Upload files to ''

This commit is contained in:
Marek Gulawski 2020-06-09 22:43:20 +00:00
parent e0213381d4
commit 290c78cf6e
3 changed files with 1486 additions and 0 deletions

520
integrated_saper.py Normal file
View File

@ -0,0 +1,520 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
import pygame
import sys
import os
import random
from objects.Bomb import Bomb
from objects.Saper import Saper
from objects.Wall import Wall
from pygame.locals import *
from sklearn.datasets import load_digits
import matplotlib.pylab as pl
from sklearn import tree
def decode(code,counter,bomb_code):
pl.figure()
pl.gray()
i=1
r=[]
for x in code:
pl.subplot(1, len(code), i)
i=i+1
pl.matshow(digits.images[x], fignum=False)
photo = x_dig[x].reshape(1, -1)
r.append(str(classifier.predict(photo)))
res = listToString(r)
decoded = []
for a in res:
if a != "[" and a != "]":
decoded.append(a)
filename = "wyniki\ "+"bomba nr "+str(counter)+" kod odczytany "+listToString(decoded)+" kod prawdziwy "+str(listToString(bomb_code))+".png"
pl.savefig(filename)
pl.close()
return decoded
def listToString(s):
# initialize an empty string
str1 = ""
# traverse in the string
for ele in s:
str1 += ele
# return string
return str1
def check_type(Grid, x, y):
if x < 0 or x > len(Grid)-1 or y < 0 or y > len(Grid[0])-1:
return str("0")
if Grid[x][y] is None:
return str("10")
if Grid[x][y].__class__.__name__ == "Wall":
return str("1")
if Grid[x][y].__class__.__name__ == "Bomb":
if Grid[x][y].type == "done":
return str("5")
else:
return str("50")
def saper_get_surrounding(grid, x, y):
s = ""
s = s + " | 1x1:." + check_type(grid, x - 2, y - 2) + " 1x2:." + check_type(grid, x - 2, y - 1)
s = s + " 1x3:." + check_type(grid, x - 2, y) + " 1x4:." + check_type(grid, x - 2, y + 1)
s = s + " 1x5:." + check_type(grid, x - 2, y + 2)
s = s + " 2x1:." + check_type(grid, x - 1, y - 2) + " 2x2:." + check_type(grid, x - 1, y - 1)
s = s + " 2x3:." + check_type(grid, x - 1, y) + " 2x4:." + check_type(grid, x - 1, y + 1)
s = s + " 2x5:." + check_type(grid, x - 1, y + 2)
s = s + " 3x1:." + check_type(grid, x, y - 2) + " 3x2:." + check_type(grid, x, y - 1)
s = s + " 3x4:." + check_type(grid, x, y + 1) + " 3x5:." + check_type(grid, x, y + 2)
s = s + " 4x1:." + check_type(grid, x + 1, y - 2) + " 4x2:." + check_type(grid, x + 1, y - 1)
s = s + " 4x3:." + check_type(grid, x + 1, y) + " 4x4:." + check_type(grid, x + 1, y + 1)
s = s + " 4x5:." + check_type(grid, x + 1, y + 2)
s = s + " 5x1:." + check_type(grid, x + 2, y - 2) + " 5x2:." + check_type(grid, x + 2, y - 1)
s = s + " 5x3:." + check_type(grid, x + 2, y) + " 5x4:." + check_type(grid, x + 2, y + 1)
s = s + " 5x5:." + check_type(grid, x + 2, y + 2)
return s
def write_to_file(file, string):
f = open(file, "w")
f.write(string)
f.write("\n")
f.close()
def read_map(file):
f = open("maps/" + file, "r")
s = f.read()
saper_map.append([])
index = 0
for i in range(len(s)-1):
if s[i] == "0":
saper_map[index].append(None)
if s[i] == "1":
saper_map[index].append(Wall())
if s[i] == "2":
saper_map[index].append(Saper())
if s[i] == "3":
saper_map[index].append(Bomb(random.randint(400, 601), "A"))
if s[i] == "\n":
saper_map.append([])
index = index + 1
#uczenie
digits = load_digits()
#Define variables
n_samples = len(digits.images)
x_dig = digits.images.reshape((n_samples, -1))
y_dig = digits.target
#Create random indices
sample_index = random.sample(range(int(len(x_dig))), int(len(x_dig)/5)) #20-80
valid_index=[i for i in range(len(x_dig)) if i not in sample_index]
#Sample and validation images
sample_images=[x_dig[i] for i in sample_index]
valid_images=[x_dig[i] for i in valid_index]
#Sample and validation targets
sample_target=[y_dig[i] for i in sample_index]
valid_target=[y_dig[i] for i in valid_index]
#Using the Random Forest Classifier
classifier = tree.DecisionTreeClassifier()
#Fit model with sample data
classifier.fit(sample_images, sample_target)
#Attempt to predict validation data
score=classifier.score(valid_images, valid_target)
print("Dokładność uczenia: "+str(score))
pygame.init()
FPS = 30 # frames per second setting
fpsClock = pygame.time.Clock()
WINDOW_WIDTH = 1000
WINDOW_HEIGHT = 700
saper_map = []
read_map("map3.txt")
saper_x = 0
saper_y = 0
saper_x_movement = 0
saper_y_movement = 0
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
saper_x = i
saper_y = j
defused = 0
detonated = 0
bomb_counter = 0
# List of used graphics
Saper_A_image = pygame.image.load("images/saper_A.png")
Bomb_Image = pygame.image.load("images/Bomb.png") # Instead of Bomb_A
Bomb_Defused = pygame.image.load("images/Bomb_Defused.png") # Instead of thumbs up
Wall_image = pygame.image.load("images/Wall.png")
Bomb_RR = pygame.image.load("images/Bomb_R.png") # Bomb defused
Bomb_GG = pygame.image.load("images/Bomb_G.png") # Bomb defused
Bomb_BB = pygame.image.load("images/Bomb_B.png") # Bomb defused
Bomb_YY = pygame.image.load("images/Bomb_Y.png") # Bomb defused
Bomb_RB = pygame.image.load("images/Bomb_RB.png") # Bomb defused
Bomb_GB = pygame.image.load("images/Bomb_GB.png") # Bomb defused
Bomb_YB = pygame.image.load("images/Bomb_YB.png") # Bomb defused
Bomb_GR = pygame.image.load("images/Bomb_GR.png") # Bomb defused
Bomb_BR = pygame.image.load("images/Bomb_BR.png") # Bomb defused
Bomb_YR = pygame.image.load("images/Bomb_YR.png") # Bomb defused
Bomb_RY = pygame.image.load("images/Bomb_RY.png") # Bomb defused
Bomb_GY = pygame.image.load("images/Bomb_GY.png") # Bomb defused
Bomb_BY = pygame.image.load("images/Bomb_BY.png") # Bomb defused
Bomb_BG = pygame.image.load("images/Bomb_BG.png") # Bomb defused
Bomb_YG = pygame.image.load("images/Bomb_YG.png") # Bomb defused
Bomb_RG = pygame.image.load("images/Bomb_RG.png") # Bomb defused
Hole_image = pygame.image.load("images/Hole.png") # Bomb exploded
# Decision tree classification and regression tree.
header = ["A", "B", "C", "cut"]
training_data = [
['Green', 'Green', 'Red', 'Red'],
['Green', 'Red', 'Green', 'Red'],
['Red', 'Green', 'Green', 'Red'],
['Red', 'Green', 'Blue', 'Red'],
['Green', 'Red', 'Blue', 'Red'],
['Blue', 'Red', 'Blue', 'Red'],
['Green', 'Yellow', 'Red', 'Red'],
['Yellow', 'Yellow', 'Red', 'Red'],
['Green', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Blue', 'Yellow', 'Yellow'],
['Yellow', 'Blue', 'Blue', 'Yellow'],
['Yellow', 'Yellow', 'Blue', 'Blue'],
['Blue', 'Yellow', 'Yellow', 'Blue'],
['Green', 'Green', 'Yellow', 'Yellow'],
['Green', 'Green', 'Blue', 'Blue'],
]
def class_counts(rows):
counts = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
def is_numeric(value):
return isinstance(value, int) or isinstance(value, float)
class Question:
def __init__(self, column, value):
self.column = column
self.value = value
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val >= self.value
else:
return val == self.value
def __repr__(self):
condition = "=="
if is_numeric(self.value):
condition = ">="
return "Is %s %s %s?" % (
header[self.column], condition, str(self.value))
def partition(rows, question):
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left)) / (len(left) + len(right))
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
def find_best_split(rows):
best_gain = 0
best_question = None
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values:
question = Question(col, val)
true_rows, false_rows = partition(rows, question)
if len(true_rows) == 0 or len(false_rows) == 0:
continue
# Calculate the information gain from this split
gain = info_gain(true_rows, false_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class Decision_Node:
def __init__(self,
question,
true_branch,
false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
def build_tree(rows):
gain, question = find_best_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = partition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
return Decision_Node(question, true_branch, false_branch)
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print (spacing + "Predict", node.predictions)
return
print (spacing + str(node.question))
print (spacing + '--> True:')
print_tree(node.true_branch, spacing + " ")
print (spacing + '--> False:')
print_tree(node.false_branch, spacing + " ")
def classify(row, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(row):
return classify(row, node.true_branch)
else:
return classify(row, node.false_branch)
def print_leaf(counts):
total = sum(counts.values()) * 1.0
probs = {}
for lbl in counts.keys():
probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
return probs
# set up the window
GAMEBOARD = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
pygame.display.set_caption('Saper')
background_image = pygame.image.load("images/background.png")
prv_out_bk_1 = 0
prv_out_bk_2 = 0
counter = 0
flag1 = True
flag2 = False
my_tree = build_tree(training_data)
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
s = saper_get_surrounding(saper_map, saper_x, saper_y)
write_to_file("wabbit_move", s)
output = float(os.popen("vw -i wabbit_model wabbit_move -p /dev/stdout --quiet").read())
print(output)
if prv_out_bk_1 == output or prv_out_bk_2 == output:
counter = counter + 1
if counter > 21:
counter = 0
output = random.randint(0, 5)
prv_out_bk_2 = prv_out_bk_1
prv_out_bk_1 = output
if output < 1.5:
if saper_x < len(saper_map)-1:
saper_x_movement = saper_x + 1
saper_y_movement = saper_y
elif output < 2.5:
if saper_x > 0:
saper_x_movement = saper_x - 1
saper_y_movement = saper_y
elif output < 3.5:
if saper_y < len(saper_map[0])-1:
saper_y_movement = saper_y + 1
saper_x_movement = saper_x
else:
if saper_y > 0:
saper_y_movement = saper_y - 1
saper_x_movement = saper_x
if saper_x_movement != saper_x or saper_y_movement != saper_y:
if saper_map[saper_x_movement][saper_y_movement] is None:
saper_map[saper_x_movement][saper_y_movement] = saper_map[saper_x][saper_y]
saper_map[saper_x][saper_y] = None
saper_x = saper_x_movement
saper_y = saper_y_movement
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Tools":
saper_map[saper_x][saper_y].change_tool(saper_map[saper_x_movement][saper_y_movement])
saper_x_movement = saper_x
saper_y_movement = saper_y
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Bomb":
if saper_map[saper_x_movement][saper_y_movement].type == "A":
real_code_temp = []
for c in saper_map[saper_x_movement][saper_y_movement].code:
real_code_temp.append(digits.target[c])
real_code = listToString(str(real_code_temp))
bomb_code = []
for c in real_code:
if c != "[" and c != "]" and c != "," and c != " ":
bomb_code = bomb_code + list(c)
decode_rez = decode(saper_map[saper_x_movement][saper_y_movement].code, bomb_counter, bomb_code)
defused_rez = saper_map[saper_x][saper_y].defuse(saper_map[saper_x_movement][saper_y_movement], decode_rez, bomb_code)
if defused_rez == 1:
defused += 1;
else:
detonated += 1;
kod = random.randint(0, len(training_data)-1)
options = []
for lbl in classify(training_data[kod], my_tree).keys():
options.append(lbl)
typ = training_data[kod][-1] + " " + random.choice(options)
print(typ)
saper_map[saper_x_movement][saper_y_movement].type = typ
bomb_counter = bomb_counter + 1
saper_x_movement = saper_x
saper_y_movement = saper_y
GAMEBOARD.blit(background_image, (0, 0))
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
if saper_map[i][j].tool == "A":
GAMEBOARD.blit(Saper_A_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Wall":
GAMEBOARD.blit(Wall_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Bomb":
if saper_map[i][j].type == "done":
image_select = Bomb_Defused
elif saper_map[i][j].type == "Red Red":
image_select = Bomb_RR
elif saper_map[i][j].type == "Green Green":
image_select = Bomb_GG
elif saper_map[i][j].type == "Yellow Yellow":
image_select = Bomb_YY
elif saper_map[i][j].type == "Blue Blue":
image_select = Bomb_BB
elif saper_map[i][j].type == "Blue Red":
image_select = Bomb_RB
elif saper_map[i][j].type == "Blue Green":
image_select = Bomb_GB
elif saper_map[i][j].type == "Blue Yellow":
image_select = Bomb_YB
elif saper_map[i][j].type == "Yellow Red":
image_select = Bomb_RY
elif saper_map[i][j].type == "Yellow Green":
image_select = Bomb_GY
elif saper_map[i][j].type == "Yellow Blue":
image_select = Bomb_BY
elif saper_map[i][j].type == "Green Red":
image_select = Bomb_RG
elif saper_map[i][j].type == "Green Yellow":
image_select = Bomb_YG
elif saper_map[i][j].type == "Green Blue":
image_select = Bomb_BG
elif saper_map[i][j].type == "Red Blue":
image_select = Bomb_BR
elif saper_map[i][j].type == "Red Green":
image_select = Bomb_GR
elif saper_map[i][j].type == "Red Yellow":
image_select = Bomb_YR
elif saper_map[i][j].type == "A":
image_select = Bomb_Image
elif saper_map[i][j].type == "exploded":
image_select = Hole_image
GAMEBOARD.blit(image_select, [i * 50, j * 50])
# Refresh Screen
pygame.display.flip()
fpsClock.tick(FPS)

525
vw_saper_all.py Normal file
View File

@ -0,0 +1,525 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
import pygame
import sys
import os
import random
from objects.Bomb import Bomb
from objects.Saper import Saper
from objects.Wall import Wall
from pygame.locals import *
from sklearn.datasets import load_digits
import matplotlib.pylab as pl
from sklearn import tree
def decode(code,counter,bomb_code):
pl.figure()
pl.gray()
i=1
r=[]
for x in code:
pl.subplot(1, len(code), i)
i=i+1
pl.matshow(digits.images[x], fignum=False)
photo = x_dig[x].reshape(1, -1)
r.append(str(classifier.predict(photo)))
res = listToString(r)
decoded = []
for a in res:
if a != "[" and a != "]":
decoded.append(a)
filename = "wyniki\ "+"bomba nr "+str(counter)+" kod odczytany "+listToString(decoded)+" kod prawdziwy "+str(listToString(bomb_code))+".png"
pl.savefig(filename)
pl.close()
return decoded
def listToString(s):
# initialize an empty string
str1 = ""
# traverse in the string
for ele in s:
str1 += ele
# return string
return str1
def check_type(Grid, x, y):
if x < 0 or x > len(Grid)-1 or y < 0 or y > len(Grid[0])-1:
return str("0")
if Grid[x][y] is None:
return str("10")
if Grid[x][y].__class__.__name__ == "Wall":
return str("1")
if Grid[x][y].__class__.__name__ == "Bomb":
if Grid[x][y].type == "done":
return str("5")
else:
return str("50")
def saper_get_surrounding(grid, x, y):
s = ""
s = s + " | 1x1:." + check_type(grid, x - 2, y - 2) + " 1x2:." + check_type(grid, x - 2, y - 1)
s = s + " 1x3:." + check_type(grid, x - 2, y) + " 1x4:." + check_type(grid, x - 2, y + 1)
s = s + " 1x5:." + check_type(grid, x - 2, y + 2)
s = s + " 2x1:." + check_type(grid, x - 1, y - 2) + " 2x2:." + check_type(grid, x - 1, y - 1)
s = s + " 2x3:." + check_type(grid, x - 1, y) + " 2x4:." + check_type(grid, x - 1, y + 1)
s = s + " 2x5:." + check_type(grid, x - 1, y + 2)
s = s + " 3x1:." + check_type(grid, x, y - 2) + " 3x2:." + check_type(grid, x, y - 1)
s = s + " 3x4:." + check_type(grid, x, y + 1) + " 3x5:." + check_type(grid, x, y + 2)
s = s + " 4x1:." + check_type(grid, x + 1, y - 2) + " 4x2:." + check_type(grid, x + 1, y - 1)
s = s + " 4x3:." + check_type(grid, x + 1, y) + " 4x4:." + check_type(grid, x + 1, y + 1)
s = s + " 4x5:." + check_type(grid, x + 1, y + 2)
s = s + " 5x1:." + check_type(grid, x + 2, y - 2) + " 5x2:." + check_type(grid, x + 2, y - 1)
s = s + " 5x3:." + check_type(grid, x + 2, y) + " 5x4:." + check_type(grid, x + 2, y + 1)
s = s + " 5x5:." + check_type(grid, x + 2, y + 2)
return s
def write_to_file(file, string):
f = open(file, "w")
f.write(string)
f.write("\n")
f.close()
def read_map(file):
f = open("maps/" + file, "r")
s = f.read()
saper_map.append([])
index = 0
for i in range(len(s)-1):
if s[i] == "0":
saper_map[index].append(None)
if s[i] == "1":
saper_map[index].append(Wall())
if s[i] == "2":
saper_map[index].append(Saper())
if s[i] == "3":
saper_map[index].append(Bomb(random.randint(400, 601), "A"))
if s[i] == "\n":
saper_map.append([])
index = index + 1
#uczenie
digits = load_digits()
#Define variables
n_samples = len(digits.images)
x_dig = digits.images.reshape((n_samples, -1))
y_dig = digits.target
#Create random indices
sample_index = random.sample(range(int(len(x_dig))), int(len(x_dig)/5)) #20-80
valid_index=[i for i in range(len(x_dig)) if i not in sample_index]
#Sample and validation images
sample_images=[x_dig[i] for i in sample_index]
valid_images=[x_dig[i] for i in valid_index]
#Sample and validation targets
sample_target=[y_dig[i] for i in sample_index]
valid_target=[y_dig[i] for i in valid_index]
#Using the Random Forest Classifier
classifier = tree.DecisionTreeClassifier()
#Fit model with sample data
classifier.fit(sample_images, sample_target)
#Attempt to predict validation data
score=classifier.score(valid_images, valid_target)
print("Dokładność uczenia: "+str(score))
pygame.init()
FPS = 30 # frames per second setting
fpsClock = pygame.time.Clock()
WINDOW_WIDTH = 1000
WINDOW_HEIGHT = 700
saper_map = []
read_map("map3.txt")
saper_x = 0
saper_y = 0
saper_x_movement = 0
saper_y_movement = 0
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
saper_x = i
saper_y = j
defused = 0
detonated = 0
bomb_counter = 0
# List of used graphics
Saper_A_image = pygame.image.load("images/saper_A.png")
Bomb_Image = pygame.image.load("images/Bomb.png") # Instead of Bomb_A
Bomb_Defused = pygame.image.load("images/Bomb_Defused.png") # Instead of thumbs up
Wall_image = pygame.image.load("images/Wall.png")
Bomb_RR = pygame.image.load("images/Bomb_R.png") # Bomb defused
Bomb_GG = pygame.image.load("images/Bomb_G.png") # Bomb defused
Bomb_BB = pygame.image.load("images/Bomb_B.png") # Bomb defused
Bomb_YY = pygame.image.load("images/Bomb_Y.png") # Bomb defused
Bomb_RB = pygame.image.load("images/Bomb_RB.png") # Bomb defused
Bomb_GB = pygame.image.load("images/Bomb_GB.png") # Bomb defused
Bomb_YB = pygame.image.load("images/Bomb_YB.png") # Bomb defused
Bomb_GR = pygame.image.load("images/Bomb_GR.png") # Bomb defused
Bomb_BR = pygame.image.load("images/Bomb_BR.png") # Bomb defused
Bomb_YR = pygame.image.load("images/Bomb_YR.png") # Bomb defused
Bomb_RY = pygame.image.load("images/Bomb_RY.png") # Bomb defused
Bomb_GY = pygame.image.load("images/Bomb_GY.png") # Bomb defused
Bomb_BY = pygame.image.load("images/Bomb_BY.png") # Bomb defused
Bomb_BG = pygame.image.load("images/Bomb_BG.png") # Bomb defused
Bomb_YG = pygame.image.load("images/Bomb_YG.png") # Bomb defused
Bomb_RG = pygame.image.load("images/Bomb_RG.png") # Bomb defused
Hole_image = pygame.image.load("images/Hole.png") # Bomb exploded
# Decision tree classification and regression tree.
header = ["A", "B", "C", "cut"]
training_data = [
['Green', 'Green', 'Red', 'Red'],
['Green', 'Red', 'Green', 'Red'],
['Red', 'Green', 'Green', 'Red'],
['Red', 'Green', 'Blue', 'Red'],
['Green', 'Red', 'Blue', 'Red'],
['Blue', 'Red', 'Blue', 'Red'],
['Green', 'Yellow', 'Red', 'Red'],
['Yellow', 'Yellow', 'Red', 'Red'],
['Green', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Blue', 'Yellow', 'Yellow'],
['Yellow', 'Blue', 'Blue', 'Yellow'],
['Yellow', 'Yellow', 'Blue', 'Blue'],
['Blue', 'Yellow', 'Yellow', 'Blue'],
['Green', 'Green', 'Yellow', 'Yellow'],
['Green', 'Green', 'Blue', 'Blue'],
]
def class_counts(rows):
counts = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
def is_numeric(value):
return isinstance(value, int) or isinstance(value, float)
class Question:
def __init__(self, column, value):
self.column = column
self.value = value
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val >= self.value
else:
return val == self.value
def __repr__(self):
condition = "=="
if is_numeric(self.value):
condition = ">="
return "Is %s %s %s?" % (
header[self.column], condition, str(self.value))
def partition(rows, question):
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left)) / (len(left) + len(right))
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
def find_best_split(rows):
best_gain = 0
best_question = None
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values:
question = Question(col, val)
true_rows, false_rows = partition(rows, question)
if len(true_rows) == 0 or len(false_rows) == 0:
continue
# Calculate the information gain from this split
gain = info_gain(true_rows, false_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class Decision_Node:
def __init__(self,
question,
true_branch,
false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
def build_tree(rows):
gain, question = find_best_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = partition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
return Decision_Node(question, true_branch, false_branch)
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print (spacing + "Predict", node.predictions)
return
print (spacing + str(node.question))
print (spacing + '--> True:')
print_tree(node.true_branch, spacing + " ")
print (spacing + '--> False:')
print_tree(node.false_branch, spacing + " ")
def classify(row, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(row):
return classify(row, node.true_branch)
else:
return classify(row, node.false_branch)
def print_leaf(counts):
total = sum(counts.values()) * 1.0
probs = {}
for lbl in counts.keys():
probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
return probs
# set up the window
GAMEBOARD = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
pygame.display.set_caption('Saper')
background_image = pygame.image.load("images/background.png")
prv_out_bk_1 = 0
prv_out_bk_2 = 0
counter = 0
flag1 = True
flag2 = False
my_tree = build_tree(training_data)
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
s = saper_get_surrounding(saper_map, saper_x, saper_y)
write_to_file("wabbit_move", s)
output = float(os.popen("vw -i wabbit_model wabbit_move -p /dev/stdout --quiet").read())
print(output)
if prv_out_bk_1 == output or prv_out_bk_2 == output:
counter = counter + 1
if counter > 21:
counter = 0
output = random.randint(0, 5)
prv_out_bk_2 = prv_out_bk_1
prv_out_bk_1 = output
if output < 1.5:
if saper_x < len(saper_map)-1:
saper_x_movement = saper_x + 1
saper_y_movement = saper_y
elif output < 2.5:
if saper_x > 0:
saper_x_movement = saper_x - 1
saper_y_movement = saper_y
elif output < 3.5:
if saper_y < len(saper_map[0])-1:
saper_y_movement = saper_y + 1
saper_x_movement = saper_x
else:
if saper_y > 0:
saper_y_movement = saper_y - 1
saper_x_movement = saper_x
if saper_x_movement != saper_x or saper_y_movement != saper_y:
if saper_map[saper_x_movement][saper_y_movement] is None:
saper_map[saper_x_movement][saper_y_movement] = saper_map[saper_x][saper_y]
saper_map[saper_x][saper_y] = None
saper_x = saper_x_movement
saper_y = saper_y_movement
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Tools":
saper_map[saper_x][saper_y].change_tool(saper_map[saper_x_movement][saper_y_movement])
saper_x_movement = saper_x
saper_y_movement = saper_y
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Bomb":
if saper_map[saper_x_movement][saper_y_movement].type == "A":
real_code_temp = []
for c in saper_map[saper_x_movement][saper_y_movement].code:
real_code_temp.append(digits.target[c])
real_code = listToString(str(real_code_temp))
bomb_code = []
for c in real_code:
if c != "[" and c != "]" and c != "," and c != " ":
bomb_code = bomb_code + list(c)
decode_rez = decode(saper_map[saper_x_movement][saper_y_movement].code, bomb_counter, bomb_code)
defused_rez = saper_map[saper_x][saper_y].defuse(saper_map[saper_x_movement][saper_y_movement], decode_rez, bomb_code)
if defused_rez == 1:
defused += 1;
else:
detonated += 1;
bomb_counter = bomb_counter + 1
saper_x_movement = saper_x
saper_y_movement = saper_y
if saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "done":
kod = randint(0, len(training_data)-1)
options = []
for lbl in classify(training_data[kod], my_tree).keys():
options.append(lbl)
typ = training_data[kod][-1] + " " + random.choice(options)
print(typ)
saper_map[saper_x_movement][saper_y_movement].type = typ
saper_x_movement = saper_x
saper_y_movement = saper_y
GAMEBOARD.blit(background_image, (0, 0))
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
if saper_map[i][j].tool == "A":
GAMEBOARD.blit(Saper_A_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Wall":
GAMEBOARD.blit(Wall_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Bomb":
if saper_map[i][j].type == "done":
image_select = Bomb_Defused
elif saper_map[i][j].type == "Red Red":
image_select = Bomb_RR
elif saper_map[i][j].type == "Green Green":
image_select = Bomb_GG
elif saper_map[i][j].type == "Yellow Yellow":
image_select = Bomb_YY
elif saper_map[i][j].type == "Blue Blue":
image_select = Bomb_BB
elif saper_map[i][j].type == "Blue Red":
image_select = Bomb_RB
elif saper_map[i][j].type == "Blue Green":
image_select = Bomb_GB
elif saper_map[i][j].type == "Blue Yellow":
image_select = Bomb_YB
elif saper_map[i][j].type == "Yellow Red":
image_select = Bomb_RY
elif saper_map[i][j].type == "Yellow Green":
image_select = Bomb_GY
elif saper_map[i][j].type == "Yellow Blue":
image_select = Bomb_BY
elif saper_map[i][j].type == "Green Red":
image_select = Bomb_RG
elif saper_map[i][j].type == "Green Yellow":
image_select = Bomb_YG
elif saper_map[i][j].type == "Green Blue":
image_select = Bomb_BG
elif saper_map[i][j].type == "Red Blue":
image_select = Bomb_BR
elif saper_map[i][j].type == "Red Green":
image_select = Bomb_GR
elif saper_map[i][j].type == "Red Yellow":
image_select = Bomb_YR
elif saper_map[i][j].type == "A":
image_select = Bomb_Image
elif saper_map[i][j].type == "exploded":
image_select = Hole_image
GAMEBOARD.blit(image_select, [i * 50, j * 50])
# Refresh Screen
pygame.display.flip()
fpsClock.tick(FPS)

441
vw_saper_zb.py Normal file
View File

@ -0,0 +1,441 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
import pygame
import sys
import os
import random
from random import randint
from objects.Bomb import Bomb
from objects.Saper import Saper
from objects.Wall import Wall
from pygame.locals import *
def check_type(Grid, x, y):
if x < 0 or x > len(Grid)-1 or y < 0 or y > len(Grid[0])-1:
return str(0)
if Grid[x][y] is None:
return str(10)
if Grid[x][y].__class__.__name__ == "Wall":
return str(1)
if Grid[x][y].__class__.__name__ == "Bomb":
if Grid[x][y].type == "Done":
return str(5)
else:
return str(50)
def saper_get_surrounding(grid, x, y):
s = ""
s = s + " | 1x1:." + check_type(grid, x - 2, y - 2) + " 1x2:." + check_type(grid, x - 2, y - 1)
s = s + " 1x3:." + check_type(grid, x - 2, y) + " 1x4:." + check_type(grid, x - 2, y + 1)
s = s + " 1x5:." + check_type(grid, x - 2, y + 2)
s = s + " 2x1:." + check_type(grid, x - 1, y - 2) + " 2x2:." + check_type(grid, x - 1, y - 1)
s = s + " 2x3:." + check_type(grid, x - 1, y) + " 2x4:." + check_type(grid, x - 1, y + 1)
s = s + " 2x5:." + check_type(grid, x - 1, y + 2)
s = s + " 3x1:." + check_type(grid, x, y - 2) + " 3x2:." + check_type(grid, x, y - 1)
s = s + " 3x4:." + check_type(grid, x, y + 1) + " 3x5:." + check_type(grid, x, y + 2)
s = s + " 4x1:." + check_type(grid, x + 1, y - 2) + " 4x2:." + check_type(grid, x + 1, y - 1)
s = s + " 4x3:." + check_type(grid, x + 1, y) + " 4x4:." + check_type(grid, x + 1, y + 1)
s = s + " 4x5:." + check_type(grid, x + 1, y + 2)
s = s + " 5x1:." + check_type(grid, x + 2, y - 2) + " 5x2:." + check_type(grid, x + 2, y - 1)
s = s + " 5x3:." + check_type(grid, x + 2, y) + " 5x4:." + check_type(grid, x + 2, y + 1)
s = s + " 5x5:." + check_type(grid, x + 2, y + 2)
return s
def write_to_file(file, string):
f = open(file, "w")
f.write(string)
f.write("\n")
f.close()
def read_map(file):
f = open("maps/" + file, "r")
s = f.read()
saper_map.append([])
index = 0
for i in range(len(s)-1):
if s[i] == "0":
saper_map[index].append(None)
if s[i] == "1":
saper_map[index].append(Wall())
if s[i] == "2":
saper_map[index].append(Saper())
if s[i] == "3":
saper_map[index].append(Bomb(random.randint(400, 601), "A"))
if s[i] == "\n":
saper_map.append([])
index = index + 1
pygame.init()
FPS = 30 # frames per second setting
fpsClock = pygame.time.Clock()
WINDOW_WIDTH = 1000
WINDOW_HEIGHT = 700
saper_map = []
read_map("map2.txt")
saper_x = 0
saper_y = 0
saper_x_movement = 0
saper_y_movement = 0
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
saper_x = i
saper_y = j
defused = 0
# List of used graphics
Saper_A_image = pygame.image.load("images/saper_A.png")
Bomb_Image = pygame.image.load("images/Bomb.png") # Instead of Bomb_A
Bomb_Defused = pygame.image.load("images/Bomb_Defused.png") # Instead of thumbs up
Wall_image = pygame.image.load("images/Wall.png")
Bomb_RR = pygame.image.load("images/Bomb_R.png") # Bomb defused
Bomb_GG = pygame.image.load("images/Bomb_G.png") # Bomb defused
Bomb_BB = pygame.image.load("images/Bomb_B.png") # Bomb defused
Bomb_YY = pygame.image.load("images/Bomb_Y.png") # Bomb defused
Bomb_RB = pygame.image.load("images/Bomb_RB.png") # Bomb defused
Bomb_GB = pygame.image.load("images/Bomb_GB.png") # Bomb defused
Bomb_YB = pygame.image.load("images/Bomb_YB.png") # Bomb defused
Bomb_GR = pygame.image.load("images/Bomb_GR.png") # Bomb defused
Bomb_BR = pygame.image.load("images/Bomb_BR.png") # Bomb defused
Bomb_YR = pygame.image.load("images/Bomb_YR.png") # Bomb defused
Bomb_RY = pygame.image.load("images/Bomb_RY.png") # Bomb defused
Bomb_GY = pygame.image.load("images/Bomb_GY.png") # Bomb defused
Bomb_BY = pygame.image.load("images/Bomb_BY.png") # Bomb defused
Bomb_BG = pygame.image.load("images/Bomb_BG.png") # Bomb defused
Bomb_YG = pygame.image.load("images/Bomb_YG.png") # Bomb defused
Bomb_RG = pygame.image.load("images/Bomb_RG.png") # Bomb defused
# Decision tree classification and regression tree.
header = ["A", "B", "C", "cut"]
training_data = [
['Green', 'Green', 'Red', 'Red'],
['Green', 'Red', 'Green', 'Red'],
['Red', 'Green', 'Green', 'Red'],
['Red', 'Green', 'Blue', 'Red'],
['Green', 'Red', 'Blue', 'Red'],
['Blue', 'Red', 'Blue', 'Red'],
['Green', 'Yellow', 'Red', 'Red'],
['Yellow', 'Yellow', 'Red', 'Red'],
['Green', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Yellow', 'Blue', 'Yellow'],
['Blue', 'Blue', 'Yellow', 'Yellow'],
['Yellow', 'Blue', 'Blue', 'Yellow'],
['Yellow', 'Yellow', 'Blue', 'Blue'],
['Blue', 'Yellow', 'Yellow', 'Blue'],
['Green', 'Green', 'Yellow', 'Yellow'],
['Green', 'Green', 'Blue', 'Blue'],
]
def class_counts(rows):
counts = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
def is_numeric(value):
return isinstance(value, int) or isinstance(value, float)
class Question:
def __init__(self, column, value):
self.column = column
self.value = value
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val >= self.value
else:
return val == self.value
def __repr__(self):
condition = "=="
if is_numeric(self.value):
condition = ">="
return "Is %s %s %s?" % (
header[self.column], condition, str(self.value))
def partition(rows, question):
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left)) / (len(left) + len(right))
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
def find_best_split(rows):
best_gain = 0
best_question = None
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values:
question = Question(col, val)
true_rows, false_rows = partition(rows, question)
if len(true_rows) == 0 or len(false_rows) == 0:
continue
# Calculate the information gain from this split
gain = info_gain(true_rows, false_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class Decision_Node:
def __init__(self,
question,
true_branch,
false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
def build_tree(rows):
gain, question = find_best_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = partition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
return Decision_Node(question, true_branch, false_branch)
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print (spacing + "Predict", node.predictions)
return
print (spacing + str(node.question))
print (spacing + '--> True:')
print_tree(node.true_branch, spacing + " ")
print (spacing + '--> False:')
print_tree(node.false_branch, spacing + " ")
def classify(row, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(row):
return classify(row, node.true_branch)
else:
return classify(row, node.false_branch)
def print_leaf(counts):
total = sum(counts.values()) * 1.0
probs = {}
for lbl in counts.keys():
probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
return probs
# set up the window
GAMEBOARD = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
pygame.display.set_caption('Saper')
background_image = pygame.image.load("images/background.png")
prv_out_bk_1 = 0
prv_out_bk_2 = 0
counter = 0
flag1 = True
flag2 = False
my_tree = build_tree(training_data)
while True:
for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
sys.exit()
s = saper_get_surrounding(saper_map, saper_x, saper_y)
write_to_file("wabbit_move", s)
output = float(os.popen("vw -i wabbit_model wabbit_move -p /dev/stdout --quiet").read())
print(output)
if prv_out_bk_1 == output or prv_out_bk_2 == output:
counter = counter + 1
if counter > 21:
counter = 0
output = random.randint(0, 5)
prv_out_bk_2 = prv_out_bk_1
prv_out_bk_1 = output
if output < 1.5:
if saper_x < len(saper_map)-1:
saper_x_movement = saper_x + 1
saper_y_movement = saper_y
elif output < 2.5:
if saper_x > 0:
saper_x_movement = saper_x - 1
saper_y_movement = saper_y
elif output < 3.5:
if saper_y < len(saper_map[0])-1:
saper_y_movement = saper_y + 1
saper_x_movement = saper_x
else:
if saper_y > 0:
saper_y_movement = saper_y - 1
saper_x_movement = saper_x
if saper_x_movement != saper_x or saper_y_movement != saper_y:
if saper_map[saper_x_movement][saper_y_movement] is None:
saper_map[saper_x_movement][saper_y_movement] = saper_map[saper_x][saper_y]
saper_map[saper_x][saper_y] = None
saper_x = saper_x_movement
saper_y = saper_y_movement
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Tools":
saper_map[saper_x][saper_y].change_tool(saper_map[saper_x_movement][saper_y_movement])
saper_x_movement = saper_x
saper_y_movement = saper_y
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Bomb":
if saper_map[saper_x_movement][saper_y_movement].type == "A":
kod = randint(0, len(training_data)-1)
options = []
for lbl in classify(training_data[kod], my_tree).keys():
options.append(lbl)
defused = defused + saper_map[saper_x][saper_y].defuse(saper_map[saper_x_movement][saper_y_movement])
typ = training_data[kod][-1] + " " + random.choice(options)
print(typ)
saper_map[saper_x_movement][saper_y_movement].type = typ
saper_x_movement = saper_x
saper_y_movement = saper_y
GAMEBOARD.blit(background_image, (0, 0))
for i in range(len(saper_map)):
for j in range(len(saper_map[i])):
if saper_map[i][j].__class__.__name__ == "Saper":
if saper_map[i][j].tool == "A":
GAMEBOARD.blit(Saper_A_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Wall":
GAMEBOARD.blit(Wall_image, [i * 50, j * 50])
elif saper_map[i][j].__class__.__name__ == "Bomb":
if saper_map[i][j].type == "done":
image_select = Bomb_Defused
elif saper_map[i][j].type == "Red Red":
image_select = Bomb_RR
elif saper_map[i][j].type == "Green Green":
image_select = Bomb_GG
elif saper_map[i][j].type == "Yellow Yellow":
image_select = Bomb_YY
elif saper_map[i][j].type == "Blue Blue":
image_select = Bomb_BB
elif saper_map[i][j].type == "Blue Red":
image_select = Bomb_RB
elif saper_map[i][j].type == "Blue Green":
image_select = Bomb_GB
elif saper_map[i][j].type == "Blue Yellow":
image_select = Bomb_YB
elif saper_map[i][j].type == "Yellow Red":
image_select = Bomb_RY
elif saper_map[i][j].type == "Yellow Green":
image_select = Bomb_GY
elif saper_map[i][j].type == "Yellow Blue":
image_select = Bomb_BY
elif saper_map[i][j].type == "Green Red":
image_select = Bomb_RG
elif saper_map[i][j].type == "Green Yellow":
image_select = Bomb_YG
elif saper_map[i][j].type == "Green Blue":
image_select = Bomb_BG
elif saper_map[i][j].type == "Red Blue":
image_select = Bomb_BR
elif saper_map[i][j].type == "Red Green":
image_select = Bomb_GR
elif saper_map[i][j].type == "Red Yellow":
image_select = Bomb_YR
elif saper_map[i][j].type == "A":
image_select = Bomb_Image
GAMEBOARD.blit(image_select, [i * 50, j * 50])
# Refresh Screen
pygame.display.flip()
fpsClock.tick(FPS)