diff --git a/sw_lab1.ipynb b/sw_lab1.ipynb new file mode 100644 index 0000000..3841ee1 --- /dev/null +++ b/sw_lab1.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 75, + "id": "0b35a076", + "metadata": {}, + "outputs": [], + "source": [ + "from load_data import get_dataset\n", + "import numpy as np\n", + "from collections import Counter\n", + "from tabulate import tabulate\n", + "from statistics import mean" + ] + }, + { + "cell_type": "markdown", + "id": "elementary-purchase", + "metadata": {}, + "source": [ + "# Zadanie 1 (4 pkt)\n", + "\n", + "Napisz kod klasy KNearestNeighbor implementującej klasyfikator knn. Należy zimplementować następujące metody:\n", + " - konstruktor pobierający listę obrazów treningowych (zgodną zw składową 'values' wczytanego słownika) oraz listę ich etykiet\n", + " - metoda l_p_metric(image1, image2, p): zwracająca wartość odległości pomiędzy dwoma obrazami, mierzoną normą typu l_p - parametr p określa 'potęgę' normy\n", + " - metoda predict(test_images, k,p): zwracająca listę prognozowanych etykiet dla obrazów testowych (parametr test_images). Paramter drugi określa liczbę przeszukiwanych sąsiadów, natomiast paramter trzeci określa potęgę wybranej metryki.\n", + " - metoda accuracy(test_images, k,p) zwracająca dokładność klasyfikatora na zbiorze testowym. Parametr drugi i trzeci są jak w metodzie predict()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "great-earthquake", + "metadata": { + "nbgrader": { + "grade": true, + "grade_id": "cell-50c8d2866e4d875e", + "locked": false, + "points": 4, + "schema_version": 3, + "solution": true, + "task": false + } + }, + "outputs": [], + "source": [ + "class KNearestNeighbor():\n", + " def __init__(self, values, labels):\n", + " self.values = values\n", + " self.labels = labels\n", + "\n", + " def l_p_metric(self, image1, image2, p):\n", + " return np.sum(np.abs(image1 - image2) ** p) ** (1/p)\n", + "\n", + " def predict(self, X, K=1, P=1):\n", + " predicted = []\n", + "\n", + " for image in X:\n", + " metrics = []\n", + "\n", + " for value in self.values:\n", + " metrics.append(self.l_p_metric(image, value, P))\n", + "\n", + " mins = sorted(range(len(metrics)), key = lambda sub: metrics[sub])[:K]\n", + " nearest = [self.labels[x] for x in mins]\n", + " pred = max(nearest, key=Counter(nearest).get)\n", + "\n", + " predicted.append(pred)\n", + "\n", + " return predicted\n", + "\n", + " def accuracy(self, expected, predicted):\n", + " return sum(1 for x, y in zip(expected, predicted) if x == y) / len(expected)\n" + ] + }, + { + "cell_type": "markdown", + "id": "brave-replacement", + "metadata": {}, + "source": [ + "# Zadanie 2 (2 pkt)\n", + "\n", + "Napisz kod funkcji crossValidation(X, y, n = 10, k=1, p=1): obliczającą algorytm kNN z n-krotną walidacją krzyżową." + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "entire-advancement", + "metadata": {}, + "outputs": [], + "source": [ + "def crossValidation(X_train, y_train, X_test, y_test, n=10, k=1, p=1):\n", + " tab = []\n", + " X_folds = []\n", + " y_folds = []\n", + " \n", + " f_size = len(X_train)//n\n", + " index = 0\n", + " \n", + " for i in range(n):\n", + " if i == n-1:\n", + " X_folds.append(X_train[index:])\n", + " y_folds.append(y_train[index:])\n", + " continue\n", + " X_folds.append(X_train[index : index+f_size])\n", + " y_folds.append(y_train[index : index+f_size])\n", + " index = index + f_size\n", + " \n", + " for i in range(n):\n", + " X_train_temp = X_folds[:i] + X_folds[i+1:]\n", + " X_train = np.concatenate((X_train_temp))\n", + "\n", + " y_train_temp = y_folds[:i] + y_folds[i+1:]\n", + " y_train = np.concatenate((y_train_temp))\n", + " \n", + " X_test = X_folds[i]\n", + " y_test = y_folds[i]\n", + "\n", + " Knn = KNearestNeighbor(X_train, y_train)\n", + " \n", + " pred = Knn.predict(X_test, k, p)\n", + " a = Knn.accuracy(y_test, pred)\n", + " tab.append(a)\n", + " \n", + " result = mean(tab)\n", + " \n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "searching-globe", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " K P kNN accuracy CrossValidation accuracy\n", + "--- --- -------------- --------------------------\n", + " 1 1 0.583012 0.658228\n", + " 1 2 0.552124 0.617332\n", + " 5 1 0.555985 0.574489\n", + " 5 2 0.544402 0.565725\n", + " 10 1 0.501931 0.523856\n", + " 10 2 0.501931 0.534567\n" + ] + } + ], + "source": [ + "X_train, y_train, X_test, y_test = get_dataset(new_size=64)\n", + "\n", + "kNN = KNearestNeighbor(X_train, y_train)\n", + "\n", + "Ks = [1, 5, 10]\n", + "Ps = [1, 2]\n", + "\n", + "accuracy = [ [\n", + " k, p, \n", + " kNN.accuracy(y_test, kNN.predict(X_test, K=k, P=p)),\n", + " crossValidation(X_train, y_train, X_test, y_test, n=len(X_train), k=k, p=p)] for k in Ks for p in Ps ]\n", + "\n", + "print(tabulate(accuracy, headers=['K', 'P', 'kNN accuracy', 'CrossValidation accuracy']))\n" + ] + }, + { + "cell_type": "markdown", + "id": "a85bb37f", + "metadata": {}, + "source": [ + "# Zadanie 3 (4 pkt)\n", + "\n", + "Napisz kod klasy LogisticRegression implementującej klasyfikator wieloklasowej regresji logistycznej z funkcją softmax() (ze standardowymi nazwami dwóch kluczowych funkcji: fit(), predict()). Zastosuj ten kod do pobranych danych (zbiór walidacyjny losujemy ze zbioru treningowego) - oblicz następujące charakterystyki modelu dla danych walidacyjnych oraz treningowych: dokładność (accuracy), precyzję (precision), czułość(recall) oraz F1 - dla poszczególnych klas oraz globalnie (zob. np. tu).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "e433be08", + "metadata": {}, + "outputs": [], + "source": [ + "class LogisticRegression():\n", + " def mapY(self, y, cls):\n", + " m = len(y)\n", + " yBi = np.matrix(np.zeros(m)).reshape(m, 1)\n", + " yBi[y == cls] = 1.\n", + " return yBi\n", + "\n", + " def indicatorMatrix(self, y):\n", + " classes = np.unique(y.tolist())\n", + " m = len(y)\n", + " k = len(classes)\n", + " Y = np.matrix(np.zeros((m, k)))\n", + " for i, cls in enumerate(classes):\n", + " Y[:, i] = self.mapY(y, cls)\n", + " return Y\n", + " \n", + " # Zapis macierzowy funkcji softmax\n", + " def softmax(self, X):\n", + " return np.exp(X) / np.sum(np.exp(X))\n", + " \n", + " # Funkcja regresji logistcznej\n", + " def h(self, theta, X):\n", + " return 1.0/(1.0 + np.exp(-X * theta))\n", + " \n", + " # Funkcja kosztu dla regresji logistycznej\n", + " def J(self, h, theta, X, y):\n", + " m = len(y)\n", + " h_val = h(theta, X)\n", + " s1 = np.multiply(y, np.log(h_val))\n", + " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", + " return -np.sum(s1 + s2, axis=0) / m\n", + "\n", + " # Gradient dla regresji logistycznej\n", + " def dJ(self, h, theta, X, y):\n", + " return 1.0 / len(y) * (X.T * (h(theta, X) - y))\n", + "\n", + " # Metoda gradientu prostego dla regresji logistycznej\n", + " def GD(self, h, fJ, fdJ, theta, X, y, alpha=0.01, eps=10**-3, maxSteps=10000):\n", + " errorCurr = fJ(h, theta, X, y) # fJ -> J, fdJ -> dJ\n", + " errors = [[errorCurr, theta]]\n", + " while True:\n", + " # oblicz nowe theta\n", + " theta = theta - alpha * fdJ(h, theta, X, y)\n", + " # raportuj poziom błędu\n", + " errorCurr, errorPrev = fJ(h, theta, X, y), errorCurr\n", + " # kryteria stopu\n", + " if abs(errorPrev - errorCurr) <= eps:\n", + " break\n", + " if len(errors) > maxSteps:\n", + " break\n", + " errors.append([errorCurr, theta]) \n", + " return theta, errors\n", + "\n", + " def trainMaxEnt(self, X, Y):\n", + " n = X.shape[1]\n", + " thetas = []\n", + " for c in range(Y.shape[1]):\n", + " YBi = Y[:,c]\n", + " theta = np.matrix(np.random.random(n)).reshape(n,1)\n", + " # Macierz parametrów theta obliczona dla każdej klasy osobno.\n", + " thetaBest, errors = self.GD(self.h, self.J, self.dJ, theta, \n", + " X, YBi, alpha=0.1, eps=10**-4)\n", + " thetas.append(thetaBest)\n", + " return thetas\n", + "\n", + " def classify(self, thetas, X):\n", + " regs = np.array([(X*theta).item() for theta in thetas])\n", + " probs = self.softmax(regs)\n", + " result = np.argmax(probs)\n", + " return result\n", + "\n", + " def class_score(self, expected, predicted):\n", + " # accuracy = TP + TN / FP + FN + TP + TN\n", + " accuracy = sum(1 for exp, pred in zip(expected, predicted) if exp == pred) / len(expected)\n", + " # precision = TP / FP + TP\n", + " precision = sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0 and pred == 1.0) / sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0)\n", + " # recall = TP / FN + TP\n", + " recall = sum(\n", + " 1 for exp, pred in zip(expected, predicted) if exp == 1.0 and pred == 1.0) / sum(\n", + " 1 for exp, pred in zip(expected, predicted) if pred == 1.0)\n", + " f1 = (2 * precision * recall) / (precision + recall)\n", + " return accuracy, precision, recall, f1\n", + "\n", + " def fit(self, X_train, y_train):\n", + " Y = self.indicatorMatrix(y_train)\n", + " self.thetas = self.trainMaxEnt(X_train, Y)\n", + "\n", + " def predict(self, X_test):\n", + " return np.array([self.classify(self.thetas, x) for x in X_test])\n", + " \n", + " def score(self, expected, predicted):\n", + " score = {\n", + " 'Class' : [], \n", + " 'Accuracy': [],\n", + " 'Precision': [],\n", + " 'Recall': [],\n", + " 'F1': []}\n", + "\n", + " oh_expected = self.indicatorMatrix(expected).T.tolist()\n", + " oh_predicted = self.indicatorMatrix(predicted).T.tolist()\n", + " n_classes = len(oh_expected)\n", + "\n", + " for i in range(n_classes):\n", + " e = oh_expected[i]\n", + " p = oh_predicted[i]\n", + " a, p, r, f1 = self.class_score(e, p)\n", + " score['Class'].append(i)\n", + " score['Accuracy'].append(a)\n", + " score['Precision'].append(p)\n", + " score['Recall'].append(r)\n", + " score['F1'].append(f1)\n", + "\n", + " score['Class'].append('Global')\n", + " score['Accuracy'].append(sum(1 for exp, pred in zip(expected, predicted) if exp == pred) / len(expected))\n", + " score['Precision'].append(np.mean(score['Precision']))\n", + " score['Recall'].append(np.mean(score['Recall']))\n", + " score['F1'].append(np.mean(score['F1']))\n", + "\n", + " return score\n" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "ba36ecbb", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_2525/2624688826.py:30: RuntimeWarning: divide by zero encountered in log\n", + " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_2525/2624688826.py:30: RuntimeWarning: invalid value encountered in multiply\n", + " s2 = np.multiply((1 - y), np.log(1 - h_val))\n", + "/var/folders/7c/v61kq2b95dzbt7s47fxy0grm0000gn/T/ipykernel_2525/2624688826.py:47: RuntimeWarning: invalid value encountered in subtract\n", + " if abs(errorPrev - errorCurr) <= eps:\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Class Accuracy Precision Recall F1\n", + "------- ---------- ----------- -------- --------\n", + "0 0.96139 0.823529 0.976744 0.893617\n", + "1 0.857143 0.557692 0.674419 0.610526\n", + "2 0.872587 0.788462 0.650794 0.713043\n", + "3 0.861004 0.596154 0.673913 0.632653\n", + "4 0.776062 0.557692 0.453125 0.5\n", + "Global 0.664093 0.664706 0.685799 0.669968\n" + ] + } + ], + "source": [ + "X_train, y_train, X_test, y_test = get_dataset(new_size=32) \n", + "\n", + "logreg = LogisticRegression()\n", + "logreg.fit(X_train, y_train)\n", + "\n", + "predicted = logreg.predict(X_test)\n", + "score = logreg.score(y_test, predicted)\n", + "\n", + "print(tabulate(score, headers='keys'))" + ] + }, + { + "cell_type": "markdown", + "id": "7f8326ba", + "metadata": {}, + "source": [ + "# Zadanie 4 (1 pkt)\n", + "\n", + "Oblicz ile danych z poszczególnych klas znajduje się po dodatniej/ujemnej stronie hiperpłaszczyzny klasyfikacyjnej dla danej klasy." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "09f0a567", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Klasa Dodatnia strona Ujemna strona\n", + "------- ----------------- ---------------\n", + " 0 48 211\n", + " 1 52 207\n", + " 2 65 194\n", + " 3 47 212\n", + " 4 47 212\n" + ] + } + ], + "source": [ + "one_hot = logreg.indicatorMatrix(predicted)\n", + "length = len(one_hot)\n", + "one_hot = one_hot.sum(axis=0).tolist()[0]\n", + "\n", + "hyperplane = [\n", + " [i for i in np.unique(predicted)], \n", + " [int(x) for x in one_hot],\n", + " [length - int(x) for x in one_hot]]\n", + " \n", + "\n", + "print(tabulate(np.array(hyperplane).T, headers=['Klasa', 'Dodatnia strona', 'Ujemna strona']))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.5 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.5" + }, + "latex_envs": { + "LaTeX_envs_menu_present": true, + "autoclose": false, + "autocomplete": true, + "bibliofile": "biblio.bib", + "cite_by": "apalike", + "current_citInitial": 1, + "eqLabelWithNumbers": true, + "eqNumInitial": 1, + "hotkeys": { + "equation": "Ctrl-E", + "itemize": "Ctrl-I" + }, + "labels_anchors": false, + "latex_user_defs": false, + "report_style_numbering": false, + "user_envs_cfg": false + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "vscode": { + "interpreter": { + "hash": "7e1998ff7f8aa20ada591c520b972326324e5ea05489af9e422744c7c09f6dad" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}