from warehouse import Coordinates, Tile, Pack from queue import PriorityQueue from math import sqrt from attributes import TURN_LEFT_DIRECTIONS, TURN_RIGHT_DIRECTIONS, PackStatus import pygame import sys import pdb from package_location_classifier.classifier import PackageLocationClassifier class Node: def __init__(self, coord_x, coord_y, package=None, is_rack=False): self.x = coord_x self.y = coord_y self.parent = None self.package = package self.is_rack = is_rack self.g_cost = 0 self.h_cost = 0 def __eq__(self, other): if isinstance(other, Node): return self.x == other.x and self.y == self.y return False def __lt__(self, other): return isinstance(other, Node) and self.g_cost < other.g_cost def __repr__(self): return "Node:{}x{}".format(self.x, self.y) class Agent: def __init__(self, start_x, start_y, assigned_warehouse, radius=5): self.x = start_x self.y = start_y self.radius = radius self.warehouse = assigned_warehouse self.is_loaded = False self.transported_package = None self.direction = "up" self.dest = Node(1, 1) self.closed = list() self.open = PriorityQueue() self.path = list() self.location_classifier = PackageLocationClassifier() self.check_packages_locations() def check_packages_locations(self): for pack in self.warehouse.packages: if pack.lays_on_field.category.name in self.warehouse.storage_types: can_place = self.location_classifier.check_if_can_place(pack, pack.lays_on_field) pack.status = PackStatus.STORED if (can_place and pack.lays_on_field.capacity >= 0) else PackStatus.STORED_BAD_LOCATION def find_path(self): self.closed = [] self.path = [] self.open = PriorityQueue() if self.is_loaded: rack = self.find_nearest_rack_for(self.transported_package) self.dest = Node(rack.x_position, rack.y_position, is_rack=True) else: package = self.find_nearest_package() self.dest = Node(package.lays_on_field.x_position, package.lays_on_field.y_position, package=package) start_node = Node(self.x, self.y) self.open.put((0, start_node)) while self.open: _, current_node = self.open.get() self.closed.append(current_node) if current_node.x == self.dest.x and current_node.y == self.dest.y: while current_node.x != start_node.x or current_node.y != start_node.y: self.path.append(current_node) current_node = current_node.parent return True neighbour_list = self.get_neighbours(current_node) for neighbour in neighbour_list: cost = current_node.g_cost + self.heuristic(current_node, neighbour) if self.check_if_closed(neighbour): continue if self.check_if_open(neighbour): if neighbour.g_cost > cost: neighbour.g_cost = cost neighbour.parent = current_node else: neighbour.g_cost = cost neighbour.h_cost = self.heuristic(neighbour, self.dest) neighbour.parent = current_node self.open.put((neighbour.g_cost, neighbour)) return False def turn_left(self): new_direction = TURN_LEFT_DIRECTIONS.get(self.direction, self.direction) self.direction = new_direction def turn_right(self): new_direction = TURN_RIGHT_DIRECTIONS.get(self.direction, self.direction) self.direction = new_direction def heuristic(self, start: Node, goal: Node): diff_x = pow(goal.x - start.x, 2) diff_y = pow(goal.y - start.y, 2) additional_cost = 0 return round(sqrt(diff_x + diff_y), 3) + float(10*additional_cost) def check_if_open(self, node: Node): return (node.x, node.y) in [(n.x, n.y) for (_,n) in self.open.queue] def check_if_closed(self, node: Node): return (node.x, node.y) in [(n.x, n.y) for n in self.closed] def get_neighbours(self, node: Node): neighbours = [] if self.check_if_can_move(Coordinates(node.x + 1, node.y)): neighbours.append(Node(node.x + 1, node.y)) if self.check_if_can_move(Coordinates(node.x - 1, node.y)): neighbours.append(Node(node.x - 1, node.y)) if self.check_if_can_move(Coordinates(node.x, node.y + 1)): neighbours.append(Node(node.x, node.y + 1)) if self.check_if_can_move(Coordinates(node.x, node.y - 1)): neighbours.append(Node(node.x, node.y - 1)) return neighbours def move(self): dest_coords = (self.dest.x, self.dest.y) if not self.path: if not self.find_path(): return else: next = self.path.pop() star_dir = self.direction if self.x > next.x and not self.direction == 'left': if self.direction == 'down': self.turn_right() else: self.turn_left() elif self.x < next.x and not self.direction == 'right': if self.direction == 'down': self.turn_left() else: self.turn_right() elif self.y > next.y and not self.direction == 'up': if self.direction == 'left': self.turn_right() else: self.turn_left() elif self.y < next.y and not self.direction == 'down': if self.direction == 'right': self.turn_right() else: self.turn_left() if (next.x, next.y) == dest_coords: if self.dest.package: self.pick_up_package(self.dest.package) return elif self.dest.is_rack: self.unload_package(self.dest) return if star_dir == self.direction: self.x = next.x self.y = next.y else: self.path.append(next) self.closed = [] def check_if_can_move(self, next_coords: Coordinates): tile_on_map = 0 <= next_coords.x < self.warehouse.width and 0 <= next_coords.y < self.warehouse.height tile_passable = True if not tile_on_map: return False next_tile = self.warehouse.tiles[next_coords.x][next_coords.y] if (next_coords.x, next_coords.y) != (self.dest.x, self.dest.y): tile_passable = isinstance(next_tile, Tile) and next_tile.category.passable return tile_passable def find_nearest_package(self): packages_costs = [] start_node = Node(self.x, self.y) if not self.warehouse.packages: return None for package in self.warehouse.packages: if package.status == PackStatus.STORED: continue new_node = Node(package.lays_on_field.x_position, package.lays_on_field.y_position) cost = self.heuristic(start_node, new_node) if cost > 0: packages_costs.append((package, cost)) if not packages_costs: return # pygame.quit() # sys.exit() package = min(packages_costs, key=lambda l: l[1])[0] return package def rack_heuristics(self, start, goal, can_place): heur_can_place = not can_place diff_x = pow(goal.x - start.x, 2) diff_y = pow(goal.y - start.y, 2) place_cost = 100 * float(heur_can_place) return round(sqrt(diff_x + diff_y), 3) + float(place_cost) def find_nearest_rack_for(self, package, expand_box=0): weight = package.size storage = "Rack" if package.category == "freezed": storage = "Fridge" start_node = Node(self.x, self.y) quarter_x = int(self.warehouse.width/4) + expand_box quarter_y = int(self.warehouse.height/4) + expand_box start_quarter_x = self.x - quarter_x if self.x - quarter_x > 0 else 0 end_quarter_x = self.x + quarter_x if self.x + quarter_x < self.warehouse.width else self.warehouse.width - 1 start_quarter_y = self.y - quarter_y if self.y - quarter_y > 0 else 0 end_quarter_y = self.y + quarter_y if self.y + quarter_y < self.warehouse.height else self.warehouse.height - 1 quarter = [row[start_quarter_y:end_quarter_y] for row in self.warehouse.tiles[start_quarter_x:end_quarter_x]] quarter_racks = [[t for t in row if t.category.name == storage and t.capacity >= weight] for row in quarter] quarter_racks = [t for row in quarter_racks for t in row] racks_costs = [] for rack in quarter_racks: new_node = Node(rack.x_position, rack.y_position) can_place = self.location_classifier.check_if_can_place(package, rack) cost = self.rack_heuristics(start_node, new_node, can_place) if cost > 0: racks_costs.append((rack, cost)) rack = self.find_nearest_rack_for(package, expand_box + 1) if not racks_costs else min(racks_costs, key=lambda l: l[1])[0] return rack def pick_up_package(self, pack): self.warehouse.packages.remove(pack) self.is_loaded = True if pack.lays_on_field.category.name in ['Rack', 'Fridge']: pack.lays_on_field.capacity += pack.size self.dest.package = None pack.lays_on_field = None self.transported_package = pack def unload_package(self, rack): pack = self.transported_package tile = self.warehouse.tiles[rack.x][rack.y] self.transported_package = None self.is_loaded = False pack.lays_on_field = tile pack.lays_on_field.capacity -= pack.size pack.status = PackStatus.STORED self.warehouse.packages.append(pack) # print(tile.air_temperature, tile.humidity)