102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
|
import sys
|
||
|
|
||
|
import mlflow
|
||
|
import pandas as pd
|
||
|
from sklearn.preprocessing import LabelEncoder
|
||
|
from keras.models import Sequential
|
||
|
from keras.layers import Dense
|
||
|
import numpy as np
|
||
|
from mlflow.models.signature import infer_signature
|
||
|
import tensorflow as tf
|
||
|
tf.config.set_visible_devices([], 'GPU')
|
||
|
mlflow.set_experiment("s444380")
|
||
|
|
||
|
|
||
|
epochs = int(sys.argv[1])
|
||
|
|
||
|
|
||
|
def main(epochs):
|
||
|
mlflow.log_param("epochs", epochs)
|
||
|
mlflow.log_param("test", 100)
|
||
|
|
||
|
# Read and split data
|
||
|
train_data = pd.read_csv("crime_train.csv")
|
||
|
val_data = pd.read_csv("crime_dev.csv")
|
||
|
test_data = pd.read_csv("crime_test.csv")
|
||
|
|
||
|
x_columns = ["DISTRICT", "STREET", "YEAR", "MONTH", "DAY_OF_WEEK", "HOUR", "Lat", "Long"]
|
||
|
y_column = "OFFENSE_CODE_GROUP"
|
||
|
|
||
|
x_train = train_data[x_columns]
|
||
|
y_train = train_data[y_column]
|
||
|
x_val = val_data[x_columns]
|
||
|
y_val = val_data[y_column]
|
||
|
x_test = test_data[x_columns]
|
||
|
y_test = test_data[y_column]
|
||
|
|
||
|
num_categories = len(y_train.unique())
|
||
|
num_features = len(x_columns)
|
||
|
|
||
|
# Train label encoders for categorical data
|
||
|
encoder_y = LabelEncoder()
|
||
|
encoder_day = LabelEncoder()
|
||
|
encoder_dist = LabelEncoder()
|
||
|
encoder_street = LabelEncoder()
|
||
|
encoder_y.fit(y_train)
|
||
|
encoder_day.fit(x_train["DAY_OF_WEEK"])
|
||
|
encoder_dist.fit(x_train["DISTRICT"])
|
||
|
encoder_street.fit(pd.concat([x_val["STREET"], x_test["STREET"], x_train["STREET"]], axis=0))
|
||
|
|
||
|
|
||
|
# Encode train categorical data
|
||
|
y_train = encoder_y.transform(y_train)
|
||
|
x_train["DAY_OF_WEEK"] = encoder_day.transform(x_train["DAY_OF_WEEK"])
|
||
|
x_train["DISTRICT"] = encoder_dist.transform(x_train["DISTRICT"])
|
||
|
x_train["STREET"] = encoder_street.transform(x_train["STREET"])
|
||
|
|
||
|
# Encode train categorical data
|
||
|
y_val = encoder_y.transform(y_val)
|
||
|
x_val["DAY_OF_WEEK"] = encoder_day.transform(x_val["DAY_OF_WEEK"])
|
||
|
x_val["DISTRICT"] = encoder_dist.transform(x_val["DISTRICT"])
|
||
|
x_val["STREET"] = encoder_street.transform(x_val["STREET"])
|
||
|
|
||
|
# Encode train categorical data
|
||
|
y_test = encoder_y.transform(y_test)
|
||
|
x_test["DAY_OF_WEEK"] = encoder_day.transform(x_test["DAY_OF_WEEK"])
|
||
|
x_test["DISTRICT"] = encoder_dist.transform(x_test["DISTRICT"])
|
||
|
x_test["STREET"] = encoder_street.transform(x_test["STREET"])
|
||
|
|
||
|
# Define model
|
||
|
model = Sequential()
|
||
|
model.add(Dense(32, activation='relu', input_dim=num_features))
|
||
|
model.add(Dense(64, activation='relu'))
|
||
|
model.add(Dense(128, activation='relu'))
|
||
|
model.add(Dense(num_categories, activation='softmax'))
|
||
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_accuracy'])
|
||
|
|
||
|
# Train model
|
||
|
history = model.fit(x_train, y_train, epochs=int(epochs), validation_data=(x_val, y_val))
|
||
|
|
||
|
# Make predictions
|
||
|
y_pred = model.predict(x_test)
|
||
|
output = [np.argmax(pred) for pred in y_pred]
|
||
|
output_text = encoder_y.inverse_transform(list(output))
|
||
|
|
||
|
# Save predictions
|
||
|
data_to_save = pd.concat([test_data[x_columns], test_data[y_column]], axis = 1)
|
||
|
data_to_save["PREDICTED"] = output_text
|
||
|
data_to_save.to_csv("out.csv")
|
||
|
|
||
|
# Save model
|
||
|
model.save("model")
|
||
|
signature = infer_signature(x_train, y_train)
|
||
|
input_example = np.array([x_test.values[0]])
|
||
|
mlflow.keras.log_model(model, "model", signature=signature, input_example=input_example)
|
||
|
|
||
|
# Log metrics
|
||
|
mlflow.log_param("test", 33)
|
||
|
mlflow.log_metric("loss", history.history["loss"])
|
||
|
mlflow.log_metric("accuracy", history.history["accuracy"])
|
||
|
mlflow.log_metric("val_loss", history.history["val_loss"])
|
||
|
mlflow.log_metric("val_accuracy", history.history["val_accuracy"])
|