55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
import numpy as np
|
|
from keras.datasets import mnist
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense, Dropout, Flatten
|
|
from keras.layers import Conv2D, MaxPooling2D
|
|
from keras.utils import np_utils
|
|
from keras.preprocessing import image
|
|
from matplotlib import pyplot as plt
|
|
import matplotlib.pyplot as plt
|
|
# %matplotlib inline
|
|
from google.colab import files
|
|
|
|
numpy.random.seed(42)
|
|
|
|
img_rows, img_cols = 28, 28
|
|
|
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
|
|
|
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
|
|
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
|
|
input_shape = (img_rows, img_cols, 1)
|
|
|
|
X_train = X_train.astype('float32')
|
|
X_test = X_test.astype('float32')
|
|
X_train /= 255
|
|
X_test /= 255
|
|
|
|
Y_train = np_utils.to_categorical(y_train, 10)
|
|
Y_test = np_utils.to_categorical(y_test, 10)
|
|
|
|
model = Sequential()
|
|
|
|
model.add(Conv2D(75, kernel_size=(5, 5),
|
|
activation='relu',
|
|
input_shape=input_shape))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
model.add(Dropout(0.2))
|
|
model.add(Conv2D(100, (5, 5), activation='relu'))
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
model.add(Dropout(0.2))
|
|
model.add(Flatten())
|
|
model.add(Dense(500, activation='relu'))
|
|
model.add(Dropout(0.5))
|
|
model.add(Dense(10, activation='softmax'))
|
|
|
|
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
|
|
|
|
model.summary()
|
|
|
|
model.fit(X_train, Y_train, batch_size=200, epochs=10, validation_split=0.2, verbose=1)
|
|
|
|
scores = model.evaluate(X_test, Y_test, verbose=0)
|
|
print("Dokadnosc na testowanych dannych: %.2f%%" % (scores[1]*100))
|
|
|
|
model.save_weights('model_weights.h5') |