Prześlij pliki do ''
This commit is contained in:
parent
e481a12dc1
commit
53d743667c
535
Decision_Tree_Saper.py
Normal file
535
Decision_Tree_Saper.py
Normal file
@ -0,0 +1,535 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import pygame, sys, random
|
||||
from objects.Bomb import Bomb
|
||||
from objects.Saper import Saper
|
||||
from objects.Wall import Wall
|
||||
from pygame.locals import *
|
||||
from random import randint
|
||||
|
||||
# Defining the program environment
|
||||
# list containing the map of the game
|
||||
saper_map = []
|
||||
|
||||
# Define the Frames Per Second setting
|
||||
FPS = 30
|
||||
fpsClock = pygame.time.Clock()
|
||||
|
||||
# Define window size for the environment to run in
|
||||
WINDOW_WIDTH = 1000
|
||||
WINDOW_HEIGHT = 700
|
||||
|
||||
# Define saper coordinates - Those are just arbitrary, the map will decide position
|
||||
saper_x = 0
|
||||
saper_y = 0
|
||||
|
||||
# Define the coordinates of the saper movement
|
||||
saper_x_movement = 0
|
||||
saper_y_movement = 0
|
||||
|
||||
# List containing the coordinates of the bombs on the map
|
||||
dest = []
|
||||
|
||||
# List containing the bomb priority and their respective coordinates from the 'dest' list
|
||||
priority = []
|
||||
|
||||
# List containing the Path to follow found by the A star algorithm
|
||||
Solution_A = []
|
||||
|
||||
|
||||
# List of used graphics
|
||||
Saper_A_image = pygame.image.load("images/saper_A.png")
|
||||
|
||||
Bomb_Image = pygame.image.load("images/Bomb.png") # Instead of Bomb_A
|
||||
|
||||
Bomb_Defused = pygame.image.load("images/Bomb_Defused.png") # Instead of thumbs up
|
||||
|
||||
Bomb_RR = pygame.image.load("images/Bomb_R.png") # Bomb defused
|
||||
Bomb_GG = pygame.image.load("images/Bomb_G.png") # Bomb defused
|
||||
Bomb_BB = pygame.image.load("images/Bomb_B.png") # Bomb defused
|
||||
Bomb_YY = pygame.image.load("images/Bomb_Y.png") # Bomb defused
|
||||
Bomb_RB = pygame.image.load("images/Bomb_RB.png") # Bomb defused
|
||||
Bomb_GB = pygame.image.load("images/Bomb_GB.png") # Bomb defused
|
||||
Bomb_YB = pygame.image.load("images/Bomb_YB.png") # Bomb defused
|
||||
Bomb_GR = pygame.image.load("images/Bomb_GR.png") # Bomb defused
|
||||
Bomb_BR = pygame.image.load("images/Bomb_BR.png") # Bomb defused
|
||||
Bomb_YR = pygame.image.load("images/Bomb_YR.png") # Bomb defused
|
||||
Bomb_RY = pygame.image.load("images/Bomb_RY.png") # Bomb defused
|
||||
Bomb_GY = pygame.image.load("images/Bomb_GY.png") # Bomb defused
|
||||
Bomb_BY = pygame.image.load("images/Bomb_BY.png") # Bomb defused
|
||||
Bomb_BG = pygame.image.load("images/Bomb_BG.png") # Bomb defused
|
||||
Bomb_YG = pygame.image.load("images/Bomb_YG.png") # Bomb defused
|
||||
Bomb_RG = pygame.image.load("images/Bomb_RG.png") # Bomb defused
|
||||
|
||||
Wall_image = pygame.image.load("images/Wall.png")
|
||||
|
||||
# defused bomb counter
|
||||
defused = 0
|
||||
# Defining all the functions
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
# Decision tree classification and regression tree.
|
||||
header = ["A", "B", "C", "cut"]
|
||||
training_data = [
|
||||
['Green', 'Green', 'Red', 'Red'],
|
||||
['Green', 'Red', 'Green', 'Red'],
|
||||
['Red', 'Green', 'Green', 'Red'],
|
||||
['Red', 'Green', 'Blue', 'Red'],
|
||||
['Green', 'Red', 'Blue', 'Red'],
|
||||
['Blue', 'Red', 'Blue', 'Red'],
|
||||
['Green', 'Yellow', 'Red', 'Red'],
|
||||
['Yellow', 'Yellow', 'Red', 'Red'],
|
||||
['Green', 'Yellow', 'Blue', 'Yellow'],
|
||||
['Blue', 'Yellow', 'Blue', 'Yellow'],
|
||||
['Blue', 'Blue', 'Yellow', 'Yellow'],
|
||||
['Yellow', 'Blue', 'Blue', 'Yellow'],
|
||||
['Yellow', 'Yellow', 'Blue', 'Blue'],
|
||||
['Blue', 'Yellow', 'Yellow', 'Blue'],
|
||||
['Green', 'Green', 'Yellow', 'Yellow'],
|
||||
['Green', 'Green', 'Blue', 'Blue'],
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
def class_counts(rows):
|
||||
counts = {}
|
||||
for row in rows:
|
||||
label = row[-1]
|
||||
if label not in counts:
|
||||
counts[label] = 0
|
||||
counts[label] += 1
|
||||
return counts
|
||||
|
||||
|
||||
def is_numeric(value):
|
||||
return isinstance(value, int) or isinstance(value, float)
|
||||
|
||||
|
||||
class Question:
|
||||
|
||||
|
||||
def __init__(self, column, value):
|
||||
self.column = column
|
||||
self.value = value
|
||||
|
||||
def match(self, example):
|
||||
val = example[self.column]
|
||||
if is_numeric(val):
|
||||
return val >= self.value
|
||||
else:
|
||||
return val == self.value
|
||||
|
||||
def __repr__(self):
|
||||
condition = "=="
|
||||
if is_numeric(self.value):
|
||||
condition = ">="
|
||||
return "Is %s %s %s?" % (
|
||||
header[self.column], condition, str(self.value))
|
||||
|
||||
|
||||
def partition(rows, question):
|
||||
|
||||
true_rows, false_rows = [], []
|
||||
for row in rows:
|
||||
if question.match(row):
|
||||
true_rows.append(row)
|
||||
else:
|
||||
false_rows.append(row)
|
||||
return true_rows, false_rows
|
||||
|
||||
|
||||
def gini(rows):
|
||||
|
||||
counts = class_counts(rows)
|
||||
impurity = 1
|
||||
for lbl in counts:
|
||||
prob_of_lbl = counts[lbl] / float(len(rows))
|
||||
impurity -= prob_of_lbl**2
|
||||
return impurity
|
||||
|
||||
|
||||
|
||||
|
||||
def info_gain(left, right, current_uncertainty):
|
||||
|
||||
p = float(len(left)) / (len(left) + len(right))
|
||||
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
|
||||
|
||||
|
||||
def find_best_split(rows):
|
||||
|
||||
best_gain = 0
|
||||
best_question = None
|
||||
current_uncertainty = gini(rows)
|
||||
n_features = len(rows[0]) - 1
|
||||
|
||||
for col in range(n_features):
|
||||
|
||||
values = set([row[col] for row in rows])
|
||||
|
||||
for val in values:
|
||||
|
||||
question = Question(col, val)
|
||||
|
||||
true_rows, false_rows = partition(rows, question)
|
||||
|
||||
|
||||
if len(true_rows) == 0 or len(false_rows) == 0:
|
||||
continue
|
||||
|
||||
# Calculate the information gain from this split
|
||||
gain = info_gain(true_rows, false_rows, current_uncertainty)
|
||||
|
||||
if gain >= best_gain:
|
||||
best_gain, best_question = gain, question
|
||||
|
||||
return best_gain, best_question
|
||||
|
||||
|
||||
class Leaf:
|
||||
|
||||
|
||||
def __init__(self, rows):
|
||||
self.predictions = class_counts(rows)
|
||||
|
||||
|
||||
class Decision_Node:
|
||||
|
||||
def __init__(self,
|
||||
question,
|
||||
true_branch,
|
||||
false_branch):
|
||||
self.question = question
|
||||
self.true_branch = true_branch
|
||||
self.false_branch = false_branch
|
||||
|
||||
|
||||
def build_tree(rows):
|
||||
gain, question = find_best_split(rows)
|
||||
if gain == 0:
|
||||
return Leaf(rows)
|
||||
true_rows, false_rows = partition(rows, question)
|
||||
true_branch = build_tree(true_rows)
|
||||
false_branch = build_tree(false_rows)
|
||||
|
||||
return Decision_Node(question, true_branch, false_branch)
|
||||
|
||||
|
||||
def print_tree(node, spacing=""):
|
||||
|
||||
if isinstance(node, Leaf):
|
||||
print (spacing + "Predict", node.predictions)
|
||||
return
|
||||
|
||||
print (spacing + str(node.question))
|
||||
|
||||
print (spacing + '--> True:')
|
||||
print_tree(node.true_branch, spacing + " ")
|
||||
|
||||
print (spacing + '--> False:')
|
||||
print_tree(node.false_branch, spacing + " ")
|
||||
|
||||
|
||||
def classify(row, node):
|
||||
if isinstance(node, Leaf):
|
||||
return node.predictions
|
||||
if node.question.match(row):
|
||||
return classify(row, node.true_branch)
|
||||
else:
|
||||
return classify(row, node.false_branch)
|
||||
|
||||
|
||||
|
||||
|
||||
def print_leaf(counts):
|
||||
total = sum(counts.values()) * 1.0
|
||||
probs = {}
|
||||
for lbl in counts.keys():
|
||||
probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
|
||||
return probs
|
||||
|
||||
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
# Procedure used to calculate the cost by returning the distance from our point to the target point
|
||||
def heuristic_function_cost(start, goal):
|
||||
return abs(start[0] - goal[0]) + abs(start[1] - goal[1])
|
||||
|
||||
|
||||
def A_star_pf(Grid, start, dest, priority): #A_star(map, [x, y], dest, priority)
|
||||
Closed_set = []
|
||||
Open_set = [start]
|
||||
Saper_came_from = []
|
||||
g_Score = []
|
||||
f_Score = []
|
||||
Grid2 = []
|
||||
goal = dest[priority.index(min(priority))]
|
||||
dest.pop(priority.index(min(priority)))
|
||||
priority.pop(priority.index(min(priority)))
|
||||
|
||||
for i in range(len(Grid)):
|
||||
g_Score.append([])
|
||||
f_Score.append([])
|
||||
Saper_came_from.append([])
|
||||
Grid2.append([])
|
||||
for j in range(len(Grid[i])):
|
||||
g_Score[i].append(1000)
|
||||
f_Score[i].append(1000)
|
||||
Saper_came_from[i].append([i, j])
|
||||
if Grid[i][j] is None or Grid[i][j].__class__.__name__ == "Saper" or (i == goal[0] and j == goal[1]):
|
||||
Grid2[i].append(None)
|
||||
else:
|
||||
Grid2[i].append(Wall())
|
||||
|
||||
g_Score[start[0]][start[1]] = 0
|
||||
f_Score[start[0]][start[1]] = heuristic_function_cost(start, goal)
|
||||
flag3 = True
|
||||
while (len(Open_set) > 0) and flag3:
|
||||
current = Open_set[0]
|
||||
current_id = 0
|
||||
for l in range(len(Open_set)):
|
||||
if f_Score[Open_set[l][0]][Open_set[l][1]] < f_Score[current[0]][current[1]]:
|
||||
current = Open_set[l]
|
||||
current_id = l
|
||||
|
||||
if current[0] == goal[0] and current[1] == goal[1]:
|
||||
flag3 = False
|
||||
|
||||
Open_set.pop(current_id)
|
||||
Closed_set.append(current)
|
||||
|
||||
for k in range(4):
|
||||
flag2 = False
|
||||
if k == 0 and Grid2[current[0] + 1][current[1]].__class__.__name__ != "Wall":
|
||||
neighbor = [current[0] + 1, current[1]]
|
||||
flag2 = True
|
||||
if k == 1 and Grid2[current[0] - 1][current[1]].__class__.__name__ != "Wall":
|
||||
flag2 = True
|
||||
neighbor = [current[0] - 1, current[1]]
|
||||
if k == 2 and Grid2[current[0]][current[1] + 1].__class__.__name__ != "Wall":
|
||||
flag2 = True
|
||||
neighbor = [current[0], current[1] + 1]
|
||||
if k == 3 and Grid2[current[0]][current[1] - 1].__class__.__name__ != "Wall":
|
||||
flag2 = True
|
||||
neighbor = [current[0], current[1] - 1]
|
||||
|
||||
if flag2:
|
||||
flag1 = True
|
||||
for l in range(len(Closed_set)):
|
||||
if Closed_set[l][0] == neighbor[0] and Closed_set[l][1] == neighbor[1]:
|
||||
flag1 = False
|
||||
|
||||
if flag2 and flag1:
|
||||
for l in range(len(Closed_set)):
|
||||
if Closed_set[l][0] == neighbor[0] and Closed_set[l][1] == neighbor[1]:
|
||||
flag2 = False
|
||||
if flag2:
|
||||
flag1 = True
|
||||
poss_g_Score = g_Score[current[0]][current[1]] + 1
|
||||
|
||||
for l in range(len(Open_set)):
|
||||
if Open_set[l][0] == neighbor[0] and Open_set[l][1] == neighbor[1]:
|
||||
flag1 = False
|
||||
if flag1:
|
||||
Open_set.append(neighbor)
|
||||
elif poss_g_Score >= g_Score[neighbor[0]][neighbor[1]]:
|
||||
continue
|
||||
|
||||
Saper_came_from[neighbor[0]][neighbor[1]] = [current[0], current[1]]
|
||||
g_Score[neighbor[0]][neighbor[1]] = poss_g_Score
|
||||
f_Score[neighbor[0]][neighbor[1]] = g_Score[neighbor[0]][neighbor[1]] + heuristic_function_cost(neighbor, goal)
|
||||
Path = []
|
||||
temp0 = goal[0]
|
||||
temp1 = goal[1]
|
||||
Path.append([temp0, temp1])
|
||||
while not (temp0 == start[0] and temp1 == start[1]):
|
||||
Path.append([Saper_came_from[temp0][temp1][0], Saper_came_from[temp0][temp1][1]])
|
||||
help1 = temp0
|
||||
help2 = temp1
|
||||
temp0 = Saper_came_from[help1][help2][0]
|
||||
temp1 = Saper_came_from[help1][help2][1]
|
||||
|
||||
for i in range(len(Path) - 1, 0, -1):
|
||||
if Path[i][0] + 1 == Path[i - 1][0] and Path[i][1] == Path[i - 1][1]:
|
||||
Solution_A.append("R")
|
||||
elif Path[i][0] - 1 == Path[i - 1][0] and Path[i][1] == Path[i - 1][1]:
|
||||
Solution_A.append("L")
|
||||
elif Path[i][0] == Path[i - 1][0] and Path[i][1] + 1 == Path[i - 1][1]:
|
||||
Solution_A.append("D")
|
||||
elif Path[i][0] == Path[i - 1][0] and Path[i][1] - 1 == Path[i - 1][1]:
|
||||
Solution_A.append("U")
|
||||
|
||||
if len(dest) > 0:
|
||||
A_star_pf(Grid, Saper_came_from[goal[0]][goal[1]], dest, priority)
|
||||
|
||||
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
# Procedure translating an encoded map from a file to a usable format and adding it to the list of maps
|
||||
def read_map(file):
|
||||
f = open("maps/" + file, "r")
|
||||
s = f.read()
|
||||
saper_map.append([])
|
||||
index = 0
|
||||
for i in range(len(s)-1):
|
||||
if s[i] == "0":
|
||||
saper_map[index].append(None)
|
||||
if s[i] == "1":
|
||||
saper_map[index].append(Wall())
|
||||
if s[i] == "2":
|
||||
saper_map[index].append(Saper())
|
||||
if s[i] == "3":
|
||||
saper_map[index].append(Bomb(random.randint(200, 600), "A"))
|
||||
if s[i] == "\n":
|
||||
saper_map.append([])
|
||||
index = index + 1
|
||||
|
||||
|
||||
# Initialize all the required pygame modules
|
||||
pygame.init()
|
||||
|
||||
# Call the translating function for the specified map
|
||||
read_map("map2.txt")
|
||||
|
||||
# Procedure finding the saper coordinates on the translated map and assigning them to the objects XY coordinates
|
||||
for i in range(len(saper_map)):
|
||||
for j in range(len(saper_map[i])):
|
||||
if saper_map[i][j].__class__.__name__ == "Saper":
|
||||
saper_x = i
|
||||
saper_y = j
|
||||
|
||||
|
||||
# Procedure finding the bomb coordinates and the bomb priority
|
||||
# and appending them respectively to the 'dest' list and 'priority' list
|
||||
for i in range(len(saper_map)):
|
||||
for j in range(len(saper_map[i])):
|
||||
if saper_map[i][j].__class__.__name__ == "Bomb":
|
||||
dest.append([i, j])
|
||||
priority.append(saper_map[i][j].priority)
|
||||
|
||||
# Execution of the A star algorithm on the given map
|
||||
A_star_pf(saper_map, [saper_x, saper_y], dest, priority)
|
||||
|
||||
# Set up the graphic environment of the program
|
||||
GAMEBOARD = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT), 0, 32)
|
||||
# set_mode((size_width, size height), flags, depth)
|
||||
|
||||
# Set the window name
|
||||
pygame.display.set_caption('Autonomiczny Saper')
|
||||
|
||||
# Set the background image
|
||||
background_image = pygame.image.load("images/background.png")
|
||||
|
||||
# Set up the flag to check if the saper is done clearing the bombs
|
||||
saper_done_flag = True
|
||||
|
||||
# Control variable for movement operations
|
||||
game_loop = 0
|
||||
# Building the tree
|
||||
my_tree = build_tree(training_data)
|
||||
print_tree(my_tree)
|
||||
|
||||
# Set up the main movement loop and action loop
|
||||
while True:
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
if game_loop >= len(Solution_A) and saper_done_flag:
|
||||
saper_done_flag = False
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
for event in pygame.event.get():
|
||||
if event.type == QUIT:
|
||||
pygame.quit()
|
||||
sys.exit()
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
if saper_done_flag:
|
||||
if Solution_A[game_loop] == "R":
|
||||
if saper_x < len(saper_map) - 1:
|
||||
saper_x_movement = saper_x + 1
|
||||
saper_y_movement = saper_y
|
||||
|
||||
elif Solution_A[game_loop] == "L":
|
||||
if saper_x > 0:
|
||||
saper_x_movement = saper_x - 1
|
||||
saper_y_movement = saper_y
|
||||
|
||||
elif Solution_A[game_loop] == "D":
|
||||
if saper_y < len(saper_map[0]) - 1:
|
||||
saper_y_movement = saper_y + 1
|
||||
saper_x_movement = saper_x
|
||||
|
||||
elif Solution_A[game_loop] == "U":
|
||||
if saper_y > 0:
|
||||
saper_y_movement = saper_y - 1
|
||||
saper_x_movement = saper_x
|
||||
|
||||
game_loop = game_loop + 1
|
||||
|
||||
if saper_x_movement != saper_x or saper_y_movement != saper_y:
|
||||
if saper_map[saper_x_movement][saper_y_movement] is None:
|
||||
saper_map[saper_x_movement][saper_y_movement] = saper_map[saper_x][saper_y]
|
||||
saper_map[saper_x][saper_y] = None
|
||||
saper_x = saper_x_movement
|
||||
saper_y = saper_y_movement
|
||||
|
||||
elif saper_map[saper_x_movement][saper_y_movement].__class__.__name__ == "Bomb":
|
||||
kod = randint(0, len(training_data)-1)
|
||||
options = []
|
||||
for lbl in classify(training_data[kod], my_tree).keys():
|
||||
options.append(lbl)
|
||||
defused = defused + saper_map[saper_x][saper_y].defuse(saper_map[saper_x_movement][saper_y_movement])
|
||||
typ = training_data[kod][-1] + " " + random.choice(options)
|
||||
print(typ)
|
||||
saper_map[saper_x_movement][saper_y_movement].type = typ
|
||||
saper_x_movement = saper_x
|
||||
saper_y_movement = saper_y
|
||||
# -------------------------------------------------------------------------------------------------------------------- #
|
||||
GAMEBOARD.blit(background_image, (0, 0))
|
||||
for i in range(len(saper_map)):
|
||||
for j in range(len(saper_map[i])):
|
||||
if saper_map[i][j].__class__.__name__ == "Saper":
|
||||
if saper_map[i][j].tool == "A":
|
||||
GAMEBOARD.blit(Saper_A_image, [i*50, j*50])
|
||||
|
||||
elif saper_map[i][j].__class__.__name__ == "Wall":
|
||||
GAMEBOARD.blit(Wall_image, [i*50, j*50])
|
||||
|
||||
elif saper_map[i][j].__class__.__name__ == "Bomb":
|
||||
if saper_map[i][j].type == "done":
|
||||
image_select = Bomb_Defused
|
||||
elif saper_map[i][j].type == "Red Red":
|
||||
image_select = Bomb_RR
|
||||
elif saper_map[i][j].type == "Green Green":
|
||||
image_select = Bomb_GG
|
||||
elif saper_map[i][j].type == "Yellow Yellow":
|
||||
image_select = Bomb_YY
|
||||
elif saper_map[i][j].type == "Blue Blue":
|
||||
image_select = Bomb_BB
|
||||
elif saper_map[i][j].type == "Blue Red":
|
||||
image_select = Bomb_RB
|
||||
elif saper_map[i][j].type == "Blue Green":
|
||||
image_select = Bomb_GB
|
||||
elif saper_map[i][j].type == "Blue Yellow":
|
||||
image_select = Bomb_YB
|
||||
elif saper_map[i][j].type == "Yellow Red":
|
||||
image_select = Bomb_RY
|
||||
elif saper_map[i][j].type == "Yellow Green":
|
||||
image_select = Bomb_GY
|
||||
elif saper_map[i][j].type == "Yellow Blue":
|
||||
image_select = Bomb_BY
|
||||
elif saper_map[i][j].type == "Green Red":
|
||||
image_select = Bomb_RG
|
||||
elif saper_map[i][j].type == "Green Yellow":
|
||||
image_select = Bomb_YG
|
||||
elif saper_map[i][j].type == "Green Blue":
|
||||
image_select = Bomb_BG
|
||||
elif saper_map[i][j].type == "Red Blue":
|
||||
image_select = Bomb_BR
|
||||
elif saper_map[i][j].type == "Red Green":
|
||||
image_select = Bomb_GR
|
||||
elif saper_map[i][j].type == "Red Yellow":
|
||||
image_select = Bomb_YR
|
||||
elif saper_map[i][j].type == "A":
|
||||
image_select = Bomb_Image
|
||||
GAMEBOARD.blit(image_select, [i * 50, j * 50])
|
||||
|
||||
# Refresh the GAMEBOARD screen
|
||||
pygame.display.flip()
|
Loading…
Reference in New Issue
Block a user