This commit is contained in:
commit
5a80cc1966
@ -1,23 +1,17 @@
|
||||
import random
|
||||
import math
|
||||
|
||||
# packs_coords
|
||||
# racks_coords
|
||||
### prawdopodobieństwo mutacji
|
||||
mutation_prob = 0.03
|
||||
### ilość osobników w pokoleniu, powinna być parzysta
|
||||
generation_size = 20
|
||||
generation_size = 40
|
||||
### liczba pokoleń
|
||||
number_of_generations = 30
|
||||
### liczba paczek
|
||||
number_of_packages = 45
|
||||
### liczba regałów
|
||||
number_of_racks = 70
|
||||
### jak bardzo promowane są osobniki wykorzystujące całą pojemność regału
|
||||
amount_of_promotion = 3
|
||||
amount_of_promotion = 0
|
||||
|
||||
|
||||
def first_gen():
|
||||
def first_gen(number_of_packages, number_of_racks):
|
||||
first_generation = []
|
||||
for individual in range(generation_size):
|
||||
individual = []
|
||||
@ -27,7 +21,7 @@ def first_gen():
|
||||
first_generation.append(individual)
|
||||
return first_generation
|
||||
|
||||
def evaluation(individual):
|
||||
def evaluation(individual, packages, racks, number_of_packages, number_of_racks):
|
||||
# im większy fitness tym lepszy osobnik
|
||||
# print("regały: ",racks)
|
||||
rest_of_capacity = racks.copy()
|
||||
@ -46,11 +40,11 @@ def evaluation(individual):
|
||||
### tu dodaj to co zrobi Andrzej
|
||||
return fitness
|
||||
|
||||
def roulette(generation):
|
||||
def roulette(generation, packages, racks, number_of_packages, number_of_racks):
|
||||
# print('pokolenie: ', generation)
|
||||
evaluations = []
|
||||
for i in range(generation_size):
|
||||
individual_fitness = evaluation(generation[i])
|
||||
individual_fitness = evaluation(generation[i], packages, racks, number_of_packages, number_of_racks)
|
||||
evaluations.append(individual_fitness)
|
||||
# print("tablica dopasowań: ", evaluations)
|
||||
maximum = min(evaluations)
|
||||
@ -76,7 +70,7 @@ def roulette(generation):
|
||||
# print('przetrwali: ',survivors)
|
||||
return survivors
|
||||
|
||||
def crossover(individual1, individual2):
|
||||
def crossover(individual1, individual2, number_of_packages):
|
||||
cut = random.randint(1,number_of_packages-1)
|
||||
new1 = individual1[:cut]
|
||||
new2 = individual2[:cut]
|
||||
@ -89,21 +83,24 @@ def crossover(individual1, individual2):
|
||||
# print(cut)
|
||||
return new1, new2
|
||||
|
||||
def mutation(individual):
|
||||
def mutation(individual, number_of_packages, number_of_racks):
|
||||
# print(individual)
|
||||
locus = random.randint(0,number_of_packages-1)
|
||||
individual[locus] = random.randint(0,number_of_racks-1)
|
||||
return individual
|
||||
|
||||
|
||||
def gen_alg(number_of_generations, generation_size, mutation_prob, amount_of_promotion):
|
||||
def gen_alg(packages, racks, number_of_generations, generation_size, mutation_prob, amount_of_promotion):
|
||||
number_of_packages = len(packages)
|
||||
number_of_racks = len(racks)
|
||||
|
||||
### WŁAŚCIWY ALGORYTM
|
||||
generation = first_gen()
|
||||
generation = first_gen(number_of_packages, number_of_racks)
|
||||
global_maximum = -math.inf
|
||||
|
||||
# pętla znajdująca najlepszy fitness w pierwszym pokoleniu
|
||||
for i in range(generation_size):
|
||||
evaluation_of_individual = evaluation(generation[i])
|
||||
evaluation_of_individual = evaluation(generation[i], packages, racks, number_of_packages, number_of_racks)
|
||||
if evaluation_of_individual > global_maximum:
|
||||
global_maximum = evaluation_of_individual
|
||||
best_individual = generation[i].copy()
|
||||
@ -114,13 +111,13 @@ def gen_alg(number_of_generations, generation_size, mutation_prob, amount_of_pro
|
||||
# print(generation)
|
||||
|
||||
### RULETKA
|
||||
survivors = roulette(generation)
|
||||
survivors = roulette(generation, packages, racks, number_of_packages, number_of_racks)
|
||||
# print('przetrwali: ',survivors)
|
||||
|
||||
### KRZYŻOWANIE
|
||||
descendants = []
|
||||
for individual in range(0,generation_size,2):
|
||||
pair = crossover(survivors[individual],survivors[individual+1])
|
||||
pair = crossover(survivors[individual],survivors[individual+1], number_of_packages)
|
||||
for each in pair:
|
||||
descendants.append(each)
|
||||
# print('potomkowie: ', descendants)
|
||||
@ -128,25 +125,21 @@ def gen_alg(number_of_generations, generation_size, mutation_prob, amount_of_pro
|
||||
### MUTACJA
|
||||
for individual in range(generation_size):
|
||||
if random.random() <= mutation_prob:
|
||||
mutation(descendants[individual])
|
||||
mutation(descendants[individual], number_of_packages, number_of_racks)
|
||||
# print('potomkowie po mutacji: ', descendants)
|
||||
|
||||
### NAJLEPSZE DOPASOWANIE
|
||||
local_maximum = -math.inf
|
||||
for each in range(generation_size):
|
||||
specific_fitness = evaluation(descendants[each])
|
||||
specific_fitness = evaluation(descendants[each], packages, racks, number_of_packages, number_of_racks)
|
||||
if specific_fitness > local_maximum:
|
||||
local_maximum = specific_fitness
|
||||
print('maximum w pokoleniu: ',local_maximum)
|
||||
generation_best_individual = descendants[each].copy()
|
||||
print('maksimum w pokoleniu: ',local_maximum)
|
||||
if local_maximum > global_maximum:
|
||||
global_maximum = local_maximum
|
||||
best_individual = generation_best_individual.copy()
|
||||
generation = descendants
|
||||
print('maximum globalne: ', global_maximum)
|
||||
|
||||
### lista paczek, indeks to id paczki, wartość w liście to jej waga
|
||||
packages = [random.randint(1,10) for i in range(number_of_packages)]
|
||||
### lista regałów, indeks to id regału, wartość w liście to jego pojemność
|
||||
racks = [random.randint(15,18) for i in range(number_of_racks)]
|
||||
# print(packages)
|
||||
# print(racks)
|
||||
gen_alg(number_of_generations, generation_size, mutation_prob, amount_of_promotion)
|
||||
print('maksimum globalne: ', global_maximum)
|
||||
print("jeśli maksimum globalne wynosi 0, każda paczka ma swój regał")
|
||||
print("najlepsze dopasowanie: ", best_individual)
|
||||
|
13
main.py
13
main.py
@ -6,11 +6,6 @@ import random
|
||||
import sys
|
||||
from attributes import PackStatus, COLORS, DIRECTION_ANGLES
|
||||
|
||||
mutation_prob = 0.03
|
||||
generation_size = 20
|
||||
number_of_generations = 30
|
||||
amount_of_promotion = 3
|
||||
|
||||
WINDOW_SIZE = (640, 640)
|
||||
COLOR_OF_FIELD = {
|
||||
'Floor': 'gray',
|
||||
@ -25,7 +20,7 @@ TILE_HEIGHT = 32
|
||||
CIRCLE_CENTER_X, CIRCLE_CENTER_Y = int(TILE_WIDTH/2), int(TILE_HEIGHT/2)
|
||||
|
||||
class MainGameFrame:
|
||||
def __init__(self):
|
||||
def __init__(self, mutation_prob = 0.03, generation_size = 40, number_of_generations = 30, amount_of_promotion = 0):
|
||||
pygame.font.init()
|
||||
self.display = pygame.display.set_mode(WINDOW_SIZE)
|
||||
pygame.display.set_caption("Smart ForkLift")
|
||||
@ -40,12 +35,12 @@ class MainGameFrame:
|
||||
list_of_racks = self.warehouse_map.get_all_racks(True)
|
||||
racks_coords = [(line.x_position, line.y_position) for line in list_of_racks]
|
||||
packs_sizes = [pack.size for pack in self.warehouse_map.packages]
|
||||
# racks_capacities = [pack.size for pack in self.warehouse_map.packages]
|
||||
racks_capacities = [rack.capacity for rack in list_of_racks]
|
||||
print("koordynaty paczek: ",packs_coords)
|
||||
print("koordynaty regałów: ",racks_coords)
|
||||
print("wagi paczek: ",packs_sizes)
|
||||
# print("pojemności regałów: ",racks_capacities)
|
||||
gen_alg(number_of_generations, generation_size, mutation_prob, amount_of_promotion)
|
||||
print("pojemności regałów: ",racks_capacities)
|
||||
gen_alg(packs_sizes, racks_capacities, number_of_generations, generation_size, mutation_prob, amount_of_promotion)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
|
Loading…
Reference in New Issue
Block a user