Model training
This commit is contained in:
parent
c961a8b834
commit
eccbbfdb80
@ -9,11 +9,12 @@ ENV IS_DOCKER=True
|
|||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
COPY ./download_data.sh calc_stats.sh ./
|
COPY ./download_data.sh calc_stats.sh ./
|
||||||
COPY ./clean_and_split_data.py calc_stats.py ./
|
COPY ./clean_and_split_data.py calc_stats.py ./
|
||||||
|
COPY ./train_model.py ./
|
||||||
|
|
||||||
RUN apt-get update && apt-get install -y python3-pip unzip && rm -rf /var/lib/apt/lists/*
|
RUN apt-get update && apt-get install -y python3-pip unzip && rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
RUN export PATH="$PATH:/root/.local/bin"
|
RUN export PATH="$PATH:/root/.local/bin"
|
||||||
|
|
||||||
RUN pip3 install kaggle pandas scikit-learn
|
RUN pip3 install kaggle pandas scikit-learn tensorflow
|
||||||
|
|
||||||
RUN mkdir /.kaggle && chmod o+w /.kaggle
|
RUN mkdir /.kaggle && chmod o+w /.kaggle
|
||||||
|
80
train_model.py
Normal file
80
train_model.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
from keras.models import Sequential
|
||||||
|
from keras.layers import Dense
|
||||||
|
import tensorflow as tf
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
tf.config.set_visible_devices([], 'GPU')
|
||||||
|
|
||||||
|
# Read and split data
|
||||||
|
train_data = pd.read_csv("crime_train.csv")
|
||||||
|
val_data = pd.read_csv("crime_dev.csv")
|
||||||
|
test_data = pd.read_csv("crime_test.csv")
|
||||||
|
|
||||||
|
x_columns = ["DISTRICT", "STREET", "YEAR", "MONTH", "DAY_OF_WEEK", "HOUR", "Lat", "Long"]
|
||||||
|
y_column = "OFFENSE_CODE_GROUP"
|
||||||
|
|
||||||
|
x_train = train_data[x_columns]
|
||||||
|
y_train = train_data[y_column]
|
||||||
|
x_val = val_data[x_columns]
|
||||||
|
y_val = val_data[y_column]
|
||||||
|
x_test = test_data[x_columns]
|
||||||
|
y_test = test_data[y_column]
|
||||||
|
|
||||||
|
num_categories = len(y_train.unique())
|
||||||
|
num_features = len(x_columns)
|
||||||
|
|
||||||
|
# Train label encoders for categorical data
|
||||||
|
encoder_y = LabelEncoder()
|
||||||
|
encoder_day = LabelEncoder()
|
||||||
|
encoder_dist = LabelEncoder()
|
||||||
|
encoder_street = LabelEncoder()
|
||||||
|
encoder_y.fit(y_train)
|
||||||
|
encoder_day.fit(x_train["DAY_OF_WEEK"])
|
||||||
|
encoder_dist.fit(x_train["DISTRICT"])
|
||||||
|
encoder_street.fit(pd.concat([x_val["STREET"], x_test["STREET"], x_train["STREET"]], axis=0))
|
||||||
|
|
||||||
|
|
||||||
|
# Encode train categorical data
|
||||||
|
y_train = encoder_y.transform(y_train)
|
||||||
|
x_train["DAY_OF_WEEK"] = encoder_day.transform(x_train["DAY_OF_WEEK"])
|
||||||
|
x_train["DISTRICT"] = encoder_dist.transform(x_train["DISTRICT"])
|
||||||
|
x_train["STREET"] = encoder_street.transform(x_train["STREET"])
|
||||||
|
|
||||||
|
# Encode train categorical data
|
||||||
|
y_val = encoder_y.transform(y_val)
|
||||||
|
x_val["DAY_OF_WEEK"] = encoder_day.transform(x_val["DAY_OF_WEEK"])
|
||||||
|
x_val["DISTRICT"] = encoder_dist.transform(x_val["DISTRICT"])
|
||||||
|
x_val["STREET"] = encoder_street.transform(x_val["STREET"])
|
||||||
|
|
||||||
|
# Encode train categorical data
|
||||||
|
y_test = encoder_y.transform(y_test)
|
||||||
|
x_test["DAY_OF_WEEK"] = encoder_day.transform(x_test["DAY_OF_WEEK"])
|
||||||
|
x_test["DISTRICT"] = encoder_dist.transform(x_test["DISTRICT"])
|
||||||
|
x_test["STREET"] = encoder_street.transform(x_test["STREET"])
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
model = Sequential()
|
||||||
|
model.add(Dense(32, activation='relu', input_dim=num_features))
|
||||||
|
model.add(Dense(64, activation='relu'))
|
||||||
|
model.add(Dense(128, activation='relu'))
|
||||||
|
model.add(Dense(num_categories, activation='softmax'))
|
||||||
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_accuracy'])
|
||||||
|
|
||||||
|
# Train model
|
||||||
|
model.fit(x_train, y_train, epochs=100, validation_data=(x_val, y_val))
|
||||||
|
|
||||||
|
# Make predictions
|
||||||
|
y_pred = model.predict(x_test)
|
||||||
|
output = [np.argmax(pred) for pred in y_pred]
|
||||||
|
output_text = encoder_y.inverse_transform(list(output))
|
||||||
|
|
||||||
|
# Save predictions
|
||||||
|
data_to_save = pd.concat([test_data[x_columns], test_data[y_column]], axis = 1)
|
||||||
|
data_to_save["PREDICTED"] = output_text
|
||||||
|
data_to_save.to_csv("out.csv")
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
model.save("model")
|
Loading…
Reference in New Issue
Block a user