DPZC_Ola/Zadanie_4_3_b/aws.py
2023-01-28 22:13:05 +01:00

143 lines
3.6 KiB
Python

# niezbędna konfiguracja danych dostępowych, pamiętaj aby nigdy jej nie udostępniać publicznie
aws_access_key_id=""
aws_secret_access_key=""
aws_session_token=""
VPC=''
ID='s-444376'
# biblioteka dostępowa do AWS
import boto3
import time
# tworzymy zasób, *Resource* oferuje API wyższego poziomu niż *Client*
ec2_resource = boto3.resource(
'ec2',
region_name='us-east-1',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token
)
key_pair = ec2_resource.create_key_pair(
KeyName=ID+'_KEY_PAIR',
KeyFormat='pem',
KeyType='ed25519'
)
security_group = ec2_resource.create_security_group(
Description=ID+'-SECURITY-GROUP',
GroupName=ID+'-SECURITY-GROUP',
VpcId=VPC
)
inbound_rules = security_group.authorize_ingress(
GroupId=security_group.group_id,
CidrIp='0.0.0.0/0',
IpProtocol='tcp',
FromPort=80,
ToPort=80
)
instance_1, instance_2 = ec2_resource.create_instances(
ImageId='ami-0b5eea76982371e91',
MinCount=2,
MaxCount=2,
InstanceType='t2.micro',
KeyName=key_pair.name,
UserData=f'''
#!/bin/bash
sudo yum update -y
sudo yum install git -y
git clone https://git.wmi.amu.edu.pl/s444376/DPZC_Ola.git
cd DPZC_Ola/Zadanie_4_3_b
sudo yum install docker -y
sudo service docker start
sudo usermod -a -G docker ec2-user
sudo docker build -t webservice .
sudo docker run -d -p 80:8080 -t webservice
''',
SecurityGroups=[security_group.group_name]
)
while True:
time.sleep(1)
instance_1 = ec2_resource.Instance(instance_1.id)
instance_2 = ec2_resource.Instance(instance_2.id)
if instance_1.state['Code'] == 16 and instance_2.state['Code'] == 16:
break
elbv2 = boto3.client(
'elbv2',
region_name='us-east-1',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token
)
target_group = elbv2.create_target_group(
Name=ID+'-TARGET-GROUP',
Protocol='TCP',
Port=80,
VpcId=VPC,
TargetType='instance',
IpAddressType='ipv4'
)
register_targets = elbv2.register_targets(
TargetGroupArn=target_group['TargetGroups'][0]['TargetGroupArn'],
Targets=[
{
'Id': instance_1.id,
'Port': 80,
},
{
'Id': instance_2.id,
'Port': 80,
}
])
ec2_client = boto3.client(
'ec2',
region_name='us-east-1',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token
)
allocation = ec2_client.allocate_address(
Domain='vpc'
)
load_balancer = elbv2.create_load_balancer(
Name=ID+'-LOAD-BALANCER',
SubnetMappings=[
{
'SubnetId': instance_1.subnet_id,
'AllocationId': allocation['AllocationId']
}],
Scheme='internet-facing',
Type='network',
IpAddressType='ipv4',
)
listener = elbv2.create_listener(
LoadBalancerArn=load_balancer['LoadBalancers'][0]['LoadBalancerArn'],
Protocol='TCP',
Port=80,
DefaultActions=[
{
'Type': 'forward',
'TargetGroupArn': target_group['TargetGroups'][0]['TargetGroupArn'],
}
])
print(f'Done: {allocation["PublicIp"]}:80')
'''
#Stopping and terminating multiple instances given a list of instance IDs uses Boto3 collection filtering:
ids = ['instance-id-1', 'instance-id-2', ...]
# Boto3
ec2.instances.filter(InstanceIds=ids).stop()
ec2.instances.filter(InstanceIds=ids).terminate()
'''