ium_444380/train_model.py

104 lines
3.7 KiB
Python
Raw Normal View History

2022-05-03 14:40:26 +02:00
import sys
2022-04-24 18:20:59 +02:00
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from keras.models import Sequential
from keras.layers import Dense
import tensorflow as tf
import numpy as np
2022-05-07 19:44:54 +02:00
from sacred import Experiment
from sacred.observers import FileStorageObserver, MongoObserver
2022-04-24 18:20:59 +02:00
2022-05-07 21:13:42 +02:00
ex = Experiment(save_git_info=False)
2022-05-07 19:44:54 +02:00
ex.observers.append(FileStorageObserver("experiments"))
#ex.observers.append(MongoObserver(url="mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017", db_name="sacred"))
2022-05-03 14:40:26 +02:00
2022-04-24 18:20:59 +02:00
2022-05-07 19:44:54 +02:00
@ex.config
def config():
epochs = 10
2022-04-24 18:20:59 +02:00
2022-05-07 19:44:54 +02:00
@ex.automain
def main(epochs):
tf.config.set_visible_devices([], 'GPU')
# Read and split data
train_data = pd.read_csv("crime_train.csv")
val_data = pd.read_csv("crime_dev.csv")
test_data = pd.read_csv("crime_test.csv")
x_columns = ["DISTRICT", "STREET", "YEAR", "MONTH", "DAY_OF_WEEK", "HOUR", "Lat", "Long"]
y_column = "OFFENSE_CODE_GROUP"
x_train = train_data[x_columns]
y_train = train_data[y_column]
x_val = val_data[x_columns]
y_val = val_data[y_column]
x_test = test_data[x_columns]
y_test = test_data[y_column]
num_categories = len(y_train.unique())
num_features = len(x_columns)
# Train label encoders for categorical data
encoder_y = LabelEncoder()
encoder_day = LabelEncoder()
encoder_dist = LabelEncoder()
encoder_street = LabelEncoder()
encoder_y.fit(y_train)
encoder_day.fit(x_train["DAY_OF_WEEK"])
encoder_dist.fit(x_train["DISTRICT"])
encoder_street.fit(pd.concat([x_val["STREET"], x_test["STREET"], x_train["STREET"]], axis=0))
# Encode train categorical data
y_train = encoder_y.transform(y_train)
x_train["DAY_OF_WEEK"] = encoder_day.transform(x_train["DAY_OF_WEEK"])
x_train["DISTRICT"] = encoder_dist.transform(x_train["DISTRICT"])
x_train["STREET"] = encoder_street.transform(x_train["STREET"])
# Encode train categorical data
y_val = encoder_y.transform(y_val)
x_val["DAY_OF_WEEK"] = encoder_day.transform(x_val["DAY_OF_WEEK"])
x_val["DISTRICT"] = encoder_dist.transform(x_val["DISTRICT"])
x_val["STREET"] = encoder_street.transform(x_val["STREET"])
# Encode train categorical data
y_test = encoder_y.transform(y_test)
x_test["DAY_OF_WEEK"] = encoder_day.transform(x_test["DAY_OF_WEEK"])
x_test["DISTRICT"] = encoder_dist.transform(x_test["DISTRICT"])
x_test["STREET"] = encoder_street.transform(x_test["STREET"])
# Define model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=num_features))
model.add(Dense(64, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(num_categories, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_accuracy'])
# Train model
history = model.fit(x_train, y_train, epochs=int(epochs), validation_data=(x_val, y_val))
# Make predictions
y_pred = model.predict(x_test)
output = [np.argmax(pred) for pred in y_pred]
output_text = encoder_y.inverse_transform(list(output))
# Save predictions
data_to_save = pd.concat([test_data[x_columns], test_data[y_column]], axis = 1)
data_to_save["PREDICTED"] = output_text
data_to_save.to_csv("out.csv")
# Save model
model.save("model")
ex.add_artifact("model/saved_model.pb")
# Log metrics
ex.log_scalar("loss", history.history["loss"])
ex.log_scalar("accuracy", history.history["accuracy"])
ex.log_scalar("val_loss", history.history["val_loss"])
ex.log_scalar("val_accuracy", history.history["val_accuracy"])