From 77a4ecdda1988c44aa4284881ad74a7a70bd4d6b Mon Sep 17 00:00:00 2001 From: Iwona Christop Date: Thu, 8 Dec 2022 16:11:19 +0100 Subject: [PATCH] Update lab3 --- sw_lab3.ipynb | 445 ++++++++++++++++---------------------------------- 1 file changed, 145 insertions(+), 300 deletions(-) diff --git a/sw_lab3.ipynb b/sw_lab3.ipynb index 3cc6009..02cbb42 100644 --- a/sw_lab3.ipynb +++ b/sw_lab3.ipynb @@ -1,153 +1,17 @@ { "cells": [ - { - "cell_type": "markdown", - "id": "bf9393fa-7028-496b-9090-d7a1886364ce", - "metadata": {}, - "source": [ - "### Regularyzacja przez mnożniki Lagrange'a. Algorytm SVM" - ] - }, { "cell_type": "code", - "execution_count": 1, - "id": "92fd0e85", + "execution_count": 35, + "id": "32d973e1", "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "import subprocess\n", - "import pkg_resources\n", + "from load_data import get_dataset\n", "import numpy as np\n", + "from tabulate import tabulate\n", "\n", - "required = { 'scikit-image'}\n", - "installed = {pkg.key for pkg in pkg_resources.working_set}\n", - "missing = required - installed\n", - "\n", - "if missing: \n", - " python = sys.executable\n", - " subprocess.check_call([python, '-m', 'pip', 'install', *missing], stdout=subprocess.DEVNULL)\n", - "\n", - "def load_train_data(input_dir, newSize=(64,64)):\n", - " import numpy as np\n", - " import pandas as pd\n", - " import os\n", - " from skimage.io import imread\n", - " import cv2 as cv\n", - " from pathlib import Path\n", - " import random\n", - " from shutil import copyfile, rmtree\n", - " import json\n", - "\n", - " import seaborn as sns\n", - " import matplotlib.pyplot as plt\n", - "\n", - " import matplotlib\n", - " \n", - " image_dir = Path(input_dir)\n", - " categories_name = []\n", - " for file in os.listdir(image_dir):\n", - " d = os.path.join(image_dir, file)\n", - " if os.path.isdir(d):\n", - " categories_name.append(file)\n", - "\n", - " folders = [directory for directory in image_dir.iterdir() if directory.is_dir()]\n", - "\n", - " train_img = []\n", - " categories_count=[]\n", - " labels=[]\n", - " for i, direc in enumerate(folders):\n", - " count = 0\n", - " for obj in direc.iterdir():\n", - " if os.path.isfile(obj) and os.path.basename(os.path.normpath(obj)) != 'desktop.ini':\n", - " labels.append(os.path.basename(os.path.normpath(direc)))\n", - " count += 1\n", - " img = imread(obj)#zwraca ndarry postaci xSize x ySize x colorDepth\n", - " img = cv.resize(img, newSize, interpolation=cv.INTER_AREA)# zwraca ndarray\n", - " img = img / 255#normalizacja\n", - " train_img.append(img)\n", - " categories_count.append(count)\n", - " X={}\n", - " X[\"values\"] = np.array(train_img)\n", - " X[\"categories_name\"] = categories_name\n", - " X[\"categories_count\"] = categories_count\n", - " X[\"labels\"]=labels\n", - " return X\n", - "\n", - "def load_test_data(input_dir, newSize=(64,64)):\n", - " import numpy as np\n", - " import pandas as pd\n", - " import os\n", - " from skimage.io import imread\n", - " import cv2 as cv\n", - " from pathlib import Path\n", - " import random\n", - " from shutil import copyfile, rmtree\n", - " import json\n", - "\n", - " import seaborn as sns\n", - " import matplotlib.pyplot as plt\n", - "\n", - " import matplotlib\n", - "\n", - " image_path = Path(input_dir)\n", - "\n", - " labels_path = image_path.parents[0] / 'test_labels.json'\n", - "\n", - " jsonString = labels_path.read_text()\n", - " objects = json.loads(jsonString)\n", - "\n", - " categories_name = []\n", - " categories_count=[]\n", - " count = 0\n", - " c = objects[0]['value']\n", - " for e in objects:\n", - " if e['value'] != c:\n", - " categories_count.append(count)\n", - " c = e['value']\n", - " count = 1\n", - " else:\n", - " count += 1\n", - " if not e['value'] in categories_name:\n", - " categories_name.append(e['value'])\n", - "\n", - " categories_count.append(count)\n", - " \n", - " test_img = []\n", - "\n", - " labels=[]\n", - " for e in objects:\n", - " p = image_path / e['filename']\n", - " img = imread(p)#zwraca ndarry postaci xSize x ySize x colorDepth\n", - " img = cv.resize(img, newSize, interpolation=cv.INTER_AREA)# zwraca ndarray\n", - " img = img / 255#normalizacja\n", - " test_img.append(img)\n", - " labels.append(e['value'])\n", - "\n", - " X={}\n", - " X[\"values\"] = np.array(test_img)\n", - " X[\"categories_name\"] = categories_name\n", - " X[\"categories_count\"] = categories_count\n", - " X[\"labels\"]=labels\n", - " return X\n", - "\n", - "from sklearn.preprocessing import LabelEncoder\n", - "\n", - "# Data load\n", - "data_train = load_train_data(\"train_test_sw/train_sw\", newSize=(16,16))\n", - "X_train = data_train['values']\n", - "y_train = data_train['labels']\n", - "\n", - "data_test = load_test_data(\"train_test_sw/test_sw\", newSize=(16,16))\n", - "X_test = data_test['values']\n", - "y_test = data_test['labels']\n", - "\n", - "class_le = LabelEncoder()\n", - "y_train_enc = class_le.fit_transform(y_train)\n", - "y_test_enc = class_le.fit_transform(y_test)\n", - "\n", - "X_train = X_train.flatten().reshape(X_train.shape[0], int(np.prod(X_train.shape) / X_train.shape[0]))\n", - "X_test = X_test.flatten().reshape(X_test.shape[0], int(np.prod(X_test.shape) / X_test.shape[0]))" + "X_train, y_train, X_test, y_test = get_dataset(new_size=64)" ] }, { @@ -155,19 +19,19 @@ "id": "e63a5e75-7a26-4a97-b53d-67b858345126", "metadata": {}, "source": [ - "#### 1. Zadanie 1 (2pkt): \n", + "# Zadanie 1 (2 pkt)\n", "\n", - "Rozwiń algorytm regresji logistycznej z lab. 1, wprowadzając do niego człon regularyzacyjny" + "Rozwiń algorytm regresji logistycznej z lab. 1, wprowadzając do niego człon regularyzacyjny." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "id": "ea300c45", "metadata": {}, "outputs": [], "source": [ - "class LogisticRegressionL2():\n", + "class LogisticRegression():\n", " def __init__(self, l2=1):\n", " self.l2 = l2\n", "\n", @@ -179,8 +43,8 @@ "\n", " def indicatorMatrix(self, y):\n", " classes = np.unique(y.tolist())\n", - " m = len(y)\n", - " k = len(classes)\n", + " m, k = len(y), len(classes)\n", + " # k = len(classes)\n", " Y = np.matrix(np.zeros((m, k)))\n", " for i, cls in enumerate(classes):\n", " Y[:, i] = self.mapY(y, cls)\n", @@ -192,7 +56,7 @@ " \n", " # Funkcja regresji logistcznej\n", " def h(self, theta, X):\n", - " return 1.0/(1.0 + np.exp(-X * theta))\n", + " return 1.0 /(1.0 + np.exp(-X * theta))\n", " \n", " # Funkcja kosztu dla regresji logistycznej\n", " def J(self, h, theta, X, y):\n", @@ -223,7 +87,8 @@ " if len(errors) > maxSteps:\n", " break\n", " errors.append([errorCurr, theta]) \n", - " return theta, errors\n", + " # return theta, errors\n", + " return theta\n", "\n", " def trainMaxEnt(self, X, Y):\n", " n = X.shape[1]\n", @@ -232,16 +97,40 @@ " YBi = Y[:,c]\n", " theta = np.matrix(np.random.random(n)).reshape(n,1)\n", " # Macierz parametrów theta obliczona dla każdej klasy osobno.\n", - " thetaBest, errors = self.GD(self.h, self.J, self.dJ, theta, \n", - " X, YBi, alpha=0.1, eps=10**-4)\n", - " thetas.append(thetaBest)\n", + " # thetaBest, errors = self.GD(self.h, self.J, self.dJ, theta, \n", + " # X, YBi, alpha=0.1, eps=10**-4)\n", + " # thetas.append(thetaBest)\n", + " thetas.append(self.GD(self.h, self.J, self.dJ, theta, X, YBi, alpha=0.1, eps=10**-4))\n", " return thetas\n", "\n", " def classify(self, thetas, X):\n", " regs = np.array([(X*theta).item() for theta in thetas])\n", - " probs = self.softmax(regs)\n", - " result = np.argmax(probs)\n", - " return result\n", + " return np.argmax(self.softmax(regs))\n", + " # probs = self.softmax(regs)\n", + " # result = np.argmax(probs)\n", + " # return result\n", + "\n", + " def class_score(self, expected, predicted):\n", + " # accuracy = TP + TN / FP + FN + TP + TN\n", + " accuracy = sum(1 for exp, pred in zip(expected, predicted) if exp == pred) / len(expected)\n", + " # precision = TP / FP + TP\n", + " precision = sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0 and pred == 1.0) / sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0)\n", + " # recall = TP / FN + TP\n", + " recall = sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0 and pred == 1.0) / sum(\n", + " 1 for exp, pred in zip(expected, predicted) if pred == 1.0)\n", + " f1 = (2 * precision * recall) / (precision + recall)\n", + " return accuracy, precision, recall, f1\n", + "\n", + " def fit(self, X_train, y_train):\n", + " # Y = self.indicatorMatrix(y_train)\n", + " # self.thetas = self.trainMaxEnt(X_train, Y)\n", + " self.thetas = self.trainMaxEnt(X_train, self.indicatorMatrix(y_train))\n", + "\n", + " def predict(self, X_test):\n", + " return np.array([self.classify(self.thetas, x) for x in X_test])\n", "\n", " def accuracy(self, expected, predicted):\n", " return sum(1 for x, y in zip(expected, predicted) if x == y) / len(expected)" @@ -249,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 38, "id": "84fc2187", "metadata": {}, "outputs": [ @@ -257,42 +146,56 @@ "name": "stderr", "output_type": "stream", "text": [ - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:33: RuntimeWarning: divide by zero encountered in log\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:33: RuntimeWarning: divide by zero encountered in log\n", " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:33: RuntimeWarning: invalid value encountered in multiply\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:33: RuntimeWarning: invalid value encountered in multiply\n", " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:26: RuntimeWarning: overflow encountered in exp\n", - " return 1.0/(1.0 + np.exp(-X * theta))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:32: RuntimeWarning: divide by zero encountered in log\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:26: RuntimeWarning: overflow encountered in exp\n", + " return 1.0 /(1.0 + np.exp(-X * theta))\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:32: RuntimeWarning: divide by zero encountered in log\n", " s1 = np.multiply(y, np.log(h_val))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:32: RuntimeWarning: invalid value encountered in multiply\n", - " s1 = np.multiply(y, np.log(h_val))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:22: RuntimeWarning: overflow encountered in exp\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:32: RuntimeWarning: invalid value encountered in multiply\n", + " s1 = np.multiply(y, np.log(h_val))\n" + ] + } + ], + "source": [ + "# 16x16, l2=0.01 -> 5m 11.4s\n", + "# 32x32, l2=0.1 -> 20m 31.3s\n", + "# 64x64, l2=0.1 -> 219m 10.8s\n", + "logreg = LogisticRegression(l2=0.1)\n", + "logreg.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "f2a4b169", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:22: RuntimeWarning: overflow encountered in exp\n", " return np.exp(X) / np.sum(np.exp(X))\n", - "C:\\Users\\jonas\\AppData\\Local\\Temp\\ipykernel_16900\\514332287.py:22: RuntimeWarning: invalid value encountered in true_divide\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_25260/2085424405.py:22: RuntimeWarning: invalid value encountered in true_divide\n", " return np.exp(X) / np.sum(np.exp(X))\n" ] }, { "data": { "text/plain": [ - "0.5714285714285714" + "0.5173745173745173" ] }, - "execution_count": 3, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "log_reg = LogisticRegressionL2(l2 = 0.1)\n", - "\n", - "Y = log_reg.indicatorMatrix(y_train_enc)\n", - "thetas = log_reg.trainMaxEnt(X_train, Y)\n", - "\n", - "predicted = [log_reg.classify(thetas, x) for x in X_test]\n", - "\n", - "log_reg.accuracy(y_test_enc, np.array(predicted))" + "logreg.accuracy(y_test, logreg.predict(X_test))" ] }, { @@ -300,14 +203,14 @@ "id": "945d1169-a13c-44a5-ad51-73ec62438487", "metadata": {}, "source": [ - "#### Zadanie 2 (4pkt)\n", + "# Zadanie 2 (4 pkt)\n", "\n", - "Zaimplementuj algorytm SVM z miękkim marginesem (regularyzacją)" + "Zaimplementuj algorytm SVM z miękkim marginesem (regularyzacją)." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 32, "id": "7a58dff1-f85d-4e07-b5e4-b639fc2af3ac", "metadata": { "deletable": false, @@ -325,160 +228,102 @@ }, "outputs": [], "source": [ - "from sklearn.base import BaseEstimator, ClassifierMixin\n", - "from sklearn.utils import check_random_state\n", - "from sklearn.preprocessing import LabelEncoder\n", + "class SVM():\n", + " def __init__(self, lr=0.001, lambda_param=10**-6, n_iters=1000):\n", + " self.lr = lr\n", + " self.lambda_param = lambda_param\n", + " self.n_iters = n_iters\n", "\n", + " def _mapY(self, y, cls):\n", + " m = len(y)\n", + " yBi = np.matrix(np.zeros(m)).reshape(m, 1)\n", + " yBi[y == cls] = 1.\n", + " return yBi\n", "\n", - "def projection_simplex(v, z=1):\n", - " n_features = v.shape[0]\n", - " u = np.sort(v)[::-1]\n", - " cssv = np.cumsum(u) - z\n", - " ind = np.arange(n_features) + 1\n", - " cond = u - cssv / ind > 0\n", - " rho = ind[cond][-1]\n", - " theta = cssv[cond][-1] / float(rho)\n", - " w = np.maximum(v - theta, 0)\n", - " return w\n", - "\n", - "\n", - "class MulticlassSVM(BaseEstimator, ClassifierMixin):\n", - "\n", - " def __init__(self, C=1, max_iter=50, tol=0.05,\n", - " random_state=None, verbose=0):\n", - " self.C = C\n", - " self.max_iter = max_iter\n", - " self.tol = tol,\n", - " self.random_state = random_state\n", - " self.verbose = verbose\n", - "\n", - " def _partial_gradient(self, X, y, i):\n", - " # Partial gradient for the ith sample.\n", - " g = np.dot(X[i], self.coef_.T) + 1\n", - " g[y[i]] -= 1\n", - " return g\n", - "\n", - " def _violation(self, g, y, i):\n", - " # Optimality violation for the ith sample.\n", - " smallest = np.inf\n", - " for k in range(g.shape[0]):\n", - " if k == y[i] and self.dual_coef_[k, i] >= self.C:\n", - " continue\n", - " elif k != y[i] and self.dual_coef_[k, i] >= 0:\n", - " continue\n", - "\n", - " smallest = min(smallest, g[k])\n", - "\n", - " return g.max() - smallest\n", - "\n", - " def _solve_subproblem(self, g, y, norms, i):\n", - " # Prepare inputs to the projection.\n", - " Ci = np.zeros(g.shape[0])\n", - " Ci[y[i]] = self.C\n", - " beta_hat = norms[i] * (Ci - self.dual_coef_[:, i]) + g / norms[i]\n", - " z = self.C * norms[i]\n", - "\n", - " # Compute projection onto the simplex.\n", - " beta = projection_simplex(beta_hat, z)\n", - "\n", - " return Ci - self.dual_coef_[:, i] - beta / norms[i]\n", + " def _indicatorMatrix(self, y):\n", + " classes = np.unique(y.tolist())\n", + " m, k = len(y), len(classes)\n", + " Y = np.matrix(np.zeros((m, k)))\n", + " for i, cls in enumerate(classes):\n", + " Y[:, i] = self._mapY(y, cls)\n", + " return Y\n", "\n", " def fit(self, X, y):\n", - " n_samples, n_features = X.shape\n", + " n_classes = len(np.unique(y))\n", + " y = self._indicatorMatrix(y)\n", + " y = np.where(y == 0, -1, 1)\n", "\n", - " # Normalize labels.\n", - " self._label_encoder = LabelEncoder()\n", - " y = self._label_encoder.fit_transform(y)\n", + " n_features = X.shape[1]\n", + " self.weights, self.biases = [], []\n", "\n", - " # Initialize primal and dual coefficients.\n", - " n_classes = len(self._label_encoder.classes_)\n", - " self.dual_coef_ = np.zeros((n_classes, n_samples), dtype=np.float64)\n", - " self.coef_ = np.zeros((n_classes, n_features))\n", + " for cls in range(n_classes):\n", + " y_ = y[:,cls]\n", + " y_ = np.where(y_ <= 0, -1, 1)\n", "\n", - " # Pre-compute norms.\n", - " norms = np.sqrt(np.sum(X ** 2, axis=1))\n", + " w, b = np.zeros(n_features), 0\n", "\n", - " # Shuffle sample indices.\n", - " rs = check_random_state(self.random_state)\n", - " ind = np.arange(n_samples)\n", - " rs.shuffle(ind)\n", + " for _ in range(self.n_iters):\n", + " for idx, x_i in enumerate(X):\n", + " condition = y_[idx] * (np.dot(x_i, w) - b) >= 1\n", + " if condition:\n", + " w -= self.lr * (2 * self.lambda_param * w)\n", + " else:\n", + " w -= self.lr * (2 * self.lambda_param * w - np.dot(x_i, y_[idx]))\n", + " b -= self.lr * y_[idx]\n", + " self.weights.append(w)\n", + " self.biases.append(b)\n", "\n", - " violation_init = None\n", - " for it in range(self.max_iter):\n", - "\n", - " for ii in range(n_samples):\n", - " i = ind[ii]\n", - "\n", - " # All-zero samples can be safely ignored.\n", - " if norms[i] == 0:\n", - " continue\n", - "\n", - " g = self._partial_gradient(X, y, i)\n", - " v = self._violation(g, y, i)\n", - "\n", - " if v < 1e-12:\n", - " continue\n", - "\n", - " # Solve subproblem for the ith sample.\n", - " delta = self._solve_subproblem(g, y, norms, i)\n", - "\n", - " # Update primal and dual coefficients.\n", - " self.coef_ += (delta * X[i][:, np.newaxis]).T\n", - " self.dual_coef_[:, i] += delta\n", - "\n", - " \n", - " return self\n", + " def _classify(self, x):\n", + " cls = [np.sign(np.dot(x, self.weights[i]) - self.biases[i]) for i in range(len(self.biases))]\n", + " return cls.index(1.0) if 1.0 in cls else 0\n", "\n", " def predict(self, X):\n", - " decision = np.dot(X, self.coef_.T)\n", - " pred = decision.argmax(axis=1)\n", - " return self._label_encoder.inverse_transform(pred)" + " return list(map(lambda x: self._classify(x), X))\n", + "\n", + " def accuracy(self, expected, predicted):\n", + " return sum(1 for x, y in zip(expected, predicted) if x == y) / len(expected)" ] }, { "cell_type": "code", - "execution_count": 8, - "id": "c694fbbc", + "execution_count": 36, + "id": "62857aa5", "metadata": {}, "outputs": [], "source": [ - "X_train = data_train['values'][:,:,:,:3]\n", - "X_train_flatten = np.array([x.flatten() for x in X_train])\n", - "y_train = data_train['labels']\n", + "# 16x16 -> 1m 28.8s\n", + "# 32x32 -> 2m 2.2s\n", + "# 64x64 -> 4m 55.3s\n", "\n", - "X_test = data_test['values'][:,:,:,:3]\n", - "X_test_flatten = np.array([x.flatten() for x in X_test])\n", - "y_test = data_test['labels']" + "svm = SVM()\n", + "svm.fit(X_train, y_train)\n" ] }, { "cell_type": "code", - "execution_count": 10, - "id": "62857aa5", - "metadata": { - "scrolled": true - }, + "execution_count": 37, + "id": "27bdbf4f", + "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.6988416988416989\n" - ] + "data": { + "text/plain": [ + "0.32432432432432434" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "X, y = X_train_flatten, y_train\n", - "\n", - "clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)\n", - "clf.fit(X, y)\n", - "print(clf.score(X_test_flatten, y_test))" + "svm.accuracy(y_test, svm.predict(X_test))" ] }, { "cell_type": "code", "execution_count": null, - "id": "63ba4cfd", + "id": "0aa0c9d6", "metadata": {}, "outputs": [], "source": [] @@ -486,7 +331,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3.10.5 64-bit", "language": "python", "name": "python3" },