{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Regresja wielomianowa" ] }, { "source": [ "![polynomial_regression](regression.png)\n", "\n", "Celem regresji wielomianowej jest zamodelowanie relacji między zmienną zależną od zmiennych niezależnych jako funkcję wielomianu n-tego stopnia.\n", "\n", "Postać ogólna regresji wielomianowej:\n", "\n", "$$ h_{\\theta}(x) = \\sum_{i=0}^{n} \\theta_i x^i $$\n", "\n", "Gdzie:\n", "\n", "$$ \\theta - \\text{wektor parametrów modelu} $$ " ], "cell_type": "markdown", "metadata": {} }, { "source": [ "## Funkcja kosztu\n", "![MSE](mse.webp)\n", "\n", "W celu odpowiedniego dobrania parametrów modelu, trzeba znaleźć minimum funkcji kosztu zdefiniowanej poniższym wzorem:\n", "\n", "$$ J = \\frac{1}{2m} (X \\theta - y)^T (X \\theta - y) $$\n", "\n", "Gdzie:\n", "\n", "$$ m - \\text{ilość przykładów} $$ \n", "\n", "Za funkcję kosztu przyjmuje się zmodyfikowaną wersję błędu średniokwadratowego. Dodatkowo dodaje się dzielenie przez 2*m zamiast m, aby gradient z funkcji był lepszej postaci." ], "cell_type": "markdown", "metadata": {} }, { "source": [ "## Metoda gradientu prostego\n", "![gradient_descent](gradient.png)" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "Do znalezienia minimum funckji kosztu można użyć metody gradientu prostego. W tym celu iteracyjnie liczy się gradient funkcji kosztu i aktualizuje się za jego pomocą wektor parametrów modelu aż do uzyskania zbieżności (Różnica między obliczoną funkcją kosztu a funkcją kosztu w poprzedniej iteracji będzie mniejsza od ustalonej wcześniej wartości $\\varepsilon$).\n", "\n", "Gradient funkcji kosztu:\n", "\n", "$$ \\dfrac{\\partial J(\\theta)}{\\partial \\theta} = \\frac{1}{m}X^T(X \\theta - y)$$\n", "\n", "Modyfikacja parametrów modelu:\n", "\n", "$$ \\theta_{new} = \\theta - \\alpha * \\dfrac{\\partial J(\\theta)}{\\partial \\theta}$$\n", "\n", "Gdzie:\n", "\n", "$$ \\alpha - \\text{współczynnik uczenia} $$" ], "cell_type": "markdown", "metadata": {} }, { "cell_type": "code", "execution_count": 46, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "import ipywidgets as widgets\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [], "source": [ "# Przydatne funkcje\n", "cost_functions = dict()\n", "\n", "def cost(theta, X, y):\n", " \"\"\"Wersja macierzowa funkcji kosztu\"\"\"\n", " m = len(y)\n", " J = 1.0 / (2.0 * m) * ((X * theta - y).T * (X * theta - y))\n", " return J.item()\n", "\n", "def gradient(theta, X, y):\n", " \"\"\"Wersja macierzowa gradientu funkcji kosztu\"\"\"\n", " return 1.0 / len(y) * (X.T * (X * theta - y)) \n", "\n", "def gradient_descent(fJ, fdJ, theta, X, y, alpha=0.1, eps=10**-7):\n", " \"\"\"Algorytm gradientu prostego\"\"\"\n", " current_cost = fJ(theta, X, y)\n", " logs = [[current_cost, theta]]\n", " while True:\n", " theta = theta - alpha * fdJ(theta, X, y)\n", " current_cost, prev_cost = fJ(theta, X, y), current_cost\n", " # print(current_cost)\n", " if abs(prev_cost - current_cost) > 10**15:\n", " print('Algorytm nie jest zbieżny!')\n", " break\n", " if abs(prev_cost - current_cost) <= eps:\n", " break\n", " logs.append([current_cost, theta]) \n", " return theta, logs\n", "\n", "def plot_data(X, y, xlabel, ylabel):\n", " \"\"\"Wykres danych\"\"\"\n", " fig = plt.figure(figsize=(16*.6, 9*.6))\n", " ax = fig.add_subplot(111)\n", " fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n", " ax.scatter([X[:, 1]], [y], c='r', s=50, label='Dane')\n", " \n", " ax.set_xlabel(xlabel)\n", " ax.set_ylabel(ylabel)\n", " ax.margins(.05, .05)\n", " plt.ylim(y.min() - 1, y.max() + 1)\n", " plt.xlim(np.min(X[:, 1]) - 1, np.max(X[:, 1]) + 1)\n", " return fig\n", "\n", "def plot_data_cost(X, y, xlabel, ylabel):\n", " \"\"\"Wykres funkcji kosztu\"\"\"\n", " fig = plt.figure(figsize=(16 * .6, 9 * .6))\n", " ax = fig.add_subplot(111)\n", " fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n", " ax.scatter([X], [y], c='r', s=50, label='Dane')\n", "\n", " ax.set_xlabel(xlabel)\n", " ax.set_ylabel(ylabel)\n", " ax.margins(.05, .05)\n", " plt.ylim(min(y) - 1, max(y) + 1)\n", " plt.xlim(np.min(X) - 1, np.max(X) + 1)\n", " return fig\n", "\n", "def plot_fun(fig, fun, X):\n", " \"\"\"Wykres funkcji `fun`\"\"\"\n", " ax = fig.axes[0]\n", " x0 = np.min(X[:, 1]) - 1.0\n", " x1 = np.max(X[:, 1]) + 1.0\n", " Arg = np.arange(x0, x1, 0.1)\n", " Val = fun(Arg)\n", " return ax.plot(Arg, Val, linewidth='2')" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "def MSE(Y_true, Y_pred):\n", " \"\"\"Błąd średniokwadratowy - Mean Squared Error\"\"\"\n", " return np.square(np.subtract(Y_true,Y_pred)).mean()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "# Funkcja regresji wielomianowej\n", "\n", "def h_poly(Theta, x):\n", " \"\"\"Funkcja wielomianowa\"\"\"\n", " return sum(theta * np.power(x, i) for i, theta in enumerate(Theta.tolist()))\n", "\n", "def get_poly_data(data, deg):\n", " \"\"\"Przygotowanie danych do regresji wielomianowej\"\"\"\n", " m, n_plus_1 = data.shape\n", " n = n_plus_1 - 1\n", "\n", " X1 = data[:, 0:n]\n", " X1 /= np.amax(X1, axis=0)\n", "\n", " Xs = [np.ones((m, 1)), X1]\n", "\n", " for i in range(2, deg+1):\n", " Xn = np.power(X1, i)\n", " Xn /= np.amax(Xn, axis=0)\n", " Xs.append(Xn)\n", "\n", " X = np.matrix(np.concatenate(Xs, axis=1)).reshape(m, deg * n + 1)\n", "\n", " y = np.matrix(data[:, -1]).reshape(m, 1)\n", "\n", " return X, y\n", "\n", "\n", "def polynomial_regression(X, y, n):\n", " \"\"\"Funkcja regresji wielomianowej\"\"\"\n", " theta_start = np.matrix([0] * (n+1)).reshape(n+1, 1)\n", " theta, logs = gradient_descent(cost, gradient, theta_start, X, y)\n", " return lambda x: h_poly(theta, x), logs" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "def predict_values(model, data, n):\n", " \"\"\"Funkcja predykcji\"\"\"\n", " x, y = get_poly_data(np.array(data), n)\n", " preprocessed_x = []\n", " for i in x:\n", " preprocessed_x.append(i.item(1))\n", " return y, model(preprocessed_x), MSE(y, model(preprocessed_x))\n", "\n", "def plot_and_mse(data, data_test, n):\n", " \"\"\"Wykres wraz z MSE\"\"\"\n", " x, y = get_poly_data(np.array(data), n)\n", " model, logs = polynomial_regression(x, y, n)\n", " cost_function = [[element[0], i] for i, element in enumerate(logs)]\n", " cost_functions[n] = cost_function\n", " \n", " fig = plot_data(x, y, xlabel='x', ylabel='y')\n", " plot_fun(fig, model, x)\n", "\n", " y_true, Y_pred, mse = predict_values(model, data_test, n)\n", " print(f'Wielomian {n} stopnia, MSE = {mse}')" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "slideshow": { "slide_type": "notes" } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " sqrMetres price\n", "1102 73 550000.0\n", "1375 78 496573.0\n", "1644 40 310000.0\n", "1434 22 377652.0\n", "1444 30 345180.0\n", "... ... ...\n", "384 76 269984.0\n", "214 42 249000.0\n", "24 47 299000.0\n", "1004 57 293848.0\n", "1632 112 329000.0\n", "\n", "[1674 rows x 2 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
sqrMetresprice
110273550000.0
137578496573.0
164440310000.0
143422377652.0
144430345180.0
.........
38476269984.0
21442249000.0
2447299000.0
100457293848.0
1632112329000.0
\n

1674 rows × 2 columns

\n
" }, "metadata": {}, "execution_count": 51 } ], "source": [ "# Wczytanie danych (mieszkania) przy pomocy biblioteki pandas\n", "\n", "alldata = pandas.read_csv('data_flats.tsv', header=0, sep='\\t',\n", " usecols=['price', 'rooms', 'sqrMetres'])\n", "alldata = alldata[['sqrMetres', 'price']]\n", "alldata = alldata.sample(frac=1)\n", "alldata" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "# alldata = np.matrix(alldata[['sqrMetres', 'price']])\n", "data_train = alldata[0:1600]\n", "data_test = alldata[1600:]\n", "data_train = np.matrix(data_train).astype(float)\n", "data_test = np.matrix(data_test).astype(float)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Wielomian 1 stopnia, MSE = 49522013685.367744\n", "Wielomian 2 stopnia, MSE = 148367826800.28735\n", "Wielomian 3 stopnia, MSE = 145689760074.80402\n" ] }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:29.197818\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAFvCAYAAADkPtfiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2OElEQVR4nO3de3TdVZ338c83lzbkwq2tpm1aQBsKtKC0VRQjgiADkYu0YcLoUvTpgA+gM1idhfrMmmG5RttxZrw9VHmY6gJmjVBJuSlFRm5ClYtNBXqBkgBC07RQ7kl6TbOfP/Y5zenJ+Z1bzjm/c3m/1upKe84vv7NzUpoP+7v3d5tzTgAAAAhPVdgDAAAAqHQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQlWQgM7NfmNlrZrYhzev/2sw2mdlGM/tlvscHAACQCSvFPmRmdpqkQUk3O+fmpri2VdKvJH3SOfeWmb3HOfdaIcYJAACQjpKcIXPOPSLpzdjHzOz9ZvZbM+s2s0fN7LjIU5dJWu6ceyvyuYQxAABQVEoykAW4QdJXnXPzJX1D0k8jjx8r6Vgz+4OZPW5m54Q2QgAAgARqwh5ALphZo6RTJd1mZtGHJ0Y+1khqlXS6pBZJj5jZic65tws8TAAAgITKIpDJz/S97Zz7YILn+iQ94ZzbJ+klM3tePqD9qYDjAwAACFQWJUvn3LvyYetiSTLvA5Gn75SfHZOZTZYvYb4YwjABAAASKslAZma3SHpM0mwz6zOzxZI+J2mxmT0taaOkCyOX3yfpDTPbJOkhSf/gnHsjjHEDAAAkUpJtLwAAAMpJSc6QAQAAlBMCGQAAQMhKbpfl5MmT3dFHHx32MACEra9PevXV4Oebm6Xp0ws3HgAVr7u7+3Xn3JRsPrfkAtnRRx+ttWvXhj0MAGFbsUK6+mppaGjscw0N0r/8i7R4ccGHBaBymdnL2X4uJUsApamzU6oK+Cesqso/DwAlgkAGoDQ1NUmrV/uPDQ3+sYaG0ccbG8MdHwBkoORKlgBwQFub1N8vrVwp9fZKs2b5mTHCGIASQyADUNoaG1krBqDkUbIEAAAIGYEMAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQEcgAAABCRiADAAAIGYEMAAAgZHkLZGY2w8weMrNNZrbRzP4+wTWnm9k7ZvZU5Nc/5Ws8AAAAxaomj/celvR159w6M2uS1G1mv3PObYq77lHn3Hl5HAcAAEBRy9sMmXNum3NuXeT3A5KelTQ9X68HAABQqgqyhszMjpZ0sqQnEjz9UTN72szuNbM5hRgPAABAMclnyVKSZGaNklZJuto5927c0+skHeWcGzSzdkl3SmpNcI/LJV0uSTNnzszvgAEAAAosrzNkZlYrH8b+2zl3e/zzzrl3nXODkd+vllRrZpMTXHeDc26Bc27BlClT8jlkAACAgsvnLkuT9HNJzzrnfhBwTXPkOpnZhyPjeSNfYwIAAChG+SxZfkzS5yWtN7OnIo99W9JMSXLOXS+pQ9IVZjYsaZekS5xzLo9jAgAAKDp5C2TOuTWSLMU110m6Ll9jAAAAKAV06gcAAAgZgQwAACBkBDIAAICQEcgAAABCRiADAAAIGYEMAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQEcgAAABCRiADAAAIGYEMAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQEcgAAABCRiADAAAIGYEMAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQEcgAAABCRiADAAAIGYEMAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGQEMgAAgJARyAAAAEJGIAMAAAgZgQwAACBkBDIAAICQ5S2QmdkMM3vIzDaZ2UYz+/sE15iZ/cTMes3sGTObl6/xAAAAFKuaPN57WNLXnXPrzKxJUreZ/c45tynmmnMltUZ+nSLpZ5GPAAAAFSNvM2TOuW3OuXWR3w9IelbS9LjLLpR0s/Mel3S4mU3N15gAAACKUUHWkJnZ0ZJOlvRE3FPTJW2J+XOfxoY2AACAspb3QGZmjZJWSbraOfdulve43MzWmtnaHTt25HaAAAAAIctrIDOzWvkw9t/OudsTXLJV0oyYP7dEHjuIc+4G59wC59yCKVOm5GewAAAAIcnnLkuT9HNJzzrnfhBw2d2SvhDZbfkRSe8457bla0wAAADFKJ+7LD8m6fOS1pvZU5HHvi1ppiQ5566XtFpSu6ReSTslfSmP4wEAAChKeQtkzrk1kizFNU7SVfkaAwAAQCmgUz8AAEDICGQAAAAhI5ABAACEjEAGAAAQMgIZAABAyAhkAAAAISOQAQAAhIxABgAAELJ8duoHAFSqgQFp5Uqpp0dqbZU6O6WmprBHBRQtAhkAILfWrJHa26WREWloSGpokJYskVavltrawh4dUJQoWQIAcmdgwIexgQEfxiT/Mfr44GC44wOKFIEMAJA7K1f6mbFERkb88wDGIJABAHKnp2d0Zize0JDU21vY8QAlgkAGAMid1la/ZiyRhgZp1qzCjgcoEQQyAEDudHZKVQE/Wqqq/PMAxiCQAQByp6nJ76ZsahqdKWtoGH28sTHc8QFFirYXAIDcamuT+vv9Av7eXl+m7OwkjAFJEMgAALnX2CgtXhz2KICSQckSAAAgZAQyAACAkBHIAAAAQkYgAwAACBmBDAAAIGTssgSAQhoY8O0genp8V/vOTt+jC0BFI5ABQKGsWSO1t/tDtoeGfMPUJUt8w9S2trBHByBElCwBoBAGBnwYGxgYPXx7aGj08cHBcMcHIFQEMgAohJUr/cxYIiMj/nkAFYtABgCF0NMzOjMWb2jIHzEEoGIRyACgEFpbRw/bjtfQ4M97BFCxCGQAUAidnVJVwD+5VVX+eQAVi0AGAIXQ1OR3UzY1jc6UNTSMPt7YGO74AISKthcAUChtbVJ/v1/A39vry5SdnYQxAAQyACioxkZp8eKwRwGgyFCyBAAACBmBDAAAIGQEMgAAgJARyAAAAELGon4AKHcDA35nZ0+Pb1Db2enbbQAoGgQyAChna9b4w8tHRvwRTQ0N0pIlvvdZW1vYowMQQckSAMrVwIAPYwMDo+doDg2NPj44GO74ABxAIAOAcrVypZ8ZS2RkxD8PoCgQyACgXPX0jM6MxRsa8qcFACgKBDIAKFetraPnZsZraPBHNwEoCgQyAChXnZ1SVcA/81VV/nkARYFABgDlqqnJ76ZsahqdKWtoGH2cQ82BokHbCwAoZ21tUn+/X8Df2+vLlJ2dhDGgyBDIAKDcNTZKixeHPQoASVCyBAAACBmBDAAAIGQEMgAAgJARyAAAAEKWt0BmZr8ws9fMbEPA86eb2Ttm9lTk1z/laywAAADFLJ+7LG+UdJ2km5Nc86hz7rw8jgEAAKDo5W2GzDn3iKQ383V/AACAchH2GrKPmtnTZnavmc0JusjMLjeztWa2dseOHYUcHwAAQN6FGcjWSTrKOfcBSf9X0p1BFzrnbnDOLXDOLZgyZUqhxgcAAFAQoQUy59y7zrnByO9XS6o1s8lhjQcAACAsoQUyM2s2M4v8/sORsbwR1ngAAADCkrddlmZ2i6TTJU02sz5J/yypVpKcc9dL6pB0hZkNS9ol6RLnnMvXeAAAAIpV3gKZc+5vUjx/nXxbDAAAgIoW9i5LAACAikcgAwAACBmBDAAAIGQEMgAAgJARyAAAAEKWMpCZ2VfN7IhCDAYAAKASpdP24r2S/mRm6yT9QtJ99AsDMG4DA9LKlVJPj9TaKnV2Sk1NYY8KAEJh6WSrSEf9syV9SdICSb+S9HPn3Av5Hd5YCxYscGvXri30ywLIpTVrpPZ2aWREGhqSGhqkqipp9WqprS3s0QFAVsys2zm3IJvPTWsNWWRGbHvk17CkIyR1mdn3s3lRABVsYMCHsYEBH8Yk/zH6+OBguOMDgBCks4bs782sW9L3Jf1B0onOuSskzZe0KM/jA1BuVq70M2OJjIz45wGgwqSzhuxISQudcy/HPuicGzGz8/IzLABlq6dndGYs3tCQ1Ntb2PEAQAb27R9RbXXum1SkDGTOuX9O8tyzuR0OgLLX2urXjCUKZQ0N0qxZhR8TACQxuGdY9zzTr67uPk1qmKjrPz8/56+Rt8PFASChzk5pyZLEz1VV+ecBIGQjI06Pv/iGurr7dO+G7dq1b78k6dC6Gu3et191tdU5fT0CGYDCamryuymDdlk2NoY9QgAV7OU3hrSqu0+r1m3V1rd3HXj8lGOOVMf8Fp174tSchzGJQAYgDG1tUn+/X8Df2+vLlJ2dhDEAoRjcM6zVz2xTV3efnvzLmwcebzniEC2a16JF81o0c1J9XsdAIAMQjsZGafHisEcBoEIFlSQPqa1W+4lT1TG/Raccc6Sqqqwg4yGQAQCAipFOSbJxYuHjEYEMAACUtaCS5PTDD1HH/MKUJFMhkAEAgLKTrCR57onNunj+jIKWJFMhkAEAgLIRVJL8cKQk2R5SSTKV4hsRAABABpKVJBfNb9GiedN11KSGEEeYGoEMAACUnFQlyY75LfrIMZOKpiSZCoEMAACUjFItSaZSeiMGAAAVZXDPsFavj5QkXyrNkmQqBDIAAFB0RkacHn8pUpJcX/olyVQIZAAAoGi8/MaQVq3bqlXdfWVVkkyl/L4iAKVhYMCfZdnTI7W2+rMsm5rCHhXGg+8pslQJJclUzDkX9hgysmDBArd27dqwhwFgPNaskdrbpZERaWhIamiQqqqk1av9weMoPXxPkaGUJcl5LfrI+0qrJGlm3c65BVl9LoEMQEENDEjTp/uP8ZqapP5+f/A4SgffU2TglTd2qmtdX1mWJMcTyErzKwaQO4UuM61c6WdREhkZ8c8vXpy/10fu8T1FCpQkUyOQAZUsUZlpyZL8lpl6evxrJTI0JPX2ZnY/1i2FL9ffU5SFStslOV4EMqBSDQz4MBZbZor+UG1vDy4z9fdL3/qW9Nxz0nHHSUuXStOmpf+6ra0++CX6Ad7QIM2alf69wgiUGCuX31OUvMCS5NGRkuRJpVuSzCfWkAGVasUK6eqrg3+I/vjHY8tMP/2pdNVVY69fvly68sr0XjdX641Yt1Q8+F5UvKGYkuQT8SXJedO1cF6Ljp5c/iVJ1pAByFymZab+/sRhTPKPL1woNTenft2mJj+DFbQjL90f3KxbKh65+p6ipIyMOD3x0puRsyS3aedeX5Ksq61S+9ypviRZYrskw0QgAypVa6tUVyft3j32ubq6sWWmb30r+f2++U3pxhvTe+22Nh/wVq70wW/WLL/2K5Mf3KxbKi65+J6iJLzyxk6tWtenVev61PfWwSXJRfOnq/3EqWqqqw1xhKWJQAZUqvZ26bLLEj+3e7f06U8f/NhzzyW/3+bNmb1+Y+P4ZrBYt1R8xvs9RdGiJJl/BDKgUq1enXyG7J57Dv7hetxx0pNPBt9v9uzcjzGZzk6/gD+Rqir/PICsUZIsLAIZUKl6ehKHMck/Hl/yW7pUuvnm4PstW5a7saWDdUtAXgSVJD909BEHGrdSksw9AhlQqTIt+U2b5ndTBu2yTGdBf66xbgnIiaCS5LTD6iKNWylJ5httL4BKlW2rgu3b/QL+zZt9mXLZsnDCGIBxGRlxevIvb+q2tWNLkudGSpIfpSSZEdpeAMhctiW/5ub0d1MCKDpb3typru6xJckFR/mS5KdPoiQZBgIZUMko+QEVIagkOfWwOi2cN10d82foGEqSoSKQAZWOVgVAWYqWJLu6+7R6/WhJcmJNlc6d26yO+TP00fdPUjUlyaJAIAMAoIxseXN0l+SWN8eWJNtPmqpDKUkWHQIZAJSTgQFfgu7p8TtpOzv9ekGUtaE9w7p3w3Z1dW/R4y8eXJJcNK9Fi+a3UJIscgQyACgXa9aM3aSxZInfpNHWFvbokGOUJMsLgQwAysHAgA9jsW1Moj3m2tuD25ig5FCSLE8EMgAoBytX+pmxREZG/PNs3ihZqUqSC+dN1/umELhLGYEMAMpBT0/iUxck/3j8UVgoeslKkufMbdaieS362KzJlCTLBIEMQHmp1EXtmR6FhaIVVJKcH9O4lZJk+eHoJADlI9Gi9qoqqatLeuWV0ZDW3u4XuucrtOUiFGZ6j2yPwkJRSFaSXDhvuhbNa6EkWQLGc3RS3gKZmf1C0nmSXnPOzU3wvEn6saR2STslfdE5ty7VfQlkgCp3FiiZZIFEGp09qquTdu8e/Rh7XFQudiIGhcJM7p/tPXLx2iiYVCXJjvktOvX9lCRLSbEGstMkDUq6OSCQtUv6qnwgO0XSj51zp6S6L4EMFY8fuomtWCFddZW0d292n5+LWaRczFKN9x6DgxyFVeQoSZavojxc3Dn3iJkdneSSC+XDmpP0uJkdbmZTnXPb8jUmoOTR2iDYunXZhzFJ2rXLB7rrrst+tjEXOx3Hew+OwipKO/cO697129XV3afHXnzjwOOUJBEV5qL+6ZK2xPy5L/LYmEBmZpdLulySZs6cWZDBAUWJ1gbBnnpqfJ8/PCzdcot0xx3ZzzbmYqcjuyXLhnNOT740WpIcoiSJJEpil6Vz7gZJN0i+ZBnycIDw8MM62Hhmx6L27fO/sp1tzMVOR3ZLlrwtb+7U7eu2atW6Pr3y5s4Dj88/6ggtmtei8z5ASRJjhRnItkqaEfPnlshjAILwwzrYnDlSd3du7pXtbGNnpz+qKJGqKv98Ie6BgqMkifEKM5DdLekrZnar/KL+d1g/BqTAD+tgS5dKN9+c/vVmUtCmpmxnG5uafLkzaNNFOjNuubgHCsI5pz/95S11dW/RPc9QksT45C2Qmdktkk6XNNnM+iT9s6RaSXLOXS9ptfwOy175thdfytdYgLLBD+tg06ZJy5f7hfnpcE6qqfFrx+KNZ7axrc2XO8ez0zEX90De9L3lS5Jd3WNLkuySRLZoDAuUIlobBNu+XfrmN6V77pFefz35tUGBjEaqiLNz77B+u8GXJP/4wmhJsvnQSElyfoveT0my4hVl2wsAeURrg2DNzdKNN0qnnJI6kB17rLRlC7ONSChZSfKv5viSJGdJIlcIZADK03HHSU8+mfyaD31IeuIJZhtxkGhJctW6Pr38xmhJct7Mw9Uxf4Y+fdJUHXYIJUnkFiVLAOWpv993vE9m2zY/oxYv1dFUHF1VdpKVJC+aN10dlCSRBkqWABAv1SL/iRP9rFh8IEt0NNWSJaPNYlM9j5JBSRLFhBkyAMUrFzNRvb3S8cent3g/1TmSmzdLs2eP76xKhG7r27t0e3efuihJIseYIQNQfnI1E/Xww342LFEgi28Am+poqm9+k6OrStTOvcO6b+NoSTI6F8EuSRQLAhmA4pPLQ9QzOW4q1bWbN3N0VQlxzmnty2+pa22f7lm/TYN7fCinJIliRCADEJ6gkmQmh6gH3SP6+NNP+xmyPXvG3iu+AWyqo6lmz5Y2bODoqiJHSRKliEAGoLCiQemhh6Tbb/d9v3buPLgkme6sVlBZc9my0fJi0H2kscdNpTqaatky6Y470rsXCmrX3v367cZtlCRRsghkAAonGqD27/chLFZsSfJ730t9iHqysmaq45OCGsCmOppq6lSOrioiyUqSZ89p1sWUJFFCCGQACiNRgEpkZMQf/F1Vlfj56EzUrbcGlzWDTJggnXmmtGhRcAPYVOdIcs5k6ChJohwRyAAURrJ1YbGGhqS+vtQzUcnKmkH27pU+8IHUOyFTHU3F0VUFR0kS5Y5ABqAw0g1Q0ZJkqpmo1lapvn5s6TOde4eh0N39y+A0gaCS5ITILklKkignNIYFUBgrVkhXX506lKXbYHVgQJoyJfHuyfHeO9cSbT6Izvblo7t/oV8vx6IlyVXr+vSXmJLkyTMPV8f8Fp130jRKkihK42kMSyADKkXYMybJuuBL2YWGz31O+uUvg5+vrZX27Rt770K+F6m6/+c6IBb69XJk1979Bxq3/uGF1w+UJN976EQtnNeiRfNaNOs9xTduIBad+gEkVwznLybawVhf73dcdnRIZ5yR+eL4lpbg5+rrpYsv9jsjY8udhX4vMumpVoqvNw7OOXW//JZuCyhJdsxvURslSVQIAhlQ7nLZ9X68crVDcWBAuukm6Yc/DL6mqkq67rqD7x3Ge5HJSQGl+HpZ2Pr2Lt2xrk9d3QeXJD8443BdvICSJCoTgQwoBeMpsRXDjEl/v/Stb0nPPScdd5y0dKk0bVp294rOcO3d68uRQa66amy4ysUJAJlK1f0/15sMCv16aaIkCSRHIAOK3XhLbGHPmPz0pwc3an3ySenmm6Xly6Urr8zsXun2MpN8L7N44z0BIJuyZqru/9Hu/rkKgOm+XgFES5Jd3X36zTOUJIFkCGRAMctFiS3MGZP+/uCu+VddJS1cKDU3p3+/dHuZBX1d6bwXuS5rpur+n+t1bem8Xp4FlSTZJQkEY5clUMyStYpoaJB+/OPU5cZ0d91lMkOT7rWXXupnw4Jceql0443Jxx/7mhdfLN13X+pr6+ulV18dGz6SvRd1ddKLL0r33DP+9zyRbdv8+ZqbN/tDypct8xsO8rUrcnCwoKcJUJIE2GUJlK9clBtzPUOTybXPPZd8bJs3px5/7Gum23Ms6H80Y9+Lffuk3bsPfn72bOn883Nf4o1/zzZs8IeUr17t36N8rPErwGkClCSB3CGQAcUsV+XGZLsbMynRZVrOO+44v2YsyOzZqceeybqxqKqq4CDT1uaD4DHHHPz47t3+16pVuS3xpnrP/vZvi35XZLxkuyQ75rfo/JOm6bB6SpJAJghkQDFLtkB7eFjauNGXNdNZAB40Y5LJzsNMd2wuXZq8ZLlsWfIxp3rNIKmCzD33SDU1iWfcqqt9b7REslkUn+o9e+ONotwVGS9ZSfIzJ0/XxfNbNOs9pXU0E1BMCGRAMUtUbqyr8zM5Zr4P13gbm2ZSFs20hDptmt9NmWhh//Ll6S3oz+YQ8fp6P1t3zTVj17j190s/+lHwPXfu9CcA3H13bhbFp3rPJk3y906kwLsi4yUrSZ59wnvVMb9FH2+dQkkSyAECGVDsYsuNGzdKP/uZfzy6/mm8jU2TlUXNpN//3t932rTsSqhXXul3U8YvaE93d2Vr62gITdfOnb70GL/G7Zlngnd9xn4dZ5whXX99bhbFp3rP5swJfVdkvGhJctW6rXrp9dFxU5IE8oddlkApycWuy3ipzpiMWr5c+vzng69tbPQlyi1bgndeZtNrq7/fv+Z4NTb6nYep5Pq8x3R3URZ4V2S8oJLke5r8LsmO+dMpSQIpsMsSqBSpyl9dXdLzz2fWWDS2LDo8LO3alfi6aN+wRLM5IyP+1zXX+Nmp2lrpq1+V7rpLOvts//nxOw0nTvT3vPpq6R//MXisq1dnPkOWSKrPr6ry68euuCJ4l2Y20u0LVoBdkfGcc1r3SqQk+fQ2DSQoSbbNmqya6oCSKoCcYYYMKCUrVvigExQuJkzwRwrF/sBPd13Z4KAPT489FnxNtG9Y7GxOS4svRwbNPt13n/TRjyafhWtslO69N/FYr7lG+v730/saciGb9y4dIc+Axep/e5fu+PNWdXX3HVSS/ECkJHkBJUkgK8yQAZWivV267LLg5/fu9R+zWVfW2Bi8uzAq2jcsdjZnxYrkuyAvuED6939Pfs3gYPBYk63BykRNjZ8BTCVfh42HMAMWa9fe/fqfTb4kuab34JLkRfOmq2Nei1rfS0kSCAuBDCglmZbvMm0smk3fsJ4eX6YMsn+/bzORKlAFjbW93c8KjlddXXpryFKNp4QEliSrq/SpE96rjgUt+jglSaAoEMiAUtLTk9laqkwbi2bTN6y11a8Z27cv8ecMD/vdmqlmuRKNNbruLF5dnX/Na6+Vvv714HtKfq3ahAnp77JMNp7xytUB4imkKkmef9JUHV4/IeevCyB7BDKglGRavsu0sWiyvmHf/a5vH/HYY/6+X/yi9OUv+1Dx1a8GB7LaWunTn/bhKpOxDgxI556beFbLOb95oaHBnz+5fHnwa//Hf/i1b42Nfk3Y9OlSR8foRoQg9fW5bcqaywPEEwgqSU5pmqiFlCSBoseifqCUpNuiIirbFg7bt/uF+ps2+bVXNTXSo4+OvW7iROn++32ri89+Nvh+vb3+cO2ggCWNbZuxcaNv4JpIQ4P0la9IP/3paMCJVV/vd0zGh51M37/77hvdJToeeTpAnJIkUFxY1A9UiqAWCs75X1VVuWks2tzsz1hM1Qpjzx7pnHP8wv1kPv956eMf94HrhRf8jJZz/t4TJ/qx7t/vQ+DQkA9UydalDQ35UwqimxhiTZjgd2VGZ8ViZXoMU0dHbhb2Z3rkVAqBJcmWw3xJ8gPTKEkCJYZABpSaoIPCpdy1VcjkQO89e6Q//CH5NY8/PlrqdM7PuEV3dDo3NvAlC2OS/3wLOK6nttavMUv0tWd6DFOuFvZneuRUArv3jTZuHVOSPHm6Fs1v0bGUJIGSRSADSlFQC4Vc7QjMZCZpeDh1O4loekgUShLNcqUyMhL8mtGAE11Av2GDtHWrX9C/dasPcuku1cjVwv5sjpxStCT5dqQk2T+2JDm/RR9vpSQJlAMCGVDuUu3sS/R8JjNJNTXSscf6WbtCOftsv6YtKOA459ds7ds3vg7/mW6KCNLZ6RfwJ5LgAPFt7+zS7eu2alV3n16MKUme1HKYLqYkCZQlAhlQzlLt7At6/oor0t/NOXGidN550sMP5/3LOaCxMbhkaebXqKXbcyzZerUEYSkraRyfREkSqGzssgTKVaqdfZs3+0avQQeFS6lDTXSX5VNP5aZ5a6YmTvS7KaPnZ1ZXS//rf0k//7lf25aKmfSFL/gdotFWGPFhKd2WFOn0GIs7Psn99V/rz28N67a1ffrNM/0a2E1JEihl7LIEMFaqnX3f+EZwaHFubFuJQw7x673e8x5p0iTpS1+SLr/ch7dVq/L3dSSzZ48PZTU1vjxZVeXHnC7npKlTfQk00UaJdDdFpNtjLLL2b/s7u3X7n/vUdUO3XtzBLkkABDKgfKXa2XfrrcGBbWjIzx7FhpTJk6Xubt+24rjjpEsuGQ0szz47/vFWVWXWkiIqNlSmMysW/5rRNWLZnjWZaEdqgvMwd+/br//Z9KovSfbs0AglSQAxCGRAuUrV1T9Z+IkuZo+GlB/84OAjip580h+xtHy57zH24IOpx/OhD0nr1gUfYD4ykv4B4LkyMuJPERiPJDORbmREf77xdnVNP1m/fpqSJIBgBDKgFKWzXinZzr5UzEYXs995Z/B5kVdd5Rfzp5rZqq31xyw9/7xv2ppIfb0Pa4UMZHV1/uDz8bQLSTATub1xkm6fc4a6TjxTL/ZNkvpekURJEkAwAhlQatJdrxS0s2/fvtS9v666ys+ODQz4xe7J3HZb6jHv2yfNmOF/BQWy4WHpyiulFSv8+LLpT5ap3bv9+/m97/njopqb/dczb97oNanCb2Qmcveeffqf1o+oa+6ZWnP0BzVSVS1Jmly9Xws/1qoOSpIAkmCXJVBKsjkTMW5nn3bt8gEu6DBwyR9htHSpD0eXXZabsaezc7Ohwc/OXXaZ9JOfBJc3c6W6OvFrzJ7tNz3MnJl096VzTk9t7lfXN/5Nd8/6qAbq/Nc4YXifzup9Qh0v/FGn/eE3qjmUIAZUAnZZApUimzMR4xerDwxI//APwYGsvn50oXtPz/jHHLV3b3DvsKho6W/FCh96Fi3yC/WThcfxCAp8mzf7WcL4WbrI+LZ3fFZ3/N131fVOnV6wemnupyRJJ736gjqe/h+d/8paHbF3p/8aCGMA0kAgA0pJDs5EVFOT9N3vBq8Lq64eXT/W2prdOBPJpAQ5MiJt2SJt2+aD0S23ZB7KjjnGzxhG+5RlKm68u6tr9bvWj6jrxDP16NEna+TdasmkyUNva+Hzj2rRly/S7LcapOYTpVkXje8sUQAVh0AGlJIsz0Q8yMCAdO21wc93dY0Gic5Ovxg/m3YUidTWpheshoakjRv9OJqbs5sh++Mf/edHy7UtLX7N2Le/nXY4dJKemnqsuk48S78+/jS9G1uSfP4xday/X6e9tE41bkR67JeJS8YAkAYCGVBKku2c3L9fOu00X+5LtvsyWdmzocHPTEU1NUl/93fSj36Uk+FnFOx+9jNp4UL/dUyYkNkM22c/K/3wh/5zTztNeuQR35qjutr/SmF74yTdMed0dZ14ll6YNOPA4ydte14d6x/Q+c8+oiN2x63j27cvcckYANKQ10BmZudI+rGkakkrnHPL4p7/oqR/k7Q18tB1zrkV+RwTUFIS7fCL7pyMPzh7ZMQf8l1X5x8P2n2ZquzZ1eXbU0Rf75xzchfIMlmkv3u39PGPS0cckf7nVVX5Wbg77/RlygyazY4pSUZ3SQ6+pYUbH9SiDQ9q9usvJx/vpk0HP5ZOexIAUB53WZpZtaTnJX1KUp+kP0n6G+fcpphrvihpgXPuK+nel12WqBiJ2ltEd/i9//1+jVQ6nenjd1+uWCFdfXVwKIuWFRsa/NFC2ay/KhFBJcna/ft0Vu+TuviZ3/mSZP0h/v1K1bj20kulG2/0v0/2/Uv3fEwAJaVYd1l+WFKvc+5FSTKzWyVdKGlT0s8CkPo4nu99z4eDdALZ3r3SxRf7HYudnakbxkbXawUFtjLwauORkcataZQk77xTev11vw7t0UelP/wh+MYTJ/qPaR6nBABR+Qxk0yXFLEZRn6RTEly3yMxOk59N+5pzbkuCa4DKkqq9xT33pB+Y9uyRfvtbv4bqa1+T7r3Xz9Kce27ynmBlJllJ8qJND6lj/QOjJcnaWl/6vesuf/B41KmnJn+RDRv8x2zakwCoaGEv6v+1pFucc3vM7MuSbpL0yfiLzOxySZdL0syZMws7QiAMqdZ5bdkyulYsXdHu92efLb32mnT++b6dRBlLVpL8q82PH9glWTsSs0Zt7lxf0k3UtiLVxoLo7GIu2pMAqCj5DGRbJc2I+XOLRhfvS5Kcc2/E/HGFpIRnqjjnbpB0g+TXkOV2mEARSnUw+ObN2Z/5uGuXdNNN0gsvZD++IhdUkjxxW486NjygCzb9fuwuyaihIb+p4dZbxy7CnzNH6u4OfuETTvAfc9GeBEBFyeei/hr5MuSZ8kHsT5I+65zbGHPNVOfctsjvL5J0jXPuI8nuy6J+VIRkRyTlwqc+JU2dKt18c37uH4LAkuTQW7po40NatP4BHZdsl2RU9Dil+npfXly4UDrjDB/Oot+XINu2+b5p2RxxBaDkjWdRf17PsjSzdkk/km978Qvn3HfN7DuS1jrn7jazpZIukDQs6U1JVzjnnkt2TwIZKsaaNX6d1+7d2c+GBZk7V7rvvuTh4pBD/GxaEXOSnp56rLrmnqm7T/jEmF2SCUuS2aiv90Ft9WrpmWf86QHxli/3h6NHscsSqDhFG8jygUCGihENZDt3Zt4p38y3rAjyyU9KDzzgZ31+9auxzzc3S5MmSc8+m7su/Tn0auORuuOEM9R14pnqnTy6rjStkuR4RGe3Bgf9AeybN/uDyJct8+9ZvPiD3TlOCShrxdr2AkC2om0Tst0FmSqQNTf7YJEojEnS9u3+VxHZXV2r+1tPUdfcs/TIMeMoSSYyaZL0xhupr4vdIRntN5ZM/MHuABCAQAYUo5Urx1cuTDWr1dwsfeMb2d+/QJKVJAN3SWbj7bd9WTJVE1x2SALIEwIZUIwefzz368aiqqt9o9M//jE/98+Bgpckowv5U2GHJIA8IZABxeihh/J37/37fUuHTA7rLoC8liRT2btX+tznpLvv9u9P0ExZVZVfBwYAOUYgA4pRvo8tKpIwlqwkefbmx3VxrkqSqTQ0+NYW11/vy8UPPeQPWa+u9uEsdocki/IB5AG7LIFidOqp0mOPhT2KvAkqSc7d3quO9ffrgmcf0ZG73i3cgBL1BmOHJIAMscsSKDc33ujbKZSRZCXJz2x8WIs2PKDjd/yl8ANrbEw885XpDsmBAR/genp8p/74Lv8AkASBDChGxx4rHX+87wOWjVRtLwokVUmyY/0D+sRL3fkvSQaZMMH3EBtvo9ZETWCXLKEJLIC0EciAYnX//ck76ScTchgrupJkkL17pb6+sY9nMtsV7RkXe0xSdA1gezvHJAFIC4EMKFbTpknXXCP967+GPZK07K6u1QOzPqyuE8/S74+ZVzwlyWQStbHIdLZr5crgvm+xjWQBIAkCGVDMimQ3ZBAn6ZnmVnWdeKbuPv4TeucQP4tUs39Yn9r8R3VsuF+nvxhiSTKV+DYW2cx29fQE74qlkSyANBHIgGJ1wQXSr38d9igSeq3hCN0xx5ckeyYfdeDxOdt7DzRunVQMJclkEi3mz2a2q7XVz6IlCmU0kgWQJgIZUIzWrSu6MBZUkpw09LY+s+lhLVr/gE7Y8VLIo8xAT8/YA8Gzme3q7PQlzURoJAsgTQQyoBgtXBj2CCSVQUkymeuvl6699uDHspntamryM23x685oJAsgAzSGBYpRVVWoOyXLoiSZymGH+UPFYw0M+J2tAwnOyUzUPDYWjWSBikdjWKCcDAyEEsaCSpJH7nxHn9n4kDpKrSSZyq5dYx8bz2xXpo1kASAGgQwoNjfdVLCXSlaSPOv5x9Sx3pckJ4wMF2xMBXPooYkfb2vzM2HMdgEoIAIZUGx+85u8v0RQSfKEV19Qx/oHdOGmh0u/JJnK+ecHP8dsF4ACI5ABFWJPdY3un3VKYEly0YYHNOe1MipJJlNdLX3sY2GPAgAOIJABxea886T77svJraIlyVVzz9RdJ1RYSTKZ+nraUQAoKgQyoNiceuq4b0FJMom6OtpRACg6BDKg2HzhC1l92p7qGj0w6xR1zT1Tv3/ffO2v5JJkkIkTpZdeGtsQFgBCRiADisnAgLRxY9qXO0nrm2epa+5ZY0qSZ1dySTKRxkbp3nsJYwCKEoEMKCYrV/qeV0HnKUa81nC47pxzhrrmnqXnp1CSTKqmRvr616V//EfKlACKFoEMKCY9PYFhjJJklmprCWMAih6BDCgmcWcpZl2SnDhR2rOnwIMvUrt2+Wa7V10V9kgAIBCBDCgmnZ3SkiWBJcnjX31RF6+/P3lJ8uSTpZ/8RDrzTGnv3gINvMjdcw+BDEBRI5ABRWLP8H498JdBdV17m36/fU92Jcnf/Eb69Kf97//yF+moo6R9+/I7cCQ2MODXBPb0+JnPzk5/ViYAJEAgA0LknNOGre+qq3uL7nq6X2/v9OGppqZGnzpklxZtfFCfvPsmTdg1FHyTiRP9Oql77/XnMEb9278RxqKiIbVQ1qwZe0D5kiW+/1ns9wgAIsw5F/YYMrJgwQK3du3asIcBjMtrA7t115/71dXdp82vDhx4/LjmJl28YIYu/OA0TW6c6GdZpk/3H+PV1UlXXimdcMLYw6+ff16aPbsAX0kJqK+XXn21cIv6k33Pmpr8weVsMADKkpl1O+cWZPO5zJABBbJneL8efPY1dXX36eHnd2j/iP+foSMbJujCD05Tx/wWzZl22MGf1NTkZ1XiZ1uqqsbOtsSWyH71qwJ+ZTlkJqX6n8QJE/yM4FCSWcOoujp/DFUhA9DKlcFtS0ZG/PMcXA4gDoEMyKPAkmSV6VMnvFcd81t0xuz3aEJNVfBN2tr8rMrKlVJvrzRr1tgZsfgSWalavFhasSL4+bo66d//3X/8z/+Unngi+NqJE6UdOwo/G9XTE/w9GBry30MAiEMgA/Ig7ZJkuhobg2dVBgZ8GEtUIis1kyf73ZDLlyd+vrZWuvRS/344J23YkDj81Nb6e4RRGoxrXXKQhgYfqAEgDoEMyJG9wyN68LlX1dXdp4c2p1mSzIVkJbJiU1MjDQcc4xQNK4sX+1nBz31u9Ouqq/MhK/ZQ8EiLkITq6vzzYUg2rqqq8MYFoKgRyIBxcM5pY/+76uru011PbdVb2ZQkxytZiSwTEyZIHR3SL38ZfE06a7yC1NZKS5dK114rDQ6OfT42rFxyiXTeecnLtKnW14W1cL5YxwWgqBHIgCzsGNiju57aqq7uPj23/eCSZMf8Fn3m5OmZlSTHI1mJLF3Rg7cvvTT5ddmGsfp6v7i+rU065ZT0wkqyMm1UOuvrwlCs4wJQtGh7AaQptJJkKsnaLKTja1+TvvMdHxYaGqSdO8c/pgkTpGOPlWbM8D3Aouu+ogYHCSsAyg5tL4A8KYqSZCrREtlZZ2V+fuUhh0gLF46GoeZm6cUXxz+mvXt9yXHp0sTPpzP7BQAVhEAGJFBUJcl0tLVJL70kve990u7d6X/erl2+fBhtVnrbbdL8+eMfD7sJASAjBDIgIqgkeUR9rS784PRISfJQmVnIIw0wdar0u99l3o8stlnpvHnSRRdJd9wxvrGk2k3IOY8AcBACGSpaUEmyusp01vG+JPnJ40IuSWYifjF5S4t//L/+K7iJanyz0vZ2v8A/k5m2qETtKeJxziMAjEEgQ0V6fXCP7vxzcEnywg9O15SmIipJZiLR+qyJE4ObqMaXF3t60g9jEyZIn/iENG2aNGlS4nM1YyVqYhsdU2zpFAAqDIEMFcOXJCNnSW5+TcOlVpIcj0yalWbSRmPvXr/mLGjxfjzOeQSAhEqu7YWZ7ZD0ctjjKBOTJb0e9iAqUCjv+6FS4/ulVkmqkqpGpBFJekHqeVc60Km1Wqo6SfpAlZSyTjsijWyVtryW5tczU5o+RWoOen6HtP0VaWs698oCf9/DwfseDt73cMx2zmW1ILbkZsicc1PCHkO5MLO12fZLQfZ438PB+x4O3vdw8L6Hw8yybpRaIiuVAQAAyheBDAAAIGQEssp2Q9gDqFC87+HgfQ8H73s4eN/DkfX7XnKL+gEAAMoNM2QAAAAhI5BVEDM70sx+Z2Y9kY9HBFy338yeivy6u9DjLBdmdo6ZbTazXjP7ZoLnJ5rZysjzT5jZ0SEMs+yk8b5/0cx2xPwd/9swxllOzOwXZvaamW0IeN7M7CeR78kzZjav0GMsR2m876eb2Tsxf9f/qdBjLEdmNsPMHjKzTWa20cz+PsE1Gf+dJ5BVlm9KesA51yrpgcifE9nlnPtg5NcFhRte+TCzaknLJZ0r6QRJf2NmJ8RdtljSW865WZJ+KOlfCzvK8pPm+y5JK2P+jq8o6CDL042Szkny/LnyPfBaJV0u6WcFGFMluFHJ33dJejTm7/p3CjCmSjAs6evOuRMkfUTSVQn+ncn47zyBrLJcKOmmyO9vkvSZ8IZS9j4sqdc596Jzbq+kW+Xf/1ix348uSWdaWR4TUFDpvO/IMefcI5LeTHLJhZJudt7jkg43s6mFGV35SuN9Rx4457Y559ZFfj8g6VlJ0+Muy/jvPIGssrzXObct8vvtkt4bcF2dma01s8fN7DOFGVrZmS5pS8yf+zT2P9gD1zjnhiW9I2lSQUZXvtJ53yVpUaSM0GVmMwoztIqW7vcFufdRM3vazO41szlhD6bcRJaanCzpibinMv47X3Kd+pGcmd2vxEfT/J/YPzjnnJkFbbE9yjm31czeJ+lBM1vvnHsh12MFQvJrSbc45/aY2ZflZyk/GfKYgHxYJ//v+aCZtUu6U5Hj0zB+ZtYoaZWkq51z7473fgSyMuOcOyvoOTN71cymOue2RaZOXwu4x9bIxxfN7GH59E8gy8xWSbEzLy0ae0Zj9Jo+M6uRdJikNwozvLKV8n13zsW+xyskfb8A46p06fz3gByLDQnOudVm9lMzm+yc44zLcTKzWvkw9t/OudsTXJLx33lKlpXlbkmXRn5/qaS74i8wsyPMbGLk95MlfUzSpoKNsHz8SVKrmR1jZhMkXSL//seK/X50SHrQ0RhwvFK+73HrOC6QX/+B/Lpb0hciO88+IumdmOUTyBMza46uSzWzD8v/zOd/+sYp8p7+XNKzzrkfBFyW8d95ZsgqyzJJvzKzxZJelvTXkmRmCyT9b+fc30o6XtL/M7MR+f94lznnCGQZcs4Nm9lXJN0nqVrSL5xzG83sO5LWOufulv8P+r/MrFd+Ye4l4Y24PKT5vv+dmV0gv1PqTUlfDG3AZcLMbpF0uqTJZtYn6Z8l1UqSc+56SasltUvqlbRT0pfCGWl5SeN975B0hZkNS9ol6RL+py8nPibp85LWm9lTkce+LWmmlP3feTr1AwAAhIySJQAAQMgIZAAAACEjkAEAAISMQAYAABAyAhkAAEDICGQAAAAhI5ABAACEjEAGoOKY2Ycih4vXmVmDmW00s7lhjwtA5aIxLICKZGb/IqlO0iGS+pxzS0MeEoAKRiADUJEiZ13+SdJuSac65/aHPCQAFYySJYBKNUlSo6Qm+ZkyAAgNM2QAKpKZ3S3pVknHSJrqnPtKyEMCUMFqwh4AABSamX1B0j7n3C/NrFrSH83sk865B8MeG4DKxAwZAABAyFhDBgAAEDICGQAAQMgIZAAAACEjkAEAAISMQAYAABAyAhkAAEDICGQAAAAhI5ABAACE7P8DhPpyKwk/rloAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:29.379817\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAFvCAYAAADkPtfiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABX6klEQVR4nO3dd3zUVdbH8c+dVFLooYUOAQSkKAIq9rKKvS32sthxlXULbHme7avruuuDa1tF164oKusq9gooICBdIKGHUEIL6W3u88cvMSFkkplkJr/JzPf9evEamPll5jAJ5OTec88x1lpERERExD0etwMQERERiXZKyERERERcpoRMRERExGVKyERERERcpoRMRERExGVKyERERERc1ioTMmPMM8aYPcaY1X5e/0NjzFpjzBpjzMuhjk9EREQkEKY19iEzxpwMFADPW2uHN3JtBvAacLq19oAxpou1dk9LxCkiIiLij1a5Qmat/RLYX/s+Y8wAY8z7xpilxph5xpghVQ/dAjxqrT1Q9bFKxkRERCSstMqEzIcngR9ba48FfgY8VnX/IGCQMWaBMWahMeYc1yIUERERqUes2wEEgzEmBTgBeN0YU313QtVtLJABnAr0BL40xhxtrT3YwmGKiIiI1CsiEjKclb6D1tpR9TyWDSyy1pYDm40xG3AStG9aMD4RERERnyJiy9Jaewgn2boCwDhGVj08B2d1DGNMZ5wtzE0uhCkiIiJSr1aZkBljXgG+BgYbY7KNMZOBa4DJxpgVwBrgoqrLPwD2GWPWAp8BP7fW7nMjbhEREZH6tMq2FyIiIiKRpFWukImIiIhEEiVkIiIiIi5rdacsO3fubPv27fv9n0vKvWTuycdjDEO7t6Wm64WIRLTsbNi92/fj3bpBenrLxSNRI2tPAcXllfTumES7NnFuhyNhZOnSpXuttWlN+dhWl5D17duXJUuWHHbfBf+cz6odefzuqtFcMLKHS5GJSIuaOROmToXCwiMfS06GP/0JJk9u8bAksm3eW8hpD35OenwMS35zFm3iY9wOScKIMWZrUz82IrYsLzvG+Sn4jWXZLkciIi1m0iTw+PgvzONxHhcJsjnf7gDgnOHdlYxJUEVEQnbhqHTiYgxfbshlz6ESt8MRkZaQmgpz5zq3ycnOfcnJNfenpLgbn0Qcay1zljsJ2cWjtRsjwdXqtizr0zE5ntMGd+HDtbuZs3wHt548wO2QRKQlTJgAOTkwaxZkZcHAgc7KmJIxCYHl2w+ydV8RaakJnDCgs9vhSISJiIQM4LJje/Lh2t28sXQHt5zUH6PqfpHokJKiWjFpEf9ZngPAhSN7EOPR9xgJrojYsgQ4bXAXOiTFsX53PmtyDrkdjoiIRJDySi//XeEkZBeP0uldCb6IScjiYz1cVPWPZPZSFfeLiEjwzM/ay77CMvqnJTM8va3b4UgEipiEDOCyY3oC8PaKHMoqvC5HIyIikeI/VacrLxmVrpIYCYmISsiGp7dlUNcU9heW8fn6PW6HIyIiEaCwtIIP1jhNiC/SdqWESEQlZMaY71fJ1JNMRESC4aO1uykur+SY3u3p3SnJ7XAkQkVUQgZwyeh0PAY+XbeHA4VlbocjIiKtXHXvsUtGa3VMQifiErIubRM5KSON8krL21UnYkRERJpib0Ep8zL3EusxnDdCzWAldCIuIQOnJxlo21JERJrnnRU5VHotpwxKo2NyvNvhSASLyITs7KFdSU2MZWV2Hpm7890OR0REWqm3qprBXqTtSgmxiEzIEuNiOH9EdwBma5VMRESaYN2uQ6zYfpDUhFjOOqqr2+FIhIvIhAxqepLN+XYHlV7rcjQiItLavLp4OwAXje5Bm/gYl6ORSBexCdmxfTrQt1MSuw+VMj9rr9vhiIhIK1JSXslbVc1grzyut8vRSDSI2ITMGMOl1T3JNEpJREQC8MGaXeQVlzM8vS3D09u5HY5EgYhNyKCmZ8wHa3ZxqKTc5WhERKS1qN6unKTVMWkhIUvIjDG9jDGfGWPWGmPWGGPuqeeaU40xecaY5VW//jeYMfTqmMT4/h0prfAyd+XOYD61iIhEqC17C/l60z4S4zxcNEq9x6RlhHKFrAL4qbV2KDAemGKMGVrPdfOstaOqfv0h2EFolJKIiATitSXO6th5R/egbWKcy9FItAhZQmat3WmtXVb1+3zgO6DFG7mce3R32sTF8M2WA2zdV9jSLy8iIq1IeaWX16vqjq8c28vlaCSatEgNmTGmLzAaWFTPw8cbY1YYY94zxgwL9munJMRy7vBuALyxbEewn15ERCLIZ+v2kJtfyoC0ZMb06eB2OBJFQp6QGWNSgDeAqdbaQ3UeXgb0sdaOBP4JzPHxHLcaY5YYY5bk5uYGHEP1KKU3l2XjVU8yERHxYdY3znbllcf1xhjjcjQSTUKakBlj4nCSsZestW/Wfdxae8haW1D1+7lAnDGmcz3XPWmtHWOtHZOWlhZwHMf370SPdolkHyhm8Zb9gf9FREQk4u3MK+az9XuIizFccoxGJUnLCuUpSwM8DXxnrf2Hj2u6VV2HMWZsVTz7gh2Lx1Pzj0s9yUREpD6zl2TjtXDW0K50TklwOxyJMqFcITsRuA44vVZbi4nGmNuNMbdXXXM5sNoYswJ4GLjSWhuSPcXqJrFzV+2kqKwiFC8hIiKtlNdrmbWkZrtSpKXFhuqJrbXzgQY34K21jwCPhCqG2gakpTC6d3u+3XaQD9bs4pLRPVviZUVEpBVYsHEv2QeKSW/fhgkDj6icEQm5iO7UX9f3PcmW6rSliIjUeLWqmP+HY3rh8aiYX1peVCVkF4zoQXyshwUb95JzsNjtcEREJAzsLyzjwzW78Bi4Yox2T8QdUZWQtUuK46yjumItvPWtVslERMRpiVReaTllUBo92rdxOxyJUlGVkAFcdmzVactl2YTo/ICIiLQS1trvtys1SFzcFHUJ2ckZaXROSWBTbiHLtx90OxwREXHRsm0HyNpTQOeUBM44qovb4UgUi7qELDbGw8WjegDwpkYpiYhEtVcXO6tjlx/bk7iYqPuWKGEkKr/6qnuSvb0ih5LySpejERERN+SXlPPOyp0ATDpOg8TFXVGZkA3t0Zaj09uRV1zO3FU73Q5HRERc8PaKHIrLKxnXryP9Oie7HY5EuahMyACuGecUb764cKvLkYiIiBuqB4lfNVbF/OK+qE3ILhzVg9SEWJZtO8janENuhyMiIi1oTU4eK7PzaJsYyznDu7kdjkj0JmRJ8bFcWjVw/KVFWiUTEYkm1atjl4xOJzEuxuVoRKI4IQO4ZnwfAOZ8u4OCUg0cFxGJBiXlld83B79S25USJqI6IRvUNZWx/TpSWFbJHHXuFxGJCnNX7SS/pIKRPdtxVPe2bocjAkR5QgaHF/erc7+ISORTZ34JR1GfkJ0zvBudkuNZtyufZdsOuB2OiIiE0KbcAhZv3k9SfAwXVjUJFwkHUZ+QJcTG8MOqhoAvLdzmcjQiIhJK1cX854/oTkpCrMvRiNSI+oQM4OqxvTEG3lm1kwOFZW6HIyIiIVBW4eWNZdmAtisl/CghA3p1TOKUQWmUVXh5fel2t8MREZEQ+HTdbvYWlDGoawrH9G7vdjgih1FCVuXacU4LjJcXbcPrVXG/iEikeWVxTTG/McblaEQOp4SsymlDutCjXSJb9hWxYONet8MREZEg2nGwmC8zc4mP8XDJ6HS3wxE5ghKyKjEe8/08M823FBGJLK8v2Y618IPh3eiYHO92OCJHUEJWy6TjehHrMXz83R525ZW4HY6IiARBpdfy+hKnmP/KqlP1IuFGCVktXdomcvawrlR6La9+oxYYIiKRYF5mLjsOFtOrYxuO79/J7XBE6qWErI7q4v5XF2+notLrcjQiItJc1b3HJo3phcejYn4JT0rI6jh+QCf6d05m16ESPlm3x+1wRESkGfYWlPLR2t14DFwxRtuVEr6UkNVhjOHqcSruFxGJBG8szabCazl9SBe6tk10OxwRn5SQ1ePyY3uSEOthXuZetuwtdDscERFpAmttzXalOvNLmFNCVo/2SfFcMNIZOvvKYhX3i4i0Rt9sOcCmvYV0SU3gtMFpbocj0iAlZD5cU7Vt+dqS7ZSUV7ocjYiIBOrVqh+orxjTk9gYfbuT8KavUB9G9WrPsB5tOVBUznurd7odjoiIBCCvuJx3Vzn/d/9QxfzSCigh88EYw7XjnRYYLy3UtqWISGvy9vIdlFZ4OXFgJ/p0SnY7HJFGKSFrwIUje5CSEMuSrQdYt+uQ2+GIiIgfrLWHDRIXaQ2UkDUgOSGWS49xhtCqBYaISOuwesch1u48RPukOM4e2tXtcET8ooSsEddUde5/a9kOCkorXI5GREQa83JVMf+lo3uSGBfjcjQi/lFC1ojB3VI5rm8HCssq+c/yHW6HIyIiDThYVMZb3zqDxK8aq2J+aT2UkPmhurj/xYXbsNa6HI2IiPjy6jfbKSn3clJGZzK6prodjojflJD54Zzh3eiYHM93Ow/x7faDbocjIiL1qKj08vxXWwD40Yn93A1GJEBKyPyQEBvDFWN6AiruFxEJVx+u3U1OXgn9OydzyiB15pfWRQmZn64Z62xbvrNyJweLylyORkRE6vr3gs0A3HBCXzwe43I0IoFRQuan3p2SOHlQGmUVXmYvzXY7HBERqWVVdh7fbDlAakIslx3b0+1wRAKmhCwA11bNt3xp0Ta8XhX3i4iEi+rVsR8e14uUhFiXoxEJnBKyAJw+pAvd2yWyeW8hX2/a53Y4IiIC7Mkv4b8rc/AYuPGEvm6HI9IkSsgCEBvj4cqqMRwq7hcRCQ8vLdxGeaXlzKO60qtjktvhiDSJErIAXTm2FzEew4drd7P7UInb4YiIRLXSikpeWuT8gHyTWl1IK6aELEBd2yZy9tCuVHots77Z7nY4IiJR7Z0VO9lbUMaQbqmM79/R7XBEmkwJWRNUz7d8ZfE2Kiq9LkcjIhKdrLU8U1XM/6MT+2GMWl1I66WErAlOGNCJfp2T2ZlXwqfr9rgdjohIVPpmywHW5ByiY3I8F47q4XY4Is2ihKwJPB7DNbVaYIiISMurbnVxzbjeJMbFuByNSPMoIWuiy47pSXyshy8zc9m2r8jtcEREokr2gSI+WLOLWI/h2vF93A5HpNmUkDVRh+R4zh/RHWvhpcVqgSEi0pJe+HorXgvnjehO17aJbocj0mxKyJqh+qey15dkU1pR6XI0IiLRoaisglcWO+UianUhkSJkCZkxppcx5jNjzFpjzBpjzD31XGOMMQ8bY7KMMSuNMceEKp5QGN2rPUd1b8v+wjLeX73L7XBERKLCG8t2cKikgmN6t2dUr/ZuhyMSFKFcIasAfmqtHQqMB6YYY4bWueZcIKPq163A4yGMJ+iMMVw73inuf/5rbVuKiISa12t5tqqYX6tjEklClpBZa3daa5dV/T4f+A5Ir3PZRcDz1rEQaG+M6R6qmELh4lHptE2MZenWAyzbdsDtcEREItq8rL1szC2kW9tEzhneze1wRIKmRWrIjDF9gdHAojoPpQO1291nc2TSFtaSE2K5pqqW7KkvN7kcjYhIZKtudXHd8X2Ii1EZtESOkH81G2NSgDeAqdbaQ018jluNMUuMMUtyc3ODG2AQ3HRCX+JiDO+v2cWWvYVuhyMiEpE25hbw+fpcEmI9XD22t9vhiARVSBMyY0wcTjL2krX2zXou2QH0qvXnnlX3HcZa+6S1doy1dkxaWlpogm2GLm0TuXhUOtbC0/M3ux2OiEhEenbBFgAuGZ1Oh+R4d4MRCbJQnrI0wNPAd9baf/i47G3g+qrTluOBPGvtzlDFFEq3nNwfgNeXbmd/YZnL0YiIRJa84nLeWJYNqJhfIlMoV8hOBK4DTjfGLK/6NdEYc7sx5vaqa+YCm4As4CngzhDGE1KDuqZy2uA0Ssq9vKATlyIiQfXaN9spKqvkxIGdGNwt1e1wRIIuNlRPbK2dD5hGrrHAlFDF0NJuPXkAn63P5fmvt3DbKf01W01EJAgqvZbnvt4CwE0naHVMIpOOqATR+P4dOTq9HfsKy5i9NNvtcEREIsJHa3eTfaCYPp2SOH1IF7fDEQkJJWRBZIzh1qpasqfnb6bSa12OSESk9XumqtXFDcf3xeNpcONFpNVSQhZk5w7vRs8Obdi8t5CP1u52OxwRkVZtTU4eizfvJyUhlivG9HQ7HJGQUUIWZLExHiZPcGocnpqnRrEiIs3x76pWF1eM6UlqYpy7wYiEkBKyEPjhmF60axPH0q0HWLp1v9vhiIi0SnsLSnl7eQ7GwI0n9HU7HJGQUkIWAskJsd8PHX9S45RERJrk5UXbKKv0csaQLvTplOx2OCIhpYQsRG44oS/xMR4+XLubTbkFbocjItKqlFV4eWGh09NRjWAlGighC5EuqYlcMlrjlEREmuLdVTnk5pcyuGsqJwzo5HY4IiGnhCyEbjnZ+alu9tJs9haUuhyNiEgLys+HmTNh2jTnNj/f7w+11n5fzH/TiX1xJvGJRDYlZCE0sEsqZx7VhdIKL89rnJKIRIv58yE9HaZOhQcecG7T0537/bBs2wFWZufRISmOi0enhzRUkXChhCzEbjnJaRT7wtdbKC6rdDkaEZEQy8+HiROd28JC577Cwpr7CxqvqX2manXsqrG9NYJOooYSshAb268jI3u150BRObOXbnc7HBGR0Jo1C7ze+h/zep3HG5BzsJj3V+8ixmO47vg+IQhQJDwpIQsxYwy3Vq2SzdQ4JRGJdJmZNStjdRUWQlZWgx/+wsKtVHotE4/uTvd2bUIQoEh4UkLWAs4Z3o1eHduwdV8RH67Z5XY4IiKhk5EByT56hiUnw8CBPj+0uKySlxdtA5xifpFoooSsBcR4DDdPcFbJ/vXlJqzVKpmIRKhJk8Dj41uLx+M87sNb3+4gr7ickb3ac0zvDiEKUCQ8KSFrIVeM6Un7pDiWbz/Ikq0H3A5HRCQ0UlNh7lzntnqlLDm55v6UlHo/zFrLs185PRt/pNUxiUKxbgcQLZLiY7l+fB8e/jSLf32xieP6dnQ7JBGR0JgwAXJynAL+rCxnm3LSJJ/JGMCCrH1s2F1Al9QEzh3evQWDFQkPSsha0HXH9+WJLzfx8Xe72ZhbwIA03/85iYi0aikpMHmy35c/9rlT7H/98X2Ij9XmjUQffdW3oLTUBC47picAM+dp6LiICMDSrfv5auM+UhNiue74vm6HI+IKJWQt7OaT+mEMvLFsB7n5GqckIvLwJ87q2I0n9qVdmziXoxFxhxKyFjYgLYUzj+pKWYWX57/e4nY4IiKuWpl9kC825JIUH8NNJ/ZzOxwR1yghc8GtJ1eNU1q4laKyCpejERFxzz8/dVbHrhvfh47J8S5HI+IeJWQuGNOnA6N7t+dgUTmvL8l2OxwREVd8t/MQH63dTWKch5urJpqIRCslZC44fJzSJioqfcx9E5HIk58PM2fCtGnObX6+2xG55pGq1bGrxvYmLTXB5WhE3KW2Fy45e1g3+nZKYsu+Ij5Ys5vzRqjvjkjEmz8fJk50hmwXFjoNU++912mYOmGC29G1qKw9+cxdvZP4GA+3nTzA7XBEXKcVMpfEeAyTq1bJnvxyo8YpiUS6/HwnGcvPrxm+XVhYc39BgbvxtbBHP9uItc4Uk27tEt0OR8R1SshcdPkxPemYHM+K7DwWb97vdjgiEkqzZjkrY/Xxep3Ho8SWvYX8Z/kOYj2GO07V6pgIKCFzVZv4GK4b3weAJ79Uo1iRiJaZWbMyVldhoTNiKEo89nkWXguXHpNOzw5JbocjEhaUkLns+uP7kBDr4ZN1e8jaE73FvSIRLyOjZth2XcnJzrzHKJB9oIg3l+3AY+DOU6Pj7yziDyVkLuuUksDlxzrjlJ76crPL0YhIyEyaBB4f/+V6PM7jUeCJLzZS4bVcOLIHfTv7SFBFopASsjBw80n9MQbe+nYHe/JL3A5HREIhNdU5TZmaWrNSlpxcc39KirvxtYBdeSW89k02xsBdp2t1TKQ2JWRhoF/nZM4e2pWySi/PfbXF7XBEJFQmTICcHJgxA6ZPd25zcqKm5cW/vtxIWaWXicO7M7BLqtvhiIQV9SELE7eePIAP1uzmxYXbuPPUgSQn6FMjEpFSUmDyZLejaHG5+aW8sngbAFNO0+qYSF1aIQsTx/bpwLF9OpBXXM6sb7a7HY6ISFDNnL+JknIvZx7VlaE92rodjkjYUUIWRm6rGjr+xBcbKSmvdDkaEZHgOFBYxgtfbwXg7jO0OiZSHyVkYeSsoV0Z1qMte/JLeXHhVrfDEREJimcWbKaorJJTBqUxomd7t8MRCUtKyMKIMYafnj0IgMc/30hhaYXLEYmINE9ecTnPLtgCwI91slLEJyVkYea0wV0Y1as9+wrLeFYnLkUkGPLzYeZMmDbNuc1vuSbUz3+1hfzSCo7v34kxfTu22OuKtDZKyMKMMYafnT0YcMYpHSopdzkiEWnV5s+H9HSYOhUeeMC5TU937g+xgtIKnl7gNLz+sWrHRBqkhCwMnTiwE+P6dSSvuJyn56l7v4g0UX4+TJzo3FbP0SwsrLm/oCCkL//iwq0cLCpnTJ8OHN+/U0hfS6S1U0IWhpxaMmeV7Jn5mzlQWOZyRCLSKs2aBV5v/Y95vc7jIVJcVsnMeZsApyu/MSZkryUSCZSQhamx/TpyUkZn8ksreLLqPzURkYBkZtasjNVVWAhZWSF76VcWb2NvQRkjerbjlEFpIXsdkUihhCyMVa+SPbtgC3sLSl2ORkRanYyMmrmZdSUnw8DQ1HWVlFfyry83AvDj0zO0OibiByVkYWxUr/aceVQXissrefzzjW6HIyKtzaRJ4PHx37zH4zweAq8vzWb3oVKO6t6WM4/qEpLXEIk0SsjC3E/OcvqSvbhwK7vySlyORkRaldRUmDvXua1eKUtOrrk/JSXoL1lW4eWJqh8g7zpNtWMi/lJCFuaG9WjHxKO7UVrh5dHPQlfvISIRasIEyMmBGTNg+nTnNifHuT8E5ny7gx0HixnYJYVzh3cLyWuIRKJYtwOQxk09cxDvrd7Fq99s47ZT+tOzQ5LbIYlIa5KSApMnh/xlKiq9PPq584PjXacNxOPR6piIv7RC1goM6prKRSN7UF5p+ecnWiUTkfD035U5bN1XRN9OSZw/orvb4Yi0KkrIWol7zhxEjMcwe1k2W/b6OMYuIuKSSq/lkU+dHxjvPHUgsTH69iISCP2LaSX6dU7msmPSqfRaZnyS6XY4IiKHeX/1LjbmFpLevg2XHJPudjgirY4Sslbkx6dnEBdjmLN8B5m7W244sIhIQ7xeyz8/dX5QvOPUAcRpdUwkYCH7V2OMecYYs8cYs9rH46caY/KMMcurfv1vqGKJFL06JjHpuF5YC//3sVbJRCQ8fPzdbtbtyqdr2wSuGNPT7XBEWqVQ/hjzLHBOI9fMs9aOqvr1hxDGEjHuOi2D+FgP767ayZqcPLfDEZEoZ63ln1W1Y7edPICE2BiXIxJpnUKWkFlrvwT2h+r5o1W3dolcO64PAA99pFUyEXHXFxtyWbUjj84p8Vw1trfb4Yi0Wm5v9B9vjFlhjHnPGDPM10XGmFuNMUuMMUtyc3NbMr6wdMepA2gTF8PH3+1m+faDbocjIlGq9urYLSf1p028VsdEmsrNhGwZ0MdaOxL4JzDH14XW2iettWOstWPS0tJaKr6wlZaawA0n9AXg7x+udzcYEYla87P2snTrAdonxXHt+D5uhyPSqrmWkFlrD1lrC6p+PxeIM8Z0diue1ua2k/uTkhDLvMy9LN6snWERaVmVXsuf3/0OcGrHkhM0+EWkOVxLyIwx3UzV1FljzNiqWPa5FU9r0yE5nh9N6Ac4q2TWWpcjEpFo8uaybNbtyie9fRtuOrGv2+GItHqhbHvxCvA1MNgYk22MmWyMud0Yc3vVJZcDq40xK4CHgSutsoqATJ7Qj3Zt4li0eT9fbVQuKyIto7iskgeryiV+/oPBJMapdkykuUK2xmytvaqRxx8BHgnV60eDdm3iuPXk/vztg/U8+OF6ThjQiapFRxGRkJk5bxO7D5VydHo7LhzZw+1wRCKC26cspZluPKEvHZPj+XbbQT5frxOoIhJae/JLePyLjQD8auJReDz6IVAkGJSQtXLJCbHceeoAAP7+kWrJRCS0/u/jTIrKKjnzqK4cP6CT2+GIRAwlZBHg2vF96JKawOodh/hgzW63wxGRCJW5O59XF28jxmOYfu4Qt8MRiShKyCJAYlwMd50+EIB/fLSeSq9WyUQk+O57bx1eC1eP7c3ALiluhyMSUZSQRYhJx/WiR7tENuwu4J2VOW6HIyIRZkHWXj5dt4eUhFjuOTPD7XBEIk6jCZkx5sfGmA4tEYw0XUJsDHef4fwnOePjTCoqvS5HJCKRwlurCewdpw6gc0qCyxGJRB5/Vsi6At8YY14zxpxj1FchbF12bE96d0xi095C3vp2h9vhiDQsPx9mzoRp05zb/Hy3IxIf3vp2B2t3HqJ7u0QmVzWkFpHgajQhs9b+BsgAngZuBDKNMX8xxgwIcWwSoLgYD1OrthIe/jSTsgqtkkmYmj8f0tNh6lR44AHnNj3duV/CiprAirQMv2rIqjro76r6VQF0AGYbYx4IYWzSBBeNSmdAWjLb9xfz+tLtbocjcqT8fJg40bktLHTuKyysub+gwN345DDPLNjMzrwShvVoy8Wj0t0ORyRi+VNDdo8xZinwALAAONpaewdwLHBZiOOTAMV4DD85axAAj3yaRUl5pcsRidQxaxZ4fazeer3O4xIWcvNLeeyzLAB+rSawIiHlzwpZR+BSa+0PrLWvW2vLAay1XuD8kEYnTTJxeHeGdEtlZ14JL3y91e1wRA6XmVmzMlZXYSFkZbVsPOLTjE82UFhWyRlDunDCwM5uhyMS0fypIfuttbbe7+rW2u+CH5I0l8djmHaO07RxxieZ7MkvcTkikVoyMiA5uf7HkpNh4MCWjUfqlbUnn1cWbyfGY/jlRDWBFQk19SGLUKcN6cLpQ7pQUFrBA++vdzsckRqTJoHHx389Ho/zuLju/vfWUem1XHlcLwZ2SXU7HJGIp4Qsgv3v+UOJj/Ewe2k2y7YdcDscEUdqKsyd69xWr5QlJ9fcn6IO8G77auNePv5uD8nxMUw9c5Db4YhEBSVkEaxv52RuPsnpGfS7t9fg1UglCRcTJkBODsyYAdOnO7c5Oc794iqv1/KXuTVNYNNS1QRWpCXEuh2AhNaU0wby5rIdrMzO47Ul27lybG+3QxJxpKTA5MluRyF1/GfFDlbvOES3tolMntDf7XBEooZWyCJcckIsvzrvKAAe+GA9eUXlLkckIuGqpLySv1XVnP7sB4NpE68msCItRQlZFLhgRHfG9uvI/sIyHvp4g9vhiEiYembBZnLyShjavS2XjFYTWJGWpIQsChhj+N0Fw/AYeGHhVtbtOuR2SCISZvYVlPLYZxsB+PV5RxGjJrAiLUoJWZQY2qMt147vQ6XX8tv/rMGZhiUi4pjxSSYFpRWcNjiNE9UEVqTFKSGLIveeNYgOSXEs2ryfd1budDscEQkTG3MLeGnRNjwGfjnxKLfDEYlKSsiiSPukeH7+A6fj9l/mfkdRWYXLEYlIOKhuAjvpuN4M6qomsCJuUEIWZSYd14vh6W3ZmVfCo59pZqBItFu4aR8frd1NUnwMPzkrw+1wRKKWErIoE+Mx/P7C4QA89eVmtuz1MeRZRCJe7Sawt58ygC6piS5HJBK9lJBFoWP7dODSY9Ipq/Tyx3fWuh2OiLjkvytzWJmdR9e2Cd9P9RARdyghi1LTzx1CSkIsn6zbw2fr9rgdjoi0sJLySh6oagL707MHkxSvwS0iblJCFqW6pCZyzxlOvcjv/7uG0opKlyOSqJOfDzNnwrRpzm1+vtsRRZVnv9rCjoPFDOmWymXH9AzOk+pzKtJk+pEoit1wQl9e/WYbG3MLeXr+Zu48daDbIUm0mD8fJk4ErxcKCyE5Ge69F+bO1YDxFrC/sIxHP3UO9QStCaw+pyLNohWyKBYf6+F3Fw4D4JFPs9iVV+JyRBIV8vOdb9z5+c43bnBuq+8vKHA3vijw8CeZ5JdWcMqgNE7KSGv+E+pzKtJsSsii3EkZafxgWFeKyiq5773v3A5H3NDS20yzZjmrKPXxep3HJWTW7TrEiwu34jHwq2A1gdXnVKTZtGUp/Oa8oXy+Ppf/LM/hmnF9GNuvo9shSUtxY5spM7NmFaWuwkLICrA/Xn6+8w0/MxMyMmDSJEhVc9P6VHot095YRYXXct34PgzuFqT3KdifU5EopBUyoVfHJG4/ZQAAv317DZVezbmMCk3dZsrJgRtugHHjnNucnMBeNyPDSfzqk5wMAwOoZZw/H9LTYepUeOAB5zY93blfjvDvBZtZsf0g3dsl8otzBgfviYP5ORWJUkrIBIA7Th1Aevs2fLfzEC8v2up2ONISmrLN9NhjTsLz/POweLFzm57u3O+vSZPA4+O/Ho/HedwfqlsKyPb9Rfz9ww0A/PmS4aQmxgXvyYP1ORWJYkrIBIDEuBj+53ynnuTBDzewv7DM5Ygk5ALdZsrJgSlT6r9+yhTYtcu/101NdbZEU1NrVlWSk2vuT0nx73lUt+Q3ay2/fHMVxeWVXDiyB6cP6RrcFwjW51QkiqmGTL73g2HdmDCwM/Oz9vLgh+v5yyVHux2ShFJGBiQmQkk9p2sTE4/cZvrlLxt+vunT4dln/XvtCROcBG/WLCfxGzjQWUUJ5Bu36pb8NntpNvOz9tI+KY7/vWBoaF4kGJ9TkSimhEy+Z4zhtxcM5dwZ83hl8TauHtub4ent3A5LQmXiRLjllvofKymB8847/L516xp+vvXrA3v9lBSYPDmwj6mtum6pvqRMdUvfy80v5U/vOieo//f8oXROSQjdizX3cyoSxbRlKYfJ6JrKDSf0xVqnwN9aFfhHrLlznZWw+iQmwrvvHn7fkCENP9/gIBaJ+0N1S3753dtryCsu5+RBaVwyOt3tcETEByVkcoR7zsygc0oCS7ce4K1vd7gdjoRKZmb925Xg3F93y++++xp+vvvvD05c/lLdUqM+XLOLd1ftJCk+hr9cMhxjgtCRX0RCQgmZHKFtYhzTqo7E3/feOvJLyl2OSEIi0FYFPXrAo4/Wf/2jj0K3bsGNzx/VdUszZjg1bDNmOH/WqB4OlZTzP/9ZDcDPfzCYnh2SXI5IRBpiWtuW1JgxY+ySJUvcDiPieb2Wy574im+3HeTWk/sHr6O3hI/8fKdlRX2d+VNTncSmvlWmXbuc5Gf9emeb8v773UnGpEG/emsVLy/axuje7Zl9+wnBmVcpIg0yxiy11o5pysdqhUzq5fEYfn/hMIyBZ+ZvJmuPejpFnKZu+XXr5pym/Ppr51bJWNhZuGkfLy/aRlyM4a+XjVAyJtIKKCETn0b0bM+kMb2o8Fp+/18V+EckbflFnJLySn755ioAppw2kEFdNUZKpDVQ2wtp0M9/MJi5q3YyL3Mvb6/I4aJROqUVcdSqIKLM+CSTzXsLGdQ1hTtPVesPkdZCK2TSoE4pCUw/16kf+585q9mV5+NUnoi4bvWOPJ78chPGwP2XjSA+Vv/Fi7QW+tcqjbpqbC9OG5zGoZIKfj57hbYuRcJQRaWX6W+upNJruaFtIcc8ej/MnFn/oQ0RCTtKyKRRxjiFwR2S4piXuZcXFmr4uEi4mTl/M6t3HCL9UC4/f+AOeOABmDrVOUk7f77b4YlII5SQiV+6tE3kz1WzLf8y9zs25urUpUi42Ly3kIc+2gDAX97/J8kH9zsPFBY6K2QTJ0KB/s2KhDMlZOK3iUd355LR6ZSUe7n3tRVUVHrdDkkk6llr+eWbKymt8HLpui85ZfOyIy/yep2h3yIStpSQSUB+d+EwurdLZMX2gzz62Ua3wxGJeq9+s52Fm/bTyZbxPx88Xv9FhYVHjsISkbCihEwC0q5NHA9eMRKAhz/NZGX2QXcDEqkrP98pZp82LeKL2ncfKuEvc78D4LfdCukQ42PVur5RWCISVjQ6SZrk9/9dw78XbGFAWjLv3n0SiXExbock4hSvT5zobNEVFjqJiMcDs2fDtm3OQPWMDOeauXNr/jxpkjOhIFjy850twuY8fyPPYa3ltheW8uHa3ZwxpAszLx2M6dkz8FFYIhI0zRmdFLKEzBjzDHA+sMdaO7yexw0wA5gIFAE3WmvrKX44nBKy8FBSXsn5/5xP1p4CbjyhL7+7cJjbIUWXYHzDjzQNzeYEJzkrLITERCgpqbmtTtrmzg3OhAJfSWEgz+/Hc7y3aid3vLSMlIRYPrr3ZLq3axOc1xaRJgvXhOxkoAB43kdCNhH4MU5CNg6YYa0d19jzKiELH6uy87jksQVUeC0vTh7HhIzObocUHfRNt34zZ8KUKVBW1rSPD8YqUlMHtgf4HHmeBM586Aty80v548XDuW58n5prCgqcZD0ry9mmnDRJK2MiLSQsh4tba78E9jdwyUU4yZq11i4E2htjuocqHgm+o3u24+4zMgD4+ewV5BWXuxxRFKhuYZCf7yRjoNYG1ZYta3oyBlBc7CR0zak5mzXLSZTr4+9JRz+e489z15KbX8pxfTtwzdjeh19TPQrrvvucWyVjIq2Cm0X96cD2Wn/OrrrvCMaYW40xS4wxS3Jzc1skOPHPnacOYFSv9uzMK+G3/1ntdjiRLxjf8CPV8uXN+/iKCnjlleY1Us3MrEmU6/L3pGMjz7EgM5fXlmQTH+PhvktH4PGYpsUqImGlVZyytNY+aa0dY60dk5aW5nY4UktsjId//HAkiXEe5izP4d2VO90OKbIF4xt+pGrO6li18vLmrTZmZDhbyPXx96RjA89R3K4Dv4xzZsvefcZABnbR6pdIpHAzIdsB9Kr1555V90kr0z8thV9PdL5J/HrOKvYc0gDykAnGN/xINSyIB0uauto4aZJTz1cfj8d5vBnP8Y/xk9hWHsuQbqncdsqAwOMTkbDlZkL2NnC9cYwH8qy1Wl5ppa4d34eTB6VxsKicX7yxUgPIQyUY3/Aj1X33BXa9aWCrr6mrjampzuGK1NSaxDk5ueZ+f+q5fDzHigEjeXrU+XgMPHD5COJiWsUGh4j4KTZUT2yMeQU4FehsjMkGfgvEAVhrnwDm4pywzMJpe3FTqGKR0DPG8LfLR3D2Q1/y+fpcXlq0jWtrn/yS4Kj+Zu3rlGU0F3D36AGPPuoU5vvDWoiNdWrH6mrOauOECc5pyuacdKzzHMX9B/KLQwPw5hZyy4R+jOjZvmmxiUjYUmNYCar/rsjhx698S5u4GObecxL9OvvYXpPmUWsD33btgunT4d13Ye/ehq/1lZCFWSPVn7++gteXZtOvczJz7z6JNvFqxCwSjprT9iJkK2QSnS4Y2YOP1u7m7RU53Pvacl6/7XhitbUSfNWtDeRI3brBs8/CuHGNJ2SDBsH27WG92jjrm228vjSbxDgPj197jJIxkQil75QSdH+8aDjd2iby7baDPPGFBpCLS4YMafya445zVsJmzHBW1WbMcP4cJg121+Tk8T//WQPAny4+miHd2rockYiEirYsJSTmZeZy3dOLifUY5kw5keHp7dwOSaJNTo7TU6whO3c6K2p1NTaaqgVGV+UVl3PBP+ezbX8RV43txX2Xjgjq84tI8IVlp36JbidlpHHD8X2o8Fp+Mms5JeWVbock0aa6yN+XhIT6T1LOn+8kclOnwgMPOLe1m8U29ngQWGv52esr2La/iGE92vLbCzQrViTSaYVMQqa4rJLz/jmPTbmFTJ7Qj/85f6jbIUlrE4yVqKwsOOoo/4r3G5sjuX49DB7cvFmVfvjXFxu57711pCbG8u6PT6J3p6RmP6eIhJ5WyCQstYmP4aEfjiLGY3h6/ma+2thIgbVIbcFaifr8c2c1rD51G8A2Nppq+vSQj65atGkfD3ywHoB//HCUkjGRKKGETEJqZK/23HWa08/p56+v5FCJBpCLH4I5RD2QcVONXbt+fUhHV+3JL+GuV76l0mu5/ZQBnDW0a7OeT0RaDyVkEnJ3nT6QET3bseNgMb9/e63b4Ug4yc+HmTNh2jTntnorMJAh6r6eo/r+FSt8r5DVbQDb2GiqwYNDNrqqotLLj1/+ltz8Usb168jPzh7U5OcSkdZHNWTSIrL2FHDew/MorfDyxLXHcs7wek62SXSorgv77DN4802n71dR0eE9wP77X2eb0pfp051RSfPn1z+14P77a7YXfa1oQVjVkP31/XU8/vlG0lITePfuCXRJTWzS84iIe1RDJmFvYJcUfnmu0xfql2+uZPv+IpcjEldU14Xdcw+8/DKUlDjJGBy+JdmrV+MrUQ1ta06Zcvj99T1HffMlG5tF2b1782dV1uOjtbt5/PONxHgMj1w1WsmYSBRSp35pMdcf35fPN+Ty+fpcbnl+CbPvOIGUBH0JRo3aCVRDvF5n8HdjQ9RffdX3tqYv8fFwxhlw2WW+x001NosyGLMqa9m2r4ifvrYcgJ//YDDj+ndq0vOISOum74bSYjwew4wrR3PpYwtYtyufe175lievH0OMx7gdmrSEhurCaisshOzsxoeoN1SA70tZGYwc2fjYqcZGUwVpdFVJeSV3vryUQyUVnDW0K7ed3L/ZzykirZMSMmlR7drE8fQNx3HxYwv4ZN0eHnh/Hb+ceJTbYUlL8DeBqt6SbGwlKiMDkpJqtjz90czC+2app6fa7z/awuodh+jdMYkHrxiJMUH84aQFpgmISPCoqF9c8fXGfVz39CIqvJYHLh/BD8f0cjskCbWZM51eYo0lZf4Wx+fnQ1oalJb6H0MQm7cGpJ7DB28cdQo/PeNO4mM9vHnHCcEdL+brsMPcuWEzp1MkEqmoX1qd4wd04k8XDwfg12+tYvHm/S5HFAV8tYdoKZMm+a4Lg8CL41NTnVqwhsTF1f/cLfle1HP4YF2bzvz65B8B8IcfDAxuMhbMHm4i0mK0ZSmuuXJsbzbsLuCZBZu57YUl/GfKBHUlD5X6VkzuvbdlV0yqE6LacSQlQWUlXH45nHZa4MXxPXv6fiwpCa64wjkZWXu7s6Xfizq1c/nxbbjjkl9REpfI5d99zqSBu+CkjJC93mGqe7gFof5NRIJLCZm46lcTh7BpbwGfr89l8nPf8OadJ5CaGOd2WJGlvtON1SsnEye27BZesE4o5ufDc8/BQw/5vsbjgUceOfy53XgvatXOWWDaufewuWM6Q/Zs5o9z/4kZ+pOQvd4RgjBNQERCQ1uW4qrYGA8PXzWajC4pZO4p4MdVY2OkjuZssQXS9T5UcnLghhtg3DinR9i55zqNXSdPDjwBqu5l9rOfQXkDo7imTDnyuYMxASBQtbr/PzPmQuYOmUBKaRGPz7mPNgmxwT9k0Ni0AbcONYhIg5SQievaJjonLzskxfH5+lz+Mvc7t0MKL80dsu32isljjznxPv88LF7s3KanO/cHqvYKV2PF/PWdWPT3vQjWYHP4vnZuSfpR3HeqUzf24NyH6Hcgp6anWvXfLRgJYEO1erVfT0TCihIyCQu9OyXxxLXHEhdjeHr+Zl5ZvM3tkMJDMAq03VwxyclxVqrqM2UK7NoV2PP528vM19/Ln/ci2EXxqansfesd7rp4OhUxsdy8+C3O2bHy8EMGwUwAG5s20NInTEXEL0rIJGyM69+JP198NAD/M2c1X2/c53JEYSAY243+rpgEskLj77W//GXDsU2f3nj8tV9z9mz/eplZW/9KUEPvRWWlk3AFeYu30mu5Z3M8u1I6MaYsl2nFa53ToevXOzV1oTgVWV2rN2OG8x7PmOH8WS0vRMKWivolrPzwuF5k5Rbw5JebuOOlpcy580T6dvaxohENgrHdWN/pxrpd7wM5eRjItevWNRzb+vWNx1/7Nf3tOearv2Lt96K83JmlWdvgwXDBBUHd4p3x8QYWZO2jU1Eej8z6H+L2ZMOqlfDWW04s69aF5lRkkKYJiEjL0AqZhJ1p5wzhjCFdOFhUzuTnviGvuIHC7UgXrO3GhlZMAlmhCXQ1Z8iQhuMaPLjx2Gu/ZlmZf39fj8f3StaECU4iWDdpKylxXuONN4K2xfvZuj08/GkWHq+Xh99+gG57sp0Har9na9fqVKSIKCGT8BPjMcy4ajSDu6ayMbeQu15eRkVlgEOkI0VDW2wVFbBmjf8F4NUrJnVPNwayRRfodt599zUc0/33Nx63v3VjtTWWyLz7LsT62CCIiXG2L+sTQFH80q0HmPLyMgDuXfQaJ25dceRFXi/s26dTkSKihEzCU0pCLDNvGEOn5HjmZe7lT+9G6cnL+gq0ExOdW2OcPlzNKQCHwLZFA91C7dEDHn20/usffRS6dWtefL4kJTkrgPXVuOXkwP/9n+/nLCpyaryaURS/JiePG/+9mKKySi61u7nzy5fqv7CwEDp10qlIEVFCJuGrV8ck/nXdscTHeHj2qy28sHCr2yG5o/Z2409qNRGtrn9qbgF4Q9uixsAXXziv39i1vlZz7rwTdu50+pCNH+/c7tzp3O9vfNVJqL+Kipytx7onFqtbcKxZ4/tjk5OdqQFNLIrP2lPA9U8vJr+kgnOGdeOBgV48yT4mUCQnw7BhOhUpIhouLuHvjaXZ/PT1FcR4DM/dNJYJGZ3dDsk9DQ3oTk52EodAC7nz850kpbFtz0cfheuu831tSoqzRbl9u5NETZrkJBV1X2vWLGfVy9c1deXkOK/ZXCkp/iWszRhAvm1fEVf86yt2HyrllEFpPHX9GOKLC32/Z7Vfq6Cg+RMMRMRVzRkuroRMWoW/vr+Oxz/fSNvEWOZMOZH+aVH6jWraNGfVx5dzzoERI/xPdqpVn2KsqIDiYt/X7dzpJAx1T1l6vTWNWIuKnKHeMTHwn//A2Wcf/hrVH5eQ4BTWT50Kv/mN71hnzoQf//jIE5GBio11/n6+eDxOzD/5ScPx+LArr4Qr/vUV2/cXM7ZfR567aSxt4mOcB+s7mVp9ylWtKEQihhIyiXher+X2F5fy4drd9OuczJw7T6RdUhTOvGwsOYmPd04iNuUbfkGBkzx9/bXva264AZ599vDVnJ49nW09X6tPH3wAxx/f8CpcSgq89179sTaWhAZbE967vQWlTPrX12zMLWRkz3a8ePO4I2eyagVMJOI1JyFTDZm0Ch6P4aFJoziqe1s27y3kzpeXUh6NJy8nTmx4pai6LURT6spSUnyfLqxW3Tes9onNhISGT0FeeKEzCLyhawoKfMfaUN1aIHydqqwrwPcur7ic659ezMbcQoZ0S+W5H409MhkD36dcRURQQiatSHLVycvOKQksyNrH795eQ2tb4W22uXMDK3APtLN8U/qGZWY625S+VFY6bSYaOynpK9aJExtPFP0R6MEAP967wtIKbvz3YtbuPET/zsm8MHkc7ZPimxGkiEQrJWTSqqS3b8OT1x9LfKyHlxZt498LtrgdUsvKzAyslirQxqJN6RuWkeHUjPlSUeHUlzW2ylVfrPPn158kJiY6NV5//3vDzwnOCl5qqrMl6qsFh7/x1FJSXsktzy/h220HSW/fhhdvHkdaakLDzxmsAeIiEnGUkEmrc0zvDvzt8hEA/OGdtfx7wWaXI2pBgW7fBdpYtKG+YX/+szMiqV8/GD4cHnzQSSgmTXKK4X2Ji4PzzvPda8tXrPn5cO65zm3dJNRa2LABbrnF9/Dy6tf++99rWlbceSfMmeNsXzYWT1KSz/eurMLLnS8t46uN+0hLTeClm8fRo32bhp8vmAPERSTiqKhfWq2n52/mj++sBeBnZw9iymkDMdUn/SKVvy0qqjW1hcOuXU6h/tq1TvISGwvz5h15XUICfPyx0+ri6qt9P19WlnNC89xzfddl1W2bsWaN08C1PsnJcNddTl+x6pOLtSUlOUli3cL8QN+/Dz6oOSVapdJrufvVb3l35U46JMUx67bjGdS1kROZDb1uM9psiEh4aU5Rv4aLS6s1eUI/kuNj+OVbq3jwww3kl1Yw/ZwhkZ2U+RoUbq3zy+Opf3h4oLp1g5tvbrwVRmmp02rjwgsbfr7rroOTTnISro0bnVU4a53nTkhwYq2sdJLAwkInoWqoLq2w0JlSUN9sy/h4ZwXqhhuO/LsHOobp8ssPS5a8Xsv0N1by7sqdpCbE8vyPxjWejDX2us0ZIC4iEUMJmbRqV47tTXJCLD+ZtZx/fbGJgpIK/njRcDyeCE7Kqjv3122hAMFrq1B7oHdjSkthwYKGr1m40GmnUZ08xsbWFOpbe2TC11AyBs7H+0q84+KcGrP6/u6BjmGqlSxZa/nDO2t5fWk2iXEenrnpOI7u2c6/5wl05JSIRB0lZNLqXTCyB0nxMdzx0jJeWrSNorJK/nb5CGJjIrhEsrqFQl3BWmUJZCWpoqLhhqvgJF1Qf1JS3ypXY7xe369ZneBUTwVYvRp27ICVK51bY2riaUytZOnBD9fz7FdbiI/x8NT1Yziub0f/462u/fM1YUEDxEWinhIyiQhnHNWVZ288jpufX8Jb3+6gqKyCh68aTUJsA8Xm0aKxcUX1PR7ISlJsLAwaVDPvsiWcfbZT0+YrwbHWqdkqL29eh/+qZOnRz7J49LONxHgMj1w9mpMy0gJ7nkmTnAMR9dEAcRFBpywlgpwwsDMv3jyOtomxfLBmNzc/t4SiskZWbiJdYyf7fD0O/p/mTEiA888PfuwNSUnxvWVpjFOjVt/pzPok+Rj8DeDx8Gz/Cfztg/UYA//44UjOHtYt8Hira/80QFxEfNApS4k4a3MOcd3Ti9hXWMaYPh145qbjaFtf5/RI19jJvvXrnUavvgaFQ+Od6qtPWS5f7ox0amkJCc5pytrzM3/0I3j6aae2rTHGwPXXOydEL7/8iFmTr/1rDr9Y4dS33Xfp0Vw1trfv5/JncLrGJ4lENJ2yFKllaI+2vHb78Vw7cxFLth7g6qcW8vyPxtExOco6qDd2su9nP/OdtFh7ZFuJNm2ceq8uXaBTJ7jpJrj1VieheOON0P09GlJa6iRlsbHO9qTH48TsL2uhe3dnC7TOQYl3jz6d6W85bVV+c95RDSdj9Q0Pv/feI9tu+Kr9E5Gop4RMItKAtBReu+14rn16Eat3HGLSv77mxZvH0bVtgONzWrPGTva9+qrvhK2w0Fk9qp2kdO4MS5c6bSuGDIErr6xZ3fnuu+bH6/EE1pKiWu2k0p9VsbqvWV1QXytZ+nTdbu55fileCz85cxA3n9Tf93PUdyK1+n2fOFE9xkTEL6ohk4jVq2MSr992PIO6ppC5p4Arnvia7fsbaacQSRrr6t9Q8lN98q86SUlLc1bUXnkFFi+G5593tkMfe8xJRD79tPF4jjuu4Y7+Xq//A8CDxet1pgjU8tm6Pdz+4jIqvJbbTu7P3Wc0cgLSnx5jIiKNUEImEa1L20Rm3Xo8I3q2Y9v+Iq544muy9jRSF9Ua+DMTcdKkxscD+WJMzcm/OXPgpz+t/7opU5yErbGVrbg4uO02388DNd31W1JiojP4HLDW8tjnWfzouW8oq/By7fjeTD/Xj0bD6jEmIkGghEwiXofkeF66eRxj+3Zk16ESJv3ra1bvyHM7rKbzdyair5N98X7U0k2Z4qyO5ec7xe4Nef31miavvpSXQ69ecMYZvq+pqIA77nBe158Yg6GkBObPp2jQUdx1+W944P312Kptyj9cONxJxhpLfhtaiVSPMRHxk05ZStQoLqvktheX8uWGXFITY3n2prEc26eD22EFpikzEeue7CsudgrOy8t9v8706c6Yo5kznQHeweDPyc3kZGd17pZb4OGHG0/0mismhm0pnbn10t+wrks/UkqLeOidBzkrJs/Zou3du97Tl4cV62tOpYhU0SlLET+0iY/hqeuPZeqry3lv9S6ue3oRT10/hhMHdnY7NP81ZSZi3ZN9+fnw85/7TsiSkmpWdTIzmx9ztbIy373DqlVv/c2c6SQ9l13mFOo3lDw2w7xeR3PXhdPIa5NK/33befLNPzNwf7bz4JQpR04RqI7v3HMPH4Q+e7bvxE3JmIj4QQmZRJWE2Bj+edVofvHGSt5ctoOb/v0Nj15zDGcN7ep2aP4JRr1Sair8+c++67liYmrqxzIymhZnfQIZkeT1OsnOzp1OYvTKK4EnZf36OatT1X3KarHAU2Mv4f5TbsTrieGMrMU89N8HaVtW67qG4i0oqGkbUp18zZ7txKweYyLSBErIJOrExnh48PKRpCTE8vzXW7n9xaX844cjuWhUutuhNS4YMxHz8+F3v/P9+OzZNYnEpElOMX5T2lHUJy7Ov8SqsBDWrHHi6NataStkX33lfHz1dm3PnlBSQvH//o5pZ9zO20NPBeDuBS8zdf4reAiwfKO6xUb15+Lyy7U9KSJNpqJ+iUoej+H3Fw7jjlMHUOm1TJ21nJnzNuH1hnlNZUMnJysr4eSTGz992dC2Z3Kys8pTLTUV7r67+XFXCySxe/xx56BCRkbgRf5XXw0PPeT0WjvpJCdRev55tr/zMZddeR9vDz2V5NIinnjzz9w7/+XAk7H6lJerxYWINFlIV8iMMecAM4AYYKa19v46j98I/A3YUXXXI9bamaGMSaSaMYZp5wwhJSGWv32wnj+9+x1fbMjlb5ePpFu7MGkgW984nrlznYajdQdne73OkO/EROd+X93iG9v2nD0bNmyoeb1zzoH/+7/g/H0CKdIvKXGSqQ4d/P84j8dZhZszx9mmrNVsdkGfkdx14XUcSGpH3/05PPXmH8nYt73h5wtESQmsXXv4ff6MUxIRIYSnLI0xMcAG4CwgG/gGuMpau7bWNTcCY6y1d/n7vDplKaHw/upd/OqtVewvLKNdmzj+fMlwzh/Rw92g6hvHU10oPmCAUyPlT2f6uif9Zs50WmX4SsqqtxWTk53RQkWtu5muBZ4ecxF/Oe1HeD0xnLpxCTP++zfalfr4+9eneps4NtZpz+HLDTfAs886v2/o81c7QRaRiNGcU5ah3LIcC2RZazdZa8uAV4GLQvh6Ik12zvBuvD/1JE4bnEZecTl3vfwtU1/9lrzi0Jzua1TtcTzViVNhYc39b7zhf1f7sjK44oqaLczGGsZW12sVFrb6ZKwkNp57z7uXP51xC15PDFO+msXTb/whsGRszhyYMcNpBTJuXMPXJiQ4t419/hob2i4iUSeUCVk6UHs/ILvqvrouM8asNMbMNsb0CmE8Ig3qkprIMzcex58vGU6buBjmLM/h3P/7kq827m35YBprb/Huu75XuOoqLYX333dOK/boAStWREU7hh2paVx+zQO8Nfx0ksqKeWzOffx83gvEWD/q2OLinK3fDz6Aiy5y2obcd1/jNXCrVzu3GqckIgFyu6j/v0Bfa+0I4CPgufouMsbcaoxZYoxZkpub26IBSnQxxnDNuD68e/cERvZqT05eCVc/tYg/vbOWkvIQNymtrbE6r+3bnYQhEGVlzsrM2WfDqFFwwQXNDjNcLew1nAtveIjV3QbS+8BO3nrhZ0xcv8C/Dx4+3DlQkJvrvFe1Nda6o3p1UeOURCRAoUzIdgC1V7x6UlO8D4C1dp+1troIZiZwbH1PZK190lo7xlo7Ji0tLSTBitTWPy2FN24/nqlnZhDjMcycv5mLHlnA2pxDLRNAY4PB168/vKA/EMXF8NxzsHFj0z4+jFng2WPO55or/8y+5PactHkZbz//Ewbv3er/kxQWOocaXn31yFOqw4Y1/LFDhzq3GqckIgEKZVF/LE5R/xk4idg3wNXW2jW1rulurd1Z9ftLgGnW2vENPa+K+qWlLd9+kJ/MWs7mvYXExRh+evZgbjmpPzGeRrrON0dD43iC4ayzoHt3eP750Dy/C0pi4vj1D6bwxtFnAnD7wtf5+Zd+blHWFhPjnOpMSnK2Fy+9FE47zam9q/68+LJzp9M3TeOURKJSWBb1W2srgLuAD4DvgNestWuMMX8wxlxYddndxpg1xpgVwN3AjaGKR6SpRvVqz7t3T+Da8b0pr7Tc/946rnpqIdv3h7DgvXoweEqK/8X7gdi506mJakibNsF/3RBZ37kPk67+K28cfSZtykr453/+yvQvngs8GYOaFhtFRc4q5Msvwz33OAnWpk3w6KP1f9yjjzrJGPge7F778yoiUouGi4sE4LP1e/jF7JXk5peSkhDL7y4cxmXHpGMam9HYFPPnOzMTi4oC75RvjNOywpfTT4dPPnFWfV577cjHu3WDTp3gu++C16U/BPYkd+AfJ13La0efidcTQ8+Du3jyzT8zNHdzaF6wenWroMA5dbl+PQweDPffX5OM1VZ3sLvGKYlEtOaskCkhEwnQ/sIyfvXmKt5fswuAc4Z14y+XHk3H5AC7yTekuVuWtRqi1uvqq+Fvf2t4+y2MFcYl8uTYS3ly7KUUxycS463kmm/f4975L9K+pAktJTp1gn37Gr8uOdlpgVF3gLuICM1LyDTLUiRAHZPjefzaY3hj2Q5+9/Ya3l+zi6XbDvDA5SM4bXCX4LzIrFlO8X1TNbaq1a2bMxy7lakwHl4fcRb/mHANuSkdATh7w9dM++JZBuzf0chHN+DgQadmrLG+azohKSIhooRMpAmMMVx+bE/G9evIT19bweIt+7np399w7fje/GriUSTFN/Of1sKFDXeEb46YGNi71xm+3UpY4PP+Y7jv1JvYkNYHgJE56/n1Z88wNntNwx/sj+pC/sbohKSIhIi2LEWaqdJreWreJv7+4XrKKy39Oycz/dwhnHFU16afxBwwwCkgD5X4+MZ7aoWJ1V36c99pP2JB31EA9Dy4i2lfPMf56+YR1Mq9a66Bt992EjNfK2U6ISkiDdCWpYiLYjyG208ZwMkZaUyd9S0bdhdw6wtL6dspickT+nHZsT0DXzHztwt/U7WCZCwntTMPnnQdbw0/DWs8tC0p4O6vXuW6Ze+QUBnk1cPkZKe1xRNPONvFn33mDFmPiXGSs9pzKJWMiUgIaIVMJIhKyit5edE2nlmwmewDTg1Y+6Q4rhnXm+uP70vXtn521z/hBPj66xBGGr7y49vw+PgreHrMRZTGJRBXWc4NS9/hrq9nNa1g3x/1rXzphKSIBEinLEXCTEWllw/X7uapeZv4dttBAOJiDBeM7MHNE/oztEfbhp9gwwannUIUKffE8MrIc5hx4lXsS24PwPnffckvvniO3nm7Q/fCKSnw3nswYULznic/30ngMjOdTv2TJjmJnohEDSVkImFs6dYDPD1/E++v3oW36p/biQM7cfOE/pwyKA2PrzqzoUOdPmBN0VgfsjBigQ8zxvPXU25kU6eeABy3fQ2/+uxpRu/cENoXj4+Hf/zDGbzeHPPnw8SJzunWwsLDtzibm+iJSKuhGjKRMHZsnw4c2+dYtu0r4t9fbea1b7azIGsfC7L2MbBLCpMn9OOS0ekkxsUc/oEff9z0PmGtIBmzwLL0Ifz1lBtZ3Gs4AP3272Da58/yg8yvg1uw70tZGWRnH3l/IKtd+flOMla7Z1x1DeDEiToEICJ+0QqZSAvLKy7n1cXbeParLezMcwaEd0qO59rxfbju+D50TkmouXj6dPjrX12KNPhKY2JZ2HsEnwwYy8cZY8lp6/Rt61CUx9QFr3D18veI8/rRfiJY6mv0Guhq18yZMHVq/Qcx1EhWJKpohUykFWnXJo7bThnAjyb0Y+6qncyct5lVO/KY8Ukmj3+xkUtHpzN5Qj8yuqa2itOQjdnfpi2f9R/Dxxnj+LLvaAoTkr5/LK1gP1es+pjbF86mbVkIZ4P64vE4q1/VmrLalZnp+1SsGsmKiJ+UkIm4JC7Gw0Wj0rlwZA8Wb97PU/M288m63bz6zXZe/WY7pxRs46a5XzA2LoGk8lK3w/WbBTZ27MnHA8fxycCxLE0fgtdTsx171O5NnLlxMWdmLuLoXVl4cGmVPiXlyDYWs2b5nnLg9TqP113tyshwVsJ8rZCpkayI+EEJmYjLjDGM69+Jcf07sSm3gH8v2MLr32zli5TefPHDP+DxVjJgfzbDd21k+O4shu/ayNA9m0gta8ZopSCrMB6W9BzKxwPH8fHAcWzp2OP7x+Iqyzlx8wrOzFrMGVmL6Hko18VIa8nMPHIgeFNWuyZNgnvvrf9j6q7AiYj4oIRMJIz0T0vhjxcP595fTOKlzsOZO/hENnTuQ2bVr7eGn15z7b5shu3eyPDdGzl6VxbDdm+kXWmIG8rWcig+iS/6H8snA8fyWf8x5LWpKXpvX3yI0zcu4cysRZy0eVlYJY/fe+IJ+N3vDr+vKatdqanOSpuvujMV9IuIH1TULxKOPJ7vT0qWxMSxIa0Pq7oOZHW3AazpOoB1af0oi4074sN6H9jJ8N0bGVaVpA3fvZGOxYf8ekkLlMbEURjfhoKEJPLjk77/fUF8EgXVv09IYlmPISzqNZyKmJqf6frv285ZWYs5I2sxx+z4jljbyIBzt7Vr5wwVry0/3znZWruGrFpjY5PUSFYk6qkPmUgkyc+Htg03ji3zxJLZuReruw1kddcBrO46kLVd+lEal3DEtT0O7WH4ro30zNtNUXwbJ7GKT6Igoc1hiVZhfBvKY45M8nzxeCsZk722KglbRP8DOQH/VV0VHw+l9dTmqaeYiDSRTlmKRJLnnmv0knhvBcP2bGbYns1M4iPAqePa2KkXq7o5CdqargNY07U/OW27fN9eojFxleWklBaRUlZMclkxqaVFJJcVk1JWdNjv+x7YySmbltKhpJ6VpNbCV9I7YYKzEqbVLhFpQUrIRMLNO+806cNirZfBe7cyeO9WLl/9KQCVxsPmDj1Y3W0ge1I6kFKVVPlKtII+tDucXXCB78dSUtQ7TERalBIykQgWY70M3J/NwP31dKOPZjExcOKJbkchIvI9j9sBiEgd55/vdgSRLylJ7ShEJKwoIRMJNyec4HYEkS0xUe0oRCTsaMtSJNxcf73bEUSuhATYvPnIhrAiIi7TCplIOMnPhzVr3I4iMqWkwMcfKxkTkbCkhEwknMya5fS8kuCJjYVp02DnTvURE5Gwpf/5RcJJZqbv4dbSNHFx8JvfqGZMRMKaEjKRcFI9S7G5Eo7s2B+1iov9arYrIuImJWQi4WTSpOZvWY4e7dRKxccHJ6ZI8O67bkcgItIgnbIUCSepqU5LhtqzFAPxzjtw3nnO77dsgT59oLw86GGKH/LznZrAzExn5XPSJOfzKyJSDyVkIuGm9izFN96ATz+tfwh2tYQEp07qvfcOL1r/29+UjFWrTlJbSn0Dyu+9VwPKRcQnY611O4aAjBkzxi5ZssTtMERaRn4+pKc7t3UlJsKdd8LQoUcOv96wAQYPbrk4w1lSEuze3XJF/Q19zlJTnWRbBwxEIpIxZqm1dkxTPlYrZCLhrL4tzORkp86s7mpL7S2y115zL+bmMAYa+yExPt5ZEfRnOzcxET74oGUToFmzfJ+U9XqdxzW4XETqUEImEu5qb2FmZcHAgUeuiNXdImutJk+GmTN9P56YCA8+6Nw+9RQsWuT72oQEyM1t+dWozEzfn4PCQudzKCJShxIykdYgJcX3qkp+vpOM1bdF1tp07gxTpsCjj9b/eFwc3HCD835YC6tX15/8xMU5z+HG1mB165L64kpOdhJqEZE61PZCpLVraIss3MQ28DNgdbLyyCPwyiuHt/9ITKzZvq1OshpqEZKY6Dzuhobi8njci0tEwpoSMpHWrqEtskDEx8PVVzd8jTFNf/64OLj/ft+rVrWTlSuvhLw8Z/ty+nQnScvJObxmrjpBS02taaabnHxk4tbSwjUuEQlr2rIUae0a2iLzV0qK0zbjhhsavq6pp7KTkpzi+gkTYNw434cUaicrDW3TVvOnvs4N4RqXiIQttb0Qae0aarPgj5/8BP7wBydZSE6GoqLmxxQfD4MGQa9eTg+w6rqvagUFSlZEJOKo7YVINKveCjvzzIYbyNanTRu49NKaZKhbN9i0qfkxlZXB+efDfffV/7g/q18iIlFENWQikWDCBNi82SlmD0RxsbN9WFDg/Pn114MTj04TiogERAmZSKTo3h0++ujwYnJ/VDcrBTjmGLjkkubH0thpwvx8p2B/2jTnNhJadoiINIO2LEUiSd1i8p49nftfeMF3E9W6zUonTnQK/EtKAn/9xETnNGVDpwk151FE5AhKyEQiTX31WQkJvpuo1t1ezMz0PxmLj4dTToEePaBTp/rnatZWXxPb6pgmTtScRxGJWtqyFIkGgTQrrW6j4Y+yMjj2WHj2Wfj7351EsKGEyp85jyIiUajVtb0wxuQCW92OI0J0Bva6HUQUcuV9bwspAyADwAMeL3gBNkLmISiovi4GPCNgpMePH9i84N0B2/f4+ffpDelp0M3X47mwaxvs8Oe5mkBf7+7Q++4Ove/uGGytTW3KB7a6LUtrbZrbMUQKY8ySpvZLkabT++4Ove/u0PvuDr3v7jDGNLlRqrYsRURERFymhExERETEZUrIotuTbgcQpfS+u0Pvuzv0vrtD77s7mvy+t7qifhEREZFIoxUyEREREZcpIYsixpiOxpiPjDGZVbcdfFxXaYxZXvXr7ZaOM1IYY84xxqw3xmQZY6bX83iCMWZW1eOLjDF9XQgz4vjxvt9ojMmt9TV+sxtxRhJjzDPGmD3GmNU+HjfGmIerPicrjTHHtHSMkciP9/1UY0xera/1/23pGCORMaaXMeYzY8xaY8waY8w99VwT8Ne8ErLoMh34xFqbAXxS9ef6FFtrR1X9urDlwoscxpgY4FHgXGAocJUxZmidyyYDB6y1A4GHgL+2bJSRx8/3HWBWra/xmS0aZGR6FjingcfPxemBlwHcCjzeAjFFg2dp+H0HmFfra/0PLRBTNKgAfmqtHQqMB6bU8/9MwF/zSsiiy0XAc1W/fw642L1QIt5YIMtau8laWwa8ivP+11b78zEbOMMYY1owxkjkz/suQWat/RLY38AlFwHPW8dCoL0xpnvLRBe5/HjfJQSstTuttcuqfp8PfAek17ks4K95JWTRpau1dmfV73cBXX1cl2iMWWKMWWiMubhlQos46cD2Wn/O5sh/sN9fY62tAPKATi0SXeTy530HuKxqG2G2MaZXy4QW1fz9vEjwHW+MWWGMec8YM8ztYCJNVanJaGBRnYcC/ppvdZ36pWHGmI+pfzTNr2v/wVprjTG+jtj2sdbuMMb0Bz41xqyy1m4MdqwiLvkv8Iq1ttQYcxvOKuXpLsckEgrLcP4/LzDGTATmUDU+TZrPGJMCvAFMtdYeau7zKSGLMNbaM309ZozZbYzpbq3dWbV0usfHc+yout1kjPkcJ/tXQhaYHUDtlZeeHDmjsfqabGNMLNAO2Ncy4UWsRt93a23t93gm8EALxBXt/Pn3IEFWO0mw1s41xjxmjOlsrdWMy2YyxsThJGMvWWvfrOeSgL/mtWUZXd4Gbqj6/Q3Af+peYIzpYIxJqPp9Z+BEYG2LRRg5vgEyjDH9jDHxwJU4739ttT8flwOfWjUGbK5G3/c6dRwX4tR/SGi9DVxfdfJsPJBXq3xCQsQY0626LtUYMxbne75+6Gumqvf0aeA7a+0/fFwW8Ne8Vsiiy/3Aa8aYycBW4IcAxpgxwO3W2puBo4B/GWO8OP9477fWKiELkLW2whhzF/ABEAM8Y61dY4z5A7DEWvs2zj/oF4wxWTiFuVe6F3Fk8PN9v9sYcyHOSan9wI2uBRwhjDGvAKcCnY0x2cBvgTgAa+0TwFxgIpAFFAE3uRNpZPHjfb8cuMMYUwEUA1fqh76gOBG4DlhljFledd+vgN7Q9K95deoXERERcZm2LEVERERcpoRMRERExGVKyERERERcpoRMRERExGVKyERERERcpoRMRERExGVKyERERERcpoRMRKKOMea4quHiicaYZGPMGmPMcLfjEpHopcawIhKVjDF/AhKBNkC2tfY+l0MSkSimhExEolLVrMtvgBLgBGttpcshiUgU05aliESrTkAKkIqzUiYi4hqtkIlIVDLGvA28CvQDultr73I5JBGJYrFuByAi0tKMMdcD5dbal40xMcBXxpjTrbWfuh2biEQnrZCJiIiIuEw1ZCIiIiIuU0ImIiIi4jIlZCIiIiIuU0ImIiIi4jIlZCIiIiIuU0ImIiIi4jIlZCIiIiIuU0ImIiIi4rL/B3QF20UZmsZ9AAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:29.563819\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAFvCAYAAADkPtfiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABXMElEQVR4nO3deXjU5dX/8fc9WckCyA5hJ2EXRAFRcVdUXLBuWOuOWhVrsbZV2/7aPq199HFrsWqrxb0uuFVRsYo7KCCIoOxhDyRA2LNvc//++CYSw0wySWbmO8vndV1cAzPfzBwmITnc97nPMdZaRERERMQ9HrcDEBEREYl3SshEREREXKaETERERMRlSshEREREXKaETERERMRlSshEREREXBaVCZkx5iljzE5jzPIAr7/EGLPSGLPCGPNiqOMTERERaQ4TjX3IjDEnAMXAc9ba4U1cmwO8Apxird1rjOlird0ZjjhFREREAhGVK2TW2s+BPfXvM8YMMMb81xjztTFmrjFmcO1D1wOPWmv31n6skjERERGJKFGZkPnxBPAza+1RwC+Bx2rvHwgMNMZ8YYxZYIw507UIRURERHxIdDuAYDDGZADHAq8aY+ruTqm9TQRygJOAnsDnxpjDrbX7whymiIiIiE8xkZDhrPTts9Ye4eOxrcBCa20VsNEYsxYnQVsUxvhERERE/IqJLUtr7QGcZOtiAOMYWfvwmzirYxhjOuFsYW5wIUwRERERn6IyITPGvATMBwYZY7YaY6YAPwGmGGOWASuASbWXvw/sNsasBD4BfmWt3e1G3CIiIiK+RGXbCxEREZFYEpUrZCIiIiKxRAmZiIiIiMui7pRlp06dbN++fUP+OpXVXtbsKMJjDEO7t+VgNw0RiQhbt8KOHf4f79YNsrLCF49Irc27SzhQXk3Xtql0yUxp+gMkZnz99de7rLWdW/KxUZeQ9e3bl8WLF4fltc6aPpdVBQd44JoxnDyoS1heU0QCNGMGTJsGJSWHPpaeDnffDVOmhD0siW95e0o54f5POMzj4cu7TqFThhKyeGKM2dzSj9WWZSNOH9oVgA9WNPK/cBFxx+TJ4PHzLczjcR4XCbMXFm7BWph4eDclY9IsSsgaMaE2Iftw1Q68Xp1GFYkomZkwe7Zzm57u3JeefvD+jAx345O4U15Vw8xFWwC44pi+7gYjUSfqtizDaViPtmS1b8O2fWUs3bqPI3sf5nZIIlLf+PGQnw8zZ8K6dZCd7ayMKRkTF7z7bQF7S6sY1qMtR/Zu73Y4EmWUkDXCGMPpQ7vyzJebmLNyhxIykUiUkaFaMYkIzy1wyoeuPKYPRifBpJm0ZdmEg3Vk212OREREItW3W/exLG8f7dokcd5Ine6V5lNC1oSx/TrQNjWR9YUlrC8sdjscERGJQM/Nd1bHLj6qJ22SE1yORqKRErImJCV4OHWIs0o2Z6VOW4qIyA/tLank7WX5AFw+ro/L0Ui0UkIWgLptSyVkIiLS0CuL86io9nLiwM707ZTudjgSpZSQBeCEgZ1JTvSwZMteCosq3A5HREQiRI3X8u+FB4v5RVpKCVkAMlISOW5AR6yFj1ZplUxERByfrd1J3p4yeh7WhpM00UVaQQlZgCYM6wbAB9q2FBGRWnXF/JeP60OCR60upOWUkAXo1CFdMAbmrdtFSUW12+GIiIjLNu8u4bO1hSQnerhkdC+3w5Eop4QsQF0yUxnVqz2V1V4+X1vodjgiIuKyfy/YjLVw7ogedEhPdjsciXJKyJrh9KHOtqVOW4qIxLeyyhpeWbwVUDG/BIcSsmaYMMxpf/HR6p1U1XhdjkZERNzy9rJ89pdVMbJnO0b2au92OBIDlJA1w4DOGQzonM7+sioWbdzjdjgiIuICay3PLdgEwBXH9HU1FokdSsiaqW7bUqctRUTi0zd5+1i+7QCHpSVxzojubocjMUIJWTPVbVvOWbkDa63L0YiISLg9X9vq4pIxvUhN0txKCY6QJWTGmF7GmE+MMSuNMSuMMT/3cc1Jxpj9xpiltb9+H6p4guWInu3pnJnCtn1lrCw44HY4IiISRruKK3j32wKMgcuPVjG/BE8oV8iqgduttUOBccBUY8xQH9fNtdYeUfvrTyGMJyg8HsNptcPGP1ihbUsRkXgyc1EelTVeThnUhV4d0twOR2JIyBIya22BtXZJ7e+LgFVAVqheL5wmaNi4iEjcqfFaXly4BYAr1OpCgiwsNWTGmL7AKGChj4ePMcYsM8a8Z4wZFo54WuuYAR1JT05gZcEB8vaUuh2OiIiEwUerdrBtXxl9O6ZxQk5nt8ORGBPyhMwYkwG8Dkyz1jYsuloC9LHWjgT+Drzp5zluMMYsNsYsLix0v0t+alLC90NkP9SwcRGRuPD8goNzKz2aWylBFtKEzBiThJOMvWCtfaPh49baA9ba4trfzwaSjDGdfFz3hLV2tLV2dOfOkfG/ktOHqo5MRCRebCgsZm7uLlKTPFx8lOZWSvCF8pSlAZ4EVllrH/JzTbfa6zDGjK2NZ3eoYgqmkwd1IdFj+GrTHvaVVrodjoiIhFDd6tikkVm0S0tyORqJRaFcITsOuAI4pV5bi4nGmBuNMTfWXnMRsNwYswx4GLjURklzr3ZpSRzdvwM1XsvHq3e6HY6IiIRIaWU1r33tzK1UMb+ESmKonthaOw9odJPdWvsI8EioYgi1CUO78cW63cxZuYMLjuzpdjgiIhICb36TT1F5NUf2bs/wrHZuhyMxSp36W+G02jqyz9YWUl5V43I0IiISbNZanpu/CYArNbdSQkgJWStktW/D8Ky2lFbW8OX6XW6HIyIiQbZ4815Wby+iY3oyZx3eze1wJIYpIWul04fUDhvXaUsRkZjzXO3cykvH9iIlUXMrJXSUkLVS3bDxD1buoKrG63I0IiISLPn7ypj9XQEJHsNlmlspIaaErJUGd8sku0sGe0oqmbdO25YiIrHi2S83UeO1TDy8O1nt27gdjsQ4JWStZIxh0sgeAMxamu9yNCIiEgzFFdW8+JUzt/K68f1cjkbigRKyIDjvCCche3/FdsoqddpSRCTazVyUR1F5NWP7dmBkr/ZuhyNxQAlZEPTpmM4RvdpTWlmj2ZYiIlGuusbL019sBOC647U6JuGhhCxIJtWukr2lbUsRkaj2/oodbN1bRt+OaZw6pKvb4UicUEIWJGeP6I7HwGdrd2q2pYhIlLLW8q+5GwCYMr4fCZ5GB86IBI0SsiDpkpnKcdmdqKqxvLd8u9vhiIhICyzZspelefton5bEhUdpJJ6EjxKyIDpvZN225TaXIxERkZb41+dO7dhPju5NWnLIxj2LHEIJWRCdObwbyYkeFm7cQ8H+MrfDERGRZti8u4T3V24nOcHDVZpbKWGmhCyIMlOTOG1IF6yFd5YVuB2OiIg0w9NfbMJap5VRl7apbocjcUYJWZCdNzILgLeWadtSRCRa7C+t4pXFeYBTzC8SbkrIguykQZ3JTE1k+bYDrNtZ7HY4IiISgBe+2kxpZQ3H53RiSPe2bocjcUgJWZClJiVw1vBuAMxapp5kIiKRrrLay7NfbgLguuP7uxuMxC0lZCEw6Qhn23LW0m1Ya12ORkREGvPOt/nsOFDBwK4ZnJDTye1wJE4pIQuBcf070jkzhU27S/l26363wxERET+cRrC1Y5LG98cYNYIVdyghC4EEj+HcERqlJCIS6eav382qggN0ykhh0qgebocjcUwJWYjUzbZ8+9t8arzathQRiUR1Y5KuPKYPKYkJLkcj8UwJWYiM6NmOvh3TKCyqYMGG3W6HIyIiDazbWcQnawpJTfJw+bg+bocjcU4JWYgYYzivtrhfo5RERCLPk/Oc2rELj+xJh/Rkl6OReKeELITqZlu+t3w75VU1LkcjIiJ1dhVX8PoS5z/L16oRrEQAJWQhlN0lg+FZbSkqr+bTNYVuhyMiIrWen7+Zymovpw3pwoDOGW6HI6KELNQm1Y5SmqVRSiIiEaG8qoZ/L9gMqBGsRA4lZCF2zsjuGAMfrtpJUXmV2+GIiMS9/3yzjd0llQzPasvR/Tq4HY4IoIQs5Lq3a8PR/TpQWe3l/RU73A5HRCSueb2WGbWtLq4/Xo1gJXIoIQuDSTptKSISET5bW8j6whK6t0tl4uHd3Q5H5HtKyMLgrOHdSEowfLFuF4VFFW6HIyISt+oawV59bF+SEvQjUCKHvhrDoH1aMicO7ILXwrvfapSSiIgbVuTv58v1u0lPTuDSsb3dDkfkB5SQhUndKKU3NdtSRMQVT9YOEb9kTC/atUlyORqRH1JCFianDelKWnICS/P2sXl3idvhiIjEle37y5m1LB+PgWuPUyNYiTxKyMKkTXICZwzrBsAsrZKJiITVM19uotprOWt4d3p1SHM7HJFDKCELo/O+37bchrXW5WhEROJDSUU1Ly50GsFOOV6rYxKZlJCF0fjsTnRIT2Z9YQkrCw64HY6ISFx4dXEeB8qrOarPYRzZ+zC3wxHxSQlZGCUleDi7tu+Nti1FREKvxmt56otNAFyv1TGJYErIwqzutOWsZfl4vdq2FBEJpTkrt7NlTym9O6Rx+tBubocj4pcSsjA7svdhZLVvQ8H+chZt2uN2OCIiMe1fta0urj2uLwkejUmSyKWELMw8HvN9cf9by7RtKSISKku27OXrzXtpm5rIxaN7uR2OSKOUkLmgbtty9ncFVFZ7XY5GRCQ21TWCvezoPqSnJLocjUjjlJC5YHC3tgzqmsm+0irm5ha6HY6ISMzJ21PKe8sLSPQYrj62r9vhiDRJCZlLvt+21GlLEZGge/qLTXgtnDeyB93apbodjkiTlJC55LyRTkI2Z+UOSiqqXY5GRCR27C+rYuaiLYAawUr0UELmkl4d0jiqz2GUVdXw4aodbocjIhIzXv5qCyWVNRw7oCPDerRzOxyRgCghc9EkbVuKiARVeVUNM+Y5xfzXH9/f5WhEAqeEzEUTD+9Ogsfw+dpC9pRUuh2OiEjUe3VxHoVFFQzt3paTBnV2OxyRgCkhc1GnjBTGZ3ei2muZ/V2B2+GIiES1ymov//xsAwA/OyUbY9QIVqKHEjKXnT+qdpSSti1FRFrlP99sZdu+MrK7ZHDGMI1JkuiihMxlpw/tRmqSh6827WHbvjK3wxERiUrVNV4e+3Q9ALecnI1HY5Ikyighc1lGSiKnDekKwNsapSQi0iLvfFvA5t2l9O2YxjkjursdjkizhSwhM8b0MsZ8YoxZaYxZYYz5uY9rjDHmYWPMOmPMt8aYI0MVTySbdEQWoNOWIiIt4fVaHvlkHQA3n5RNYoLWGiT6hPKrthq43Vo7FBgHTDXGDG1wzVlATu2vG4B/hDCeiHXiwM60a5PEqoIDrN1R5HY4IiJR5f0V21m3s5is9m04f1SW2+GItEjIEjJrbYG1dknt74uAVUDDfymTgOesYwHQ3hgTd2vNyYkeJh7uFKCquF9EJHDWWv7+sbM6duOJ/UlO1OqYRKewfOUaY/oCo4CFDR7KAvLq/XkrhyZtceG8kbXblsu2Ya11ORoRkejwyZqdrCw4QOfMFC4e3cvtcERaLOQJmTEmA3gdmGatPdDC57jBGLPYGLO4sLAwuAFGiLH9OtCtbSp5e8r4Jm+f2+GIiEQ8ay0Pf+Ssjv30hP6kJiW4HJFIy4U0ITPGJOEkYy9Ya9/wcck2oP5/aXrW3vcD1tonrLWjrbWjO3eOzc7LCR7DuSOd3do3vznkLRARkQa+WLebpXn76JCezGVH93Y7HJFWCeUpSwM8Cayy1j7k57JZwJW1py3HAfuttXHbsv5Ho3oC8J9vtlFWWeNyNCIike3vH+cCMGV8P9KSE12ORqR1QrlCdhxwBXCKMWZp7a+JxpgbjTE31l4zG9gArAP+Bdwcwngi3tAebTmiV3uKyqt5+1sV94uI+PPVxj0s3LiHtqmJXHlMH7fDEWm1kP2Xwlo7D2i0VbJ1qtenhiqGaHTZ0b1ZmrePFxdu4RIVqIqI+FTXd+zq4/qRmZrkcjQirafzwRHm3BE9yExNZGnePlbmt+gMhIhITFuWt4/P1xaSnpzANcf2dTsckaBQQhZh2iQncOGRTi3Zi19tdjkaEZHIU7c6dvkxfTgsPdnlaESCQwlZBKo7LfTmN/mUVFS7HI2ISORYVXCAOSt3kJrk4brx/d0ORyRolJBFoIFdMxnd5zCKK6qZpYHjIiLfq1sd+/HY3nTOTHE5GpHgUUIWoX4yzlkle3HhFpcjERGJDOt2FjP7uwKSEzzccIJWxyS2KCGLUGcN7077tCS+27afb7fuczscERHXPfbpOqyFi0b3pHu7Nm6HIxJUSsgiVGpSveJ+rZKJSJzbsruUt5bmk+Ax3HTiALfDEQk6JWQR7MdjnW3LWcvyKSqvcjkaERH3/OOz9dR4LecfkUWvDmluhyMSdErIIlh2lwzG9e9AaWUNby5Vcb+IRJGiIpgxA+64w7ktKmrxUxXsL+O1r/MwBm4+WatjEpuUkEW4y452RoK8uHALzmADEZEIN28eZGXBtGlw333ObVaWc38LPP7ZBqpqLGcf3p0BnTOCGqpIpFBCFuHOGNaVDunJrCo4wDd5+9wOR0SkcUVFMHGic1tS4txXUnLw/uLiZj1dYVEFL33l1NHeckp2sKMViRhKyCJcSmICFx+l4n4RiRIzZ4LX6/sxr9d5vBlmzN1ARbWXCUO7Mrhb2yAEKBKZlJBFgbri/ne+zWd/qYr7RSSC5eYeXBlrqKQE1q0L+Kn2llTy/AJnhJxWxyTWKSGLAn07pTM+uxPlVV7e+Gar2+GIiPiXkwPp6b4fS0+H7MATq6e/2EhpZQ0nDuzMiJ7tgxOfSIRSQhYl6uZbqrhfRCLa5Mng8fOjxeNxHg/AgfIqnv5yEwA/0+qYxAElZFHi9KFd6ZSRQu7OYhZv3ut2OCIivmVmwuzZzm3dSll6+sH7MwI7Jfn8/M0UlVczrn8HRvftEMKARSJDotsBSGCSEjxcMronj326nhcXbmGMvkGJSKQaPx7y850C/nXrnG3KyZMDTsZKK6uZMXcDAD87JSeUkYpEDCVkUeTHY3vzj8/W8+53Bfz+nKEclp7sdkgiIr5lZMCUKS360BcXbmFvaRVH9m7PsQM6BjkwkcikLcso0qtDGifkdKay2svrS1TcLyKxp7yqhsc/P7g6ZoxxOSKR8FBCFmW+L+7/SsX9IhJ7XlmcR2FRBcN6tOWkQZ3dDkckbJSQRZlTB3eha9sUNhSWsGDDHrfDEREJmspqL//8dD3gnKzU6pjEEyVkUSYxwcPkMc4q2QsLN7scjYhI8Pznm63k7y8np0sGE4Z2czsckbBSQhaFLh3TC4+B91dsZ1dxhdvhiIi0WnWNl8dqV8duOSUbj0erYxJflJBFoR7t23DyoC5U1Vhe+1rF/SJRpagIZsyAO+5wbouK3I4oIsxals/m3aX065TOOSN6uB2OSNgpIYtSdcX9L321Ba9Xxf0iUWHePMjKgmnT4L77nNusLOf+OFZZ7eWvH64F4OaTBpCg1TGJQ0rIotRJg7rQo10qm3eX8sX6XW6HIyJNKSqCiROd27rh2yUlB+8vLnY3Phe9vGgLeXvKyOmSwQVH9nQ7HBFXKCGLUgkew6VjD863FJEIN3MmeL2+H/N6ncfjUElFNQ9/tA6AX54xSKtjEreUkEWxyWN6keAxzFm5g51F5W6HIyKNyc09uDLWUEmJM2IoDj39xUZ2FVdwRK/2TBja1e1wRFyjhCyKdW2byqmDu1Dttby6WMX9IhEtJ+fgsO2G0tOdeY9xZm9JJY9/5nTlv+PMweo7JnFNCVmU+8m4PoCzbVmj4n6RyDV5Mnj8fMv1eJzH48w/PltPUUU1JwzszDGaWSlxTglZlDs+uxO9OrRh274yPs8tdDscEfEnMxNmz3Zu61bK0tMP3p+R4W58YVawv4xnvtwEwK/PGORuMCIRQAlZlPN4DJeOUXG/SFQYPx7y82H6dLjzTuc2P9+5P878bU4uldVezhnRneFZ7dwOR8R1iW4HIK138eie/HXOWj5evZOC/WV0b9fG7ZBExJ+MDJgyxe0oXLVuZzGvfp1Hgsdw+wStjomAVshiQpfMVM4Y1o0ar2Xmojy3wxERadSDH6zBa52T4v06+TnoIBJnlJDFiLrO/TMX5VFd46fXkYiIy5bl7eO95dtJSfTw81Nz3A5HJGIoIYsRx/TvSN+OaRTsL+fTNSruF5HIdN/7qwG45rh+dG2b6nI0IpFDCVmM8HgMP67t3P/Cws0uRyMicqh5ubv4Yt1u2qYmctOJA9wORySiKCGLIRcd1ZPkBA+fri1k695St8MRkUhRVAQzZsAddzi3RUVhD8Fay//911kdu/GkAbRLSwp7DCKRTAlZDOmYkcKZw7thLSruFxHHvHmQlQXTpsF99zm3WVnO/WH03vLtfLdtP10yU7jm2H5hfW2RaKCELMbUL+6vUnG/SHwrKoKJE53bujmaJSUH7y8uDksY1TVeHnh/DQA/Py2HNskJYXldkWiihCzGHN2vAwM6p7OzqIKPVu1wOxwRcdPMmeD18x8zr9d5PAxe/XorG3aV0LdjGpeM7hWW1xSJNkrIYowx9Yv71blfJK7l5h5cGWuopATWrQt5COVVNfztw7UA3D5hEEkJ+rEj4ov+ZcSgi47qSXKih7m5u9iyW8X9InErJ+fg3MyG0tMhOzvkITz75SZ2HKhgWI+2nH1495C/nki0UkIWg9qnJXNO7Te+Z+dvcjcYEXHP5Mng8fNt3uNxHg+h/WVVPPbpegB+feZgPB4T0tcTiWZKyGLUteOdU0wvfbWFvSWVLkcjIq7IzITZs53bupWy9PSD92dkhPTln/h8PfvLqhjXvwMn5HQK6WuJRDsNF49Rw7PacXxOJ+bm7uK5+Zv5+WkaUSISl8aPh/x8p4B/3Tpnm3Ly5JAnYzsPlPPUvE2AszpmjFbHRBqjhCyG3XxSNnNzd/HMlxu5/oR+pCXr0y0SlzIyYMqUsL7k3z9eR1lVDROGduXI3oeF9bVFopG2LGPYuP4dOKJXe/aWVvHyV2oUKyLhsXl3CS99tQWPgV+eMcjtcESighKyGGaM4eaTnHlxM+ZuoLJajWJFJPQemrOWaq/lgiN7MrBrptvhiEQFJWQx7rQhXcnukkH+/nJmLct3OxwRiXEr8vfz1tJ8khM8TFPtqkjAlJDFOI/HcOOJzirZPz9bj9drXY5IRGLZ/bUjki4f14eeh6W5HI1I9AhZQmaMecoYs9MYs9zP4ycZY/YbY5bW/vp9qGKJd5OO6EGPdqms21nMHI1TEpEQWbBhN5+uKSQ9OYGpJw9wOxyRqBLKFbJngDObuGautfaI2l9/CmEscS0pwcP1J/QH4LFP12OtVslEJListdz339UAXH9CfzpmpLgckUh0CVlCZq39HNgTqueX5pk8pheHpSWxLG8f8zfsdjscEYkxH67ayZIt++iYnsx1x/d3OxyRqON2Ddkxxphlxpj3jDHD/F1kjLnBGLPYGLO4sLAwnPHFjLTkRK45zune/4/aUSYiIsFQ47Xc/76zOnbLKdlkpKjnoUhzuZmQLQH6WGtHAn8H3vR3obX2CWvtaGvt6M6dO4crvphz5TF9SE9OYG7uLpZv2+92OCISI978ZhtrdxST1b4Nlx3d2+1wRKKSawmZtfaAtba49vezgSRjjIadhVD7tOTvv1lqlUxEgqGiuoaH5qwF4BenDyQlMcHliESik2sJmTGmm6kdbmaMGVsbi4qbQmzK+P4kJRhmLy9g464St8MRkSj34sItbNtXxsCuGZw/KsvtcESiVijbXrwEzAcGGWO2GmOmGGNuNMbcWHvJRcByY8wy4GHgUqvjfyHXrV0qF4zqibXw+GdaJRORliuuqOaRj9cB8KszBpPg0QBxkZYKWeWltfbHTTz+CPBIqF5f/Pvpif155es8Xl+ylWmnDaRbu1S3QxKRKPTIx+vYXVLJkb3bc9qQLm6HIxLV3D5lKS7o3zmDs4Z3o6rG8tQXG90OR0Si0PrCYp6ctwGA3587jNoKFBFpISVkceqmE7MBeGHBZvaXVrkcjYhEE2st//P2SqpqLJeM7skRvdq7HZJI1FNCFqcO79mO43M6UVJZw3PzN7kdjohEkTkrd/D52kIyUxP59ZmD3Q5HJCYoIYtjN9UOHX/6y02UVda4HI2IRIPyqhr+/O5KwGlz0UkjkkSCQglZHDtmQEdG9mrPnpJKZi7a4nY4IhIFHv9sA3l7yhjUNZMrxvVxOxyRmNFkQmaM+Zkx5rBwBCPhZYz5fpXsX3M3UlXjdTkiEYlkeXtKeexTp83F/0waRmKC/k8vEiyB/GvqCiwyxrxijDnT6ChNTJkwtCsDOqezbV8Zby/LdzsciSdFRTBjBtxxh3NbVOR2RNKEv7y7iopqL+eO7MG4/h3dDkckpjSZkFlrfwfkAE8CVwO5xpj/NcYMCHFsEgYej+HG2lWyf3y6Hq9XvXklDObNg6wsmDYN7rvPuc3Kcu6XiDQ3t5D/rthOWnICv5moQn6RYAtovbm2g/722l/VwGHAa8aY+0IYm4TJpCOy6N4uldydxXy0eqfb4UisKyqCiROd25La8V0lJQfvLy52Nz45RGW1lz/OWgHALadk071dG5cjEok9gdSQ/dwY8zVwH/AFcLi19ibgKODCEMcnYZCc6OG64/sD8Nin69AEKwmpmTPB66de0et1HpeI8syXG1lfWEK/TulMGd/P7XBEYlIgK2QdgAustWdYa1+11lYBWGu9wDkhjU7C5sdje9E+LYlvtuxj4cY9bocjsSw39+DKWEMlJbBuXXjjkUbtPFDO9A9zAfjDuUNJSUxwOSKR2BRIDdkfrLWb/Ty2KvghiRvSkhO5+ti+gFNLJhIyOTmQnu77sfR0yM4ObzzSqHveW01JZQ2nDenKSYM0r1IkVHRmWb531TF9SUtO4LO1hazI3+92OBKrJk8Gj59vPR6P87hEhEWb9vCfb7aRnOjh9+cMdTsckZimhEy+d1h6Mj8e2xvQKpmEUGYmzJ7t3NatlKWnH7w/I8Pd+ASAGq/l9285hfw3ntCf3h3TXI5IJLYluh2ARJbrju/Hc/M3Mfu7AjbtKqFvJz9bSyKtMX485Oc7Bfzr1jnblJMnKxmLIC8u3MyqggNktW/DTSdpG1kk1JSQyQ90b9eGH43K4pXFW3li7gb+90eHux2SxKqMDJgyxe0oxIc9JZU88MFaAP7fOUNok6xCfpFQ05alHOKGEwZgDLy2eCs7D5S7HY6IhNn9769hf1kV47M7ccawbm6HIxIXlJDJIbK7ZHDG0G5U1nh58ouNbocjImH03db9vLxoC4kewx/PG4qm5YmEhxIy8emmk5xxSi8s2ML+siqXoxGRcPB6Lb+ftRxr4Zrj+pLdJdPtkETihhIy8Wlkr/Ycl92R4opq/r3AZxs6EYkxb3yzjW+27KNzZgq3nprjdjgicUUJmfh1c+3JqqfmbaS8qsblaEQklA6UV3Hve06v799MHExmapLLEYnEFyVk4texAzoyomc7dpdU8uriPLfDEZEQ+tucXHYVVzK6z2Gcf0SW2+GIxB0lZOKXMYabTnRqyR7/fAPVNX4GQotIVFu7o4hn52/CY+B/Jg1TIb+IC5SQSaPOGNaN/p3T2bq3jFe/3up2OCISZNZa/vDWCmq8lsuO7s2wHu3cDkkkLikhk0Z5PIbbThsIwIMfrKW4otrliEQkmGZ/t535G3ZzWFoSv5wwyO1wROKWEjJp0jkjujOqd3t2FVfw+GeacSkSK0orq7n73ZUA/OqMwbRPS3Y5IpH4pYRMmmSM4XdnDwXgic83kL+vzOWIJCYUFcGMGXDHHc5tUZHbEcWdxz5ZT8H+coZntWXymF6tf0J9TkVaTLMsJSBH9TmMc0Z0551vC3jg/TU8NPkIt0OSaDZvHkycCF4vlJRAejr84hcwe7YzeFxCbtOuEp74fAMA/3PecBI8rSzk1+dUpFW0QiYBu+PMwSQneHjjm218u3Wf2+FItCoqcn5wFxU5P7jBua27v7jY3fjixJ/eWUlljZcLj+zJUX0Oa92T6XMq0mpKyCRgvTqkcc34vgDc/e4qrLXuBiTBEe5tppkznVUUX7xe53EJqY9W7eDj1TvJTEnkjrOCUMivz6lIq2nLUppl6snZvLp4K19t3MP7K3Zw5vBubockreHGNlNu7sFVlIZKSmDduuY9X1GR8wM/NxdycmDyZMjUDEZ/yqtq+NM7TiH/tNMH0iUztfVPGuzPqUgc0gqZNEvb1CSmnebMuLv3vVVUVqtZbNRq6TZTfj5cdRUcfbRzm5/fvNfNyXESP1/S0yE7O/DnmjcPsrJg2jS47z7nNivLuV98evCDNWzeXcrArhlceUyf4DxpMD+nInFKCZk024/H9mZA53Q27S7leQ0ej14t2WZ67DEn4XnuOfjqK+c2K8u5P1CTJ4PHz7cej8d5PBCqW2q2RZv2MGPeRhI8hvsvGklSQpB+BATrcyoSx5SQSbMlJXj4zcQhADz8US77SitdjkhapLnbTPn5MHWq7+unToXt2wN73cxMZ0s0M/Pgqkp6+sH7MzICex7VLTVLaWU1v3p1GdbCTScOYGSv9sF78mB9TkXimGrIpEVOGdyF47I78sW63Tz80Tp+f+5Qt0OS5srJgdRUKC8/9LHU1EO3me66q/Hnu/NOeOaZwF57/HgnwZs500n8srOdVZTm/OBW3VKz3PffNWzaXcrgbpn87NQQbCEG43MqEseUkEmLGGP47cShnP33uTy/YBNXHNOHfp381JBIZJo4Ea6/3vdj5eVw9tk/vG/16safb82a5r1+RgZMmdK8j6mvrm7JV1KmuqUfmL9+N898uYlEj+GBi0eSkpgQmhdq7edUJI5py1JabGiPtlx8VE+qaiz3vrfK7XCkuWbPdlbCfElNhXff/eF9gwc3/nyDwjwHUXVLASmpqOZXry0D4JZTshmepeHhIpFICZm0yu0TBtEmKYH3V+xg4YbdbocjzZGb63u7Epz7G2753XNP4893773BiStQqlsKyD3vrWLr3jKGdm/L1JO1aigSqZSQSat0bZvKjScOAJxmsV6vmsVGjea2KujRAx591Pf1jz4K3VzoSVdXtzR9ulPDNn2682eN6gFgXu4u/r1gC0kJhgcvCeKpShEJOhNt3dZHjx5tFy9e7HYYUk9pZTUnP/ApOw5U8NfJI/nRqJ5uhySBKCpyWlb46syfmekkNr5WmbZvd5KfNWucbcp773UnGZNGFZVXcebf5rJtXxm/nDCQW07JcTskkZhnjPnaWju6JR+r/y5Jq6UlJ/KrM5z6ovv+u4ayyhqXI5KAtHTLr1s35zTl/PnOrZKxiPSXd1exbV8ZI3q2+34VW0QilxIyCYoLRmUxrEdbCvaX8+S8DW6HI4HSll9M+nTNTl5elEdygocHLx5JorYqRSKe2l5IUHg8ht+ePYTL/rWQxz5dzyVjegVnRp6EnloVxJT9ZVXc+fp3APxiwkByumqup0g00H+bJGiOHdCJ04Z0pbSyhr/OWet2OCJx6U9vr2T7gXJG9W7P9cf3dzscEQmQEjIJqrsmDibRY5i5KI/V2w+4HY5IXPlw5Q5eX7KVFGN5YPMcEp560vehDRGJOErIJKgGdM7g8nF98FqnqFhEwmNfaSV3zfwagF99/hwD7vsfmDbNOUk7b567wYlIk5SQSdDdemoOmamJzM3dxadrdrodjkhc+MPrSymssIzJW8E181937iwpcVbIJk6E4mJ3AxSRRikhk6DrkJ7MrbU9j/7y7iqqa7wuRyQS2/67vIC3VhSSWlXB/bP/RoJt8G/O63WGfotIxFJCJiFx5bF96N0hjdydxcxcnOd2OCIxa3dxBb/9z3IA7vz0afruKzj0opKSQ0dhiUhEUUImIZGSmMCdZznNYh/6YC1F5VUuRyRxo6gIZsyAO+5wbmO8qP33b61gd0kl49pUcOWaT31f5GsUlohEFPUhk5A5a3g3Rvc5jMWb9/KPT9fz6zMHux2SxLp585x6Ka/XWRVKT4df/AJeew22bHEGqufkONfMnn3wz5MnOxMKgqWoyNkibM3zB/Ac73ybz7vfFZCWnMD9147H86Dx/Vwej/PxIhKxQjbL0hjzFHAOsNNaO9zH4waYDkwESoGrrbVLmnpezbKMLt9s2cuPHvuS5EQPH99+Ij0PS3M7pNgQjB/4saax2ZzgJGclJZCaCuXlB2/T052EZfbs4Ewo8JUUNvf5A3iOwqIKJvz1M/aWVnH3+cO5fFyf4Ly2iLRYa2ZZhjIhOwEoBp7zk5BNBH6Gk5AdDUy31h7d1PMqIYs+t770DbOW5TPpiB5Mv3SU2+FEP/3Q9W3GDJg6FSorW/bxjQ1UD1RLB7Y38zlsejo/ff5rPli5g/HZnXh+ylic/+PinKacOdOpGcvOdpL11vydRCRgETlc3Fr7ObCnkUsm4SRr1lq7AGhvjOkeqnjEPb8+cxDJiR7eWprP0rx9bocT3epaGBQVOckYqLVBnSVLWp6MAZSVOQlda2rOZs50EmVfAj3pGMBzvLU0nw9W7iAjJZH/u2jEwWQMDo7Cuuce51bJmEhUcLOoPwuof/xua+19hzDG3GCMWWyMWVxYWBiW4CR4eh6WxpTx/QC4+52VhGpVNi4E4wd+rFq6tHUfX10NL73UukaqubkHE+WGAj3p2MRz7Mjdwh9mrQDg/50zhKz2bVoWq4hElKg4ZWmtfcJaO9paO7pz585uhyMtcPNJA+iYnszizXt5b/l2t8OJXsH4gR+rWrM6VqeqqnWrjTk5zhayL4GedGzkOWx6Or9JH8H+sipOHNiZS0b3an6MIhKR3EzItgH1v5v0rL1PYlBmahK3nT4QgHvfW015VY3LEUWpYPzAj1XDhgXvuVq62jh5slPP50ugJx0beY7XhpzERyWpZKYmcu+Fh/9wq1JEopqbCdks4ErjGAfst9b66GgoseLSMb0Y1DWTLXtK+b//rnY7nOgUjB/4seqee5p3fWPJTEtXGzMzncMVmZkHE+f09IP3B1LP5ec5Crr14U9n3ATAH88dRvd22qoUiSUh60NmjHkJOAnoZIzZCvwBSAKw1v4TmI1zwnIdTtuLa0IVi0SGxAQPD1w8kh899gVPf7GJ04d05djsTm6HFV3qflj7O2UZzwXcPXrAo486hfmBsBYSE53asYZas9o4frxzmrI1Jx0bPId3QDa/rhlC0ca9nDakCxcc6bPcVkSiWMjaXoSK2l5Ev4c/yuWhOWvp0S6V/952Am1Tk9wOKfqotYF/27fDnXfCu+/Crl2NX+svIQtGC4wgemjOWh7+KJf2aUl8MO0EurRNdTskEfGhNW0v1Klfwu7mkwbw0eqdLMvbxx9nreChS45wO6ToU9faQA7VrRs88wwcfXTTCdnAgZCXF9GrjR+t2sHDH+ViDDx86SglYyIxKipOWUpsSUzw8NAlI0lN8vDGkm38d7lKByUEBgcwqmvMGGclbPp0Z1Vt+nTnzxHSYHfTrhKmzVwKwC8nDOKEgTplLhKrtGUprnn2y038YdYKOqQn8/60E+icmeJ2SBJL8vOdnmKNKShwVtQaamo0VRhGV5VWVnPBY1+yensRpw/tyuOXH4XHo1OVIpEsIjv1izTlinF9GJ/diT0lldz1xrdqGCvBVVfk709Kiu+TlPPmOYnctGlw333Obf1msU09HgTWWu564ztWby+if6d0HrxkpJIxkRinFTJxVf6+Ms742+cUlVdz34UjuGSMGl1KPcFYiVq3DoYMCax4v6k5kmvWwKBBrZtVGYCnv9jI/7y9krTkBN6cehwDu8b54HiRKKEVMolaPdq34c+TnNnz//P2CvL2lLockUSMYK1EffqpsxrmS8MGsE2NprrzzpCPrvpq4x7+8u4qAO6/aKSSMZE4oYRMXDfpiB5MPLwbJZU13P7qMrze6Fq1lRAI5hD15oybauraNWtCOrpqx4Fybn5hCdVey/XH9+PsEd1b9XwiEj2UkInrjDHcff7hdMpI4auNe3jqi41uhyThUlQEM2bAHXc4t3Vbgc0Zou7vOeruX7bM/wpZwwawTY2mGjQoZKOrKqu93PzCEnYVVzCufwfuODOAU6IiEjNUQyYR4+PVO7j2mcUkJ3p452fjtVUTq+rqwj75BN54w+n7VVr6wx5gb7/tbFP6c+edzqikefN8Ty24996D24v+VrQgomrI/vDWcp6dv5lubVN559bxdMrQqWORaKMaMokJpwzuyo/H9qKy2sttM5dSWe1nhUSiV11d2M9/Di++COXlTjIGP9yS7NWr6ZWoxrY1p0794f2+nsPXfMmmZlF27976WZU+/OebrTw7fzPJCR7+cfmRSsZE4pA69UtE+e3ZQ5m3bhcr8g/w949zuX3CILdDkmCpn0A1xut1Bn83NUT95Zf9b2v6k5wMp54KF17of9xUU7MogzGrsp6V+Qe4643vAPjDeUMZ1fuwFj2PiEQ3JWQSUTJSEnnw4iOY/MR8Hv1kHScP7sKR+gEVGxqrC6uvpAS2bm16iHpjBfj+VFbCyJFNj51qajRVkEZX7Sut5Kf/Xkx5lZeLj+rJZWN7t/o5RSQ6KSGTiDO2XwduOL4/j3++gdtfWca7t44nLVlfqlEv0ASqbkuyqZWonBxISzu45RmIVhbet0qDnmreSy5h2uurydtTxvCstvz5/OEYE8Tmr2GYJiAiwaOifolI5VU1THrkC9bsKOLKY/rwp9peZRLFZsxweok1lZQFWhxfVASdO0NFReAxBLF5a7P4OHzw0NGX8PCYC2mflsTbt4ynV4e0kL7e96uLETKnUyQWqahfYk5qUgIPTR5JUoLhufmb+XxtodshRT9/7SHCZfJk/3Vh0Pzi+MxMpxasMUlJvp87nO+Fj8MHH3UbysNjLsRYLw9PGhzcZCyYPdxEJGyUkEnEGtajHdNOGwjAr1/7lv2lVS5HFMXCMH+xSb5OMKalOT3CfvITmD7dWb1qzgpOz57+H0tLg8suc9pf1H/ucL8XDWrnNrXvzrRzbgfglwtmcsLiOSF9vR8I0jQBEQk+FeZIRPvpCf35aNUOlmzZx+9nLWf6paPcDin6+DrdWLdyMnFieLfwgnVCsagInn0W/vpX/9d4PPDIIz98bjfei3q1c6VJKdz4o99QlJrBhLXzufnzF+DYIM9vbc5kAhGJGErIJKIlJnh48JIjmDh9Lm8tzef0oV05Z0QPt8MKv9YUaAeyYhKEE4ONys+Hu+6C1ath8GCnqWuPFn4e6+qjKiuhqpFV06lTD02umvNeBKsovrb7vy0p4a4zfsbqLv3ov3srD777ECYUhwzqpg34SsrcPNQgIo3SlqVEvH6d0vnN2UMA+N2by9l5oNzliMKstVtsbq+YPPaYE+9zz8FXXzm3WVnO/c1Vf4WrqWJ+XycWA30vgrmtWVs798xR5/LWsJNIqyzj8f/8hczKsoM91er+bsGoa2usVq/+64lIRFFCJlHh8qN7c8LAzuwrreKO178l2k4Ht1gwCrSbms8YyhWT/HxnpcqXqVNh+/bmPV+gvcz8/b0CeS+CXRSfmclXz8/iLyc7K2/3z/4bOeV7fnjIIJgJYFPTBsJ9wlREAqKETKKCMYb7LhxBuzZJfLKmkJe+ynM7pPAIRoF2oCsmzVmhCfTau+5qPLY772w6/vqv+dprgfUys9b3SlBj70VNjZNwBbkofseBcm7+rprqhERuKF7N2e2rndOha9Y4NXWhOBVZV6s3ffqhhxpEJCKphkyiRrd2qfz5/OHc+tI33P3uSo7L7kifjn5WO2JFMLYb61ZGGut676tv1S9+4btvVXOuXb268djWrGk6/vqvGWjPMX8rqPXfi6oqZ5ZmfYMGwbnnBm2Lt7Lay80vLGFXcQXHbF3Br9+6G4qLYPly+M9/nFhWrw5NjV+QpgmISHhohUyiynkje3DOiO6UVtZw+yvLqPHG+NZlsLYbG1sxac4KTXNXcwYPbjyuQQHMKq3/mpWVgf19PR7/K1njxzuJYMOkrbzceY3XXw/Ke26t5Q+zlvP15r10L97N3//zvyQW164k1n/PVq7UqUgRUUIm0efu84fTJTOFxZv38vjn690OJ7Qa22KrroYVKwIvAK9bMbnnHue2rpaoOVt0zd3Ou+eexmO6996m4w60bqy+phKZd9+FRD8bBAkJzvalLwEWxVtr+d/Zq3jpqzySjeWx9x6iU+n+Qy/0emH3bvdq/EQkYighk6jTPi2Z+y4aAcAD76/ho1U7XI4ohHwVaKemOrfGOH24WtvYtDnbos3dQu3RAx591Pf1jz4K3bq1Lj5/0tKcFUBfNW75+fC3v/l/ztJSp8arFUXx0z/K5V9zN5LoMfzTu4JRG5b5vrCkBDp21KlIEVFCJtHppEFduPWUbLwWbnnxG5bl7XM7pNCpv914220H76+rf2ptAXhj26LGwGefOa/f1LX+VnNuvhkKCuCqq2DcOOe2oMC5P9D46pLQQJWWOluPDU8s1rXgWLHC/8emp8PJJ7e4KP6Jz9fztw9z8RiYfukoTsnp2Ph7NmyYTkWKiIaLS/Sy1vLLV7/l9SVb6ZiezBs3Hxv7Rf6NDehOT3cSh+YWchcVOUlKU9uejz4KV1zh/9qMDGeLMi/PfyPVljRbzc93XrO1MjICS1hbMYD8+QWb+X9vLgfggYtHctFRPRt/f+u/VnFx6ycYiIirWjNcXAmZRLWqGi/XPrOIubm76NcpnddvOpYO6cluhxU6d9zhrPr4c+aZMGJE8zvL151irK6GsjL/1xUUOAlDw1OWXu/BRqylpc5Q74QEeOstmDDhh69R93EpKU5h/bRp8Lvf+Y91xgz42c8OPRHZXImJzt/PH4/Hifm22xqPx4/Xv97K7a86W5N/njSMK47pe/BBXydT6065qhWFSMxQQiZxrai8ismPL2BlwQFG9W7Pi9eNo01ygtthhUZTyUlysnMSsSU/8IuLneRp/nz/11x1FTzzzA9Xc3r2dLb1/K0+vf8+HHNM46twGRnw3nu+Y20qCQ22Frx3s78r4JYXl+C18JuJg7nhhAGHXqQVMJGY15qETDVkEvUyU5N4+poxZLVvwzdb9nHry9/EbjuMiRMbXymqawvRkrqyjAz/pwvr1PUNq39iMyWl8VOQ553nDAJv7JriYv+xNla31hz+TlU21Mz37uPVO7j1pW/wWvj5qTm+kzHwf8pVRAQlZBIjurZN5ZlrxtA2NZE5K3fwx1krYnO80uzZzStwb25n+Zb0DcvNdbYp/ampcdpMNHVS0l+sEyc2nSgGorkHAwJ4775ct4sb/72Eaq/l+uP7Me20nFYEKCLxTAmZxIycrpn868rRJCd4eH7BZh7/fIPbIQVfbm7zaqma21i0JX3DcnKcmjF/qqud+rKmVrl8xTpvnu8kMTXVqfF68MHGnxOcFbzMTGdL1F8LjkDjqefrzXu57rnFVFZ7+cnRvfnNxCEYXwPN6wvWAHERiTlKyCSmHN2/I3+dfAQA9763mreWbnM3oGBr7vZdcxuLNtY37C9/cUYk9esHw4fDAw84CcXkyU4xvD9JSXD22f57bfmLtagIzjrLuW2YhFoLa9fC9df7H15e99oPPniwZcXNN8Obbzrbl03Fk5bm971bvm0/Vz/9FaWVNVwwKos/TxredDIWzAHiIhJzVNQvMWnG3A3c/e4qkhIMz147lmMHdHI7pOAItEVFnZa2cNi+3SnUX7nSSV4SE2Hu3EOvS0mBDz90Wl1cdpn/51u3zjmhedZZ/uuyGrbNWLHCaeDqS3o63HKL01es7uRifWlpTpLYsDC/ue/f++8fPCVaK3dHEZOfWMCekkrOGt6Nv/94FIkJTSR3gba+EJGoplOWIj786e2VPPXFRjJTEnn1pmMY3K2t2yEFh68WCtY6vzye4LVVCLQVRnq6U7j/0kv+rznmGDj+eOjVC9avd1bhrHWeOyXl4GpVXfxpaY3XpcHBE6W+7n/oIedEaMMkp7E+br40SJY27Srhksfns7OogpMGdeaJK0aTnBjARkMo+seJSMRpTUIW4LEjkejzu7OHsP1AGbO/287VTy3iP1OPpXu7Nm6H1Xp1nfsbtlCA4LVVqD/QuykVFfDFF41fs2CB006jLnlMTDxYqG/toQlfU8lYYuLBvmcNJSU5NWa+/u7NHcNUV9g/ZQrb9pXxkxkL2VlUwbj+Hfjn5UcFlow19boaIC4iKCGTGObxGB665AgKixayaNNern5qEa/edAxtUxspQI8WdS0UGgrWKktzBnpXVzfecBWcpAt8JyW+Vrma4vX6f826BKduKsDy5bBtG3z7rXNrzMF4mlL7XDuLyrl8xkK27StjVO/2zLhqDKlJzeh1V1f752+FTAPEReKeEjKJaalJCfzrytFc+I8vWbOjiJ8+9zXPXjs28JWNWNDUuCJfjzdnJSkxEQYOPDjvMhwmTHBq2vwlONY6NVtVVa3r8J+ezt5+OVwx4ys27iphaPe2PHPNWDJSmvmtc/Jk50CELxogLiLolKXEgfZpyTxzzVg6Z6Ywf8Nufv3aMryx2ji2oaZO9vl7HAI/zZmSAuecE/zYG5OR4X/L0hinRs3X6Uxf0tL8PnQgNZ0rywawZkcR2V0yeH7KWNq1acEKa92gcA0QFxE/VNQvcWP5tv1Mfnw+JZU13HTSAO44s4kmqNGuqZN9a9Y4jV79DQqHpjvV152yXLrUGekUbikpzmnK+vMzr70WnnzSqW1rijFw5ZXOCdGLLvrBQYnS5DZcecfzLN5bQ+8Oabx64zF0bdtIc9lABqdrfJJITFNRv0gAhme147HLj+LaZxbxj0/X06Nd6g8HQMeaxurAvF745S/9Jy3WHtpWok0bp96rSxfo2BGuuQZuuMFJKF5/PXR/j8ZUVDhJWWKisz3p8TgxB8pa6N7d2QKtd1CivH82N3gHs3jjPnq0S+WF645uPBnzdfL1F7849JSrv9o/EYl7Ssgkrpw4sDP3XHA4v37tW/4wawVd26YyYVg3t8MKjaZO9r38sv+EraTEWT2qf5qzUyf4+munbcXgwXDppQdXd1atan28Hk/gBwnqq59UBrIq1vA16wrqa5Olqhovt/z7a+at2kmnjBT+fd3R9Orgf1vT54nUuvd94kT1GBORgKiGTOLOJaN7cdtpA/FauPXlb1iyZa/bIYVGU139G0t+6k7+1a3odO7srKi99BJ89RU895yzHfrYY04i8vHHTcczZkzjHf293sAHgAeL1+tMEai1v7SKa59ZxIerdtI+LYl/XzeW/p2bSKaaWolszixREYlbSsgkLt16ajaXjulFeZWXKc8sYkNhE7VSkSaQmYiTJzc9HsgfYw6e/HvzTbj9dt/XTZ3qJGxNrWwlJcFPf+r/eeBgd/1wSk11Bp/jdOCf9Og85ubuomN6Ms9dOzawZsLqMSYiQaCETOKSMYa7zx/OyYM6s7e0iqufXsSu4mZud7kl0JmI/k72JSc3/RpTpzqrY0VFTrF7Y1599WCTV3+qqpwu/aee6v+a6mq46SbndQOJMRjKy2HePOaMn8T5//c+m3aXMqx9IrN+Np4RPds71zSV/Da2EqkeYyISIJ2ylLhWUlHNpU8s4Ltt++nfOZ0nrxpDv07NGN4dbi2ZidjwZF9ZmVNwXlXl/3XuvNOZKzljhjPAOxgCObmZnu6szl1/PTz8cNOJXivZhAQeHXshDx5/OdZ4OGfV59w/ezptBvR1tmh79z7k9OUhI6k0p1JEaumUpUgLpack8tTVY7h8xkLW7Chi0iPzePQnR3J8Tme3Q/MtkHqlhqf4Gp7sKyqCX/3Kf0KWlnZwVSc3t/Ux16ms9N87rE7d1t+MGU7Sc+GFTqF+Y8ljC5UmpfCridN4d/DxGOvl158+w00LX8OA0xJk6tRDpwjUxXfWWT8chP7aa/4TNyVjIhIAJWQS9zpnpvD6zccy7eWlfLhqB1c/vYjfnT2Eq4/ti2kqgQi3YNQrZWbCX/7iv54rIeFg/VhOTsvi9KU5I5K8XifZKShwEqOXXmp+Utavn7M6VdenrJ68tl24/sL/x+ou/cisKGH6rPs5ZUODlffG4i0uPtg2pC75eu01J2b1GBORFlBCJgJkpCTyxBVH8dCctTzyyTr+5+2VrC4o4k/nDyMlMcyF5o0JxkzEoiL44x/9P/7aawcTicmTnWL8lrSj8CUpKbDEqqQEVqxw4ujWrWUrZF9+6Xx83XZtz55QXs6CR//Nzef8ij1p7ei/eytPvHE32Xu2Nv/561ps1H0uLrpI25Mi0mIq6hep5fEYfnnGIB7+8ShSEj3MXJzHT/61MLKK/Rs7OVlTAyec0PTpy8a2PdPTnVWeOpmZcOutrY+7TnMSu3/8wzmokJPT/CL/yy6Dv/7V6bV2/PGQn4997jme/3ITl1/4R/aktePEDYv5z/O3tywZ86WqSi0uRKTFQrpCZow5E5gOJAAzrLX3Nnj8auB+YFvtXY9Ya2eEMiaRppw3sgf9OqZz/XOLWbx5L5Me+YInrjyKYT3ahT8YX+N4Zs92Go42HJzt9TpDvlNTnfv9dYtvatvztddg7dqDr3fmmfC3vwXn79OcIv3ycieZOuywwD/O43FW4d5809mmrG02W+lJ5A+n38hLOWcC8NMFr/Hrz58jwQZp5a8u3pUrf3hfIOOUREQI4SlLY0wCsBY4HdgKLAJ+bK1dWe+aq4HR1tpbAn1enbKUcNl5oJwbnv+apXn7aJOUwEOXjOSsw7uHLwBf43jqCsUHDHBqpALpTN/wpN+MGU6rDH9JWd22Ynq6M1qoQf1VtClMa89NP7qLxT2HkVJVwX3vPcykVZ8170nqtokTE532HP5cdRU884zz+8Y+f/UTZBGJGa05ZRnKLcuxwDpr7QZrbSXwMjAphK8nElRd2qby8g3juODILMqqarjphSX8dc5avN4wtIqpP46nLnEqKTl4/+uvB97VvrISLr744BZmUw1j6+q1SkqiPhn7rusAzrvqryzuOYzuBwp57YVfNz8Ze/NNmD7daQVy9NGNX5uS4tw29flrami7iMSdUCZkWUC9YhS21t7X0IXGmG+NMa8ZY3qFMB6RZktNSuDBi0fy24lD8BiY/lEuU19cQmllI6skwdBUe4t33/W/wtVQRQX897/OacUePWDZsrhox/DWkBO56Cf3UdC2M6O3rmDWs7dx+I71gX1wUpKz9fv++zBpktM25J57mq6BW77cudU4JRFpJreL+t8G+lprRwBzgGd9XWSMucEYs9gYs7iwsDCsAYoYY7j+hP48efUYMlMSeW/5di78x3y27g3h6lFTdV55eU7C0ByVlc7KzIQJcMQRcO65rQ4zEtUYD/eceDU/P+9XVCSlcOmy93nh5d/SuXRfYE8wfLhzoKCw0Hmv6muqdUfd6qLGKYlIM4UyIdsG1F/x6snB4n0ArLW7rbV1RTAzgKN8PZG19glr7Whr7ejOnSO0YafEvJMHdeE/U4+jX6d0VhUcYNIjX7Bo057QvFhTg8HXrPlhQX9zlJXBs8/C+gBXi6LI/pR0plz4ex4fdxGJNdX8+YPHuOe/fyelphkrmiUlzqGGl18+9JTqsGGNf+zQoc6tximJSDOFsqg/Eaeo/1ScRGwRcJm1dkW9a7pbawtqf/8j4A5r7bjGnldF/eK2/aVV3PLSEubm7iIpwfDnScO5dGzv4L5IY+N4guH006F7d3juudA8vwvWdejJDRf8jg0de9KhdD+Pvnkvx+R91/wnSkhwTnWmpTnbixdcACef7NTe1X1e/CkocPqmaZySSFyKyKJ+a201cAvwPrAKeMVau8IY8ydjzHm1l91qjFlhjFkG3ApcHap4RIKlXVoST189hmuP60dVjeXON77jj7NWUF0TxBYKdYPBMzICL95vjoICpyaqMW3aBP91Q6DaeHhu1Nn86MoH2dCxJ4N3buStZ29rWTIGB1tslJY6q5Avvgg//7mTYG3YAI8+6vvjHn3UScbA/2D3+p9XEZF6NFxcpBVeWZTHb9/8jqoay/jsTjxy2SjapzWziak/8+Y5MxNLS5vfKd8Yp2WFP6ecAh995Kz6vPLKoY936wYdO8KqVcHr0h8Cn/Y7krtPuY51nZwVyomr5/HA7L+SVhWiZr51q1vFxc6pyzVrYNAguPfeg8lYfQ0Hu2uckkhMa80KmRIykVZavGkPN/77a3YVV9K3YxozrhpNdpdWNv9s7ZZlbUNUvy67DO6/v/HttwiW27EXd58yhc/6O9/3+uzN5zefPMWE3AW0aPpox46we3fT16WnOy0wGg5wFxGhdQmZZlmKtNLovh1465bxXP/sYlYWHOD8R7/kromDuWR0L5ISWlgVMHOmU3zfUk2tanXr5gzHjjJ72rTlb8ddxgujzqLGk0BmeTG3fjmTK5e83bzC/Yb27XNqxprqu6YTkiISIkrIRIIgq30bXrvpGH716re8+10Bv/3Pcp74fAO3nTaQc0f2IMHTzHWbBQsa7wjfGgkJsGuXM3w7SlR6EnnuqHOYfuylFKVm4PHWcPmSd7lt3gt0LDvQ+heoK+Rvik5IikiIaMtSJIistbz7XQEPzVnLhkKnD9Wgrpn8YsJAJgztijEBJmYDBjgF5KGSnNx0T60IYIE52UfzvydPYVOHHgAcv3EJ/+/jGQzctSW4L/aTn8CsWU5i5m+lTCckRaQR2rIUiRDGGM4Z0YMzh3XjjW+2Mf3DXNbsKOKnz3/NyF7t+dWEQRyX3bHpxCzQLvwtFQXJ2MrO/fjzqdcxv89IAAbszuN3Hz/JSRsWt6xOrDHp6U5ri3/+09ku/uQTZ8h6QoKTnNWfQ6lkTERCQCtkIiFUUV3DSwu38Mgn69hV7CRBx/TvyC/PGMRRfQ7z/4HHHgvz54cpysiyM709Dx1/BTNHnI41HtqXHeC2eS9y2dL3SPIGsK3YEr5WvnRCUkSaSacsRSJcaWU1z3y5iX9+up4D5U5t2KmDu3D7hEEM7dH20A9Yu9ZppxBHyhOSeHLM+Tw27mJKUtJIrKnmyiXv8PMvXqJdRQhXDDMy4L33YPz41j1PUZGTwOXmOp36J092Ej0RiRtKyESixP6yKv71+Qae+mIjpZXOas+5I3tw22k59O/cYPVl6FCnD1hLNNWHLIJY4J3Bx3PvSVezrV1XAE7LXchdnz7FgD3bGv/g1kpOhocecgavt8a8eTBxonO6taTkh1ucrU30RCRqKCETiTK7iit47JP1/HvBZiprvCR4DBcf1ZNbT82hR/vaDvn5+VHbJywQFljSYzD3nHwNi3s6MyIH79zI7z6ewfjNy8IXyJ13Hjq1oDmrXRqTJCK1VNQvEmU6ZaTw+3OHMuX4fvz9o1xe/XorLy/K440l2/jJuN5MPTmbTj16wB13wP/9n9vhBk218fB11hA+GHgMH+SMI6+9092+Y8k+bp/7PJO/nUOCDeNkAF9tLHytdv3iF/5Xu2bO9N/3zet1HlcjWRFpghIyERdltW/DvReO4KcnDuCvc9Yya1k+T3+xiZmL8rj2uH5cX+mlndtBtlJZYgpz+x7BBwPH8dGAsexNO/g36lSyl4u++5Cb579K28ommrKGgsfjrH7VKSpykrH6q111J14nTvS92pWb6/9UrBrJikiAlJCJRIB+ndJ5+MejuPHEATw0Zw0frtrJI5+s4xk7hqMv/D2jt65g9NZVHL49l9SaKrfDbdKeNm35aMAYPsgZx9x+oyhPSv3+sb578jkjdz4TcudzRP7a8K6I1ZeRcWgbi5asduXkOKtovpIyNZIVkQApIROJIEN7tGXGVWP4+oMFPPD0x8zvM5KPssfyUfZYAJKrqxixfS2jt65kzNaVHLVtFe3Li12O2rGlXVc+yBnHBznjWNxzKF5PwvePjcxfw4TcBUzIXUD27rzg9xFridzcQweCt2S1a/JkZ0vTl4YrcCIifighE4lAR91wKS9t3szWtp35Omsoi3oOZXHPoazp3IfFPYexuOcw/ll77cDCzYzeupLR25wkref+HWFJeCywouuA75Ow1V36ff9YUk0V4zcs5fTcBZy+7iu6FQcwuDvc/vlP+OMff3hfS1a7MjOdlTZ/pyxV0C8iAdApS5FI5PH4bFuxPyWdJVlDvk/QlnYfSGVi8g+u6Vq0m9FbVzBm60pGb13JkMJNzdoWtEB5YgolyamUJaVSmpRKaVIKpcltnNukNizJGsycnKPJb9vl+4/LqCjlpA2LmZC7gJPWL3anJqw52rVzhorX15oTk2okKxL31PZCJJYUFUFbH81ifahISGR5t2wWZQ1jcc8hLO45lH1tfvixGRWljMpfzYDdW6lITG6QYKVSlpTi3Jec+v2frfEE9Ppdi3Zz2rqFTMhdwLgt35JSE6KB6KGQnAwVFYfer55iItJCSshEYskjj8DPftaiD/Vi2NAxi0U9h7Eoy1lF23JY92Y/T0pVBelV5bSpKietqpy0ygrSqspIq6qgTVU5ffYWcPq6hYwoyMVDdH0P+V6nTlBY6PsxrXaJSAuoD5lILHnnnRZ/qAdL9u6tZO/eyo+XvQ/AjowOLM4aQkHbzrSpdBKsNlUVpFWVk15VRptK5/d1v9pUVbh38jGczj3X/2MZGeodJiJhpYRMJMZ1Ld7D2Wu+cDuMyJKQAMcd53YUIiLfC6xQRETC55xz3I4g9qWlqR2FiEQUJWQikebYY92OILalpqodhYhEHG1ZikSaK690O4LYlZICGzce2hBWRMRlWiETiSRFRbBihdtRxKaMDPjwQyVjIhKRlJCJRJKZM52eVxI8iYlwxx1QUKA+YiISsfSdXySS5Ob6H24tLZOUBL/7nWrGRCSiKSETiSR1sxRbKyWl9c8RK8rK4Nln3Y5CRKRRSshEIsnkya3fshw1yqmVSk5u+tp48e67bkcgItIonbIUiSSZmU5LhvqzFJvjnXfg7LOd32/aBH36QFVV0MOUABQVOTWBubnOyufkyc7nV0TEByVkIpFm/HjIz3d+mL/+Onz8se8h2HVSUpw6qffe+2HR+v33KxmrU5ekhouvAeW/+IUGlIuIXxouLhLJioogK8u5bSg1FW6+GYYOPXT49dq1MGhQ+OKMZGlpsGNH+Ir6G/ucZWY6ybYOGIjEJA0XF4lVvrYw09OdOrOGqy31t8heecW9mFvDGGjqP4nJyc6KYCDbuamp8P774U2AZs70f1LW63Ue1+ByEWlACZlIpKu/hbluHWRnH7oi1nCLLFpNmQIzZvh/PDUVHnjAuf3Xv2DhQv/XpqRAYWH4V6Nyc/1/DkpKnM+hiEgDSshEokFGhv9VlaIiJxnztUUWbTp1gqlT4dFHfT+elARXXeW8H9bC8uW+k5+kJOc53NgarGtd4iuu9HQnoRYRaUBtL0SiXWNbZJEmsZH/A9YlK488Ai+99MP2H6mpB7dv65KsxlqEpKY6j7uhsbg8HvfiEpGIpoRMJNo1tkXWHMnJcNlljV9jTMufPykJ7r3X/6pV/WTl0kth/35n+/LOO50kLT//hzVzdQlaZubBZrrp6YcmbuEWqXGJSETTlqVItGtsiyxQGRlO24yrrmr8upaeyk5Lc4rrx4+Ho4/2f0ihfrLS2DZtnUDq69wQqXGJSMRS2wuRaNdYm4VA3HYb/OlPTrKQng6lpa2PKTkZBg6EXr2cHmB1dV91iouVrIhIzFHbC5F4VrcVdtppjTeQ9aVNG7jggoPJULdusGFD62OqrIRzzoF77vH9eCCrXyIicUQ1ZCKxYPx42LjRKWZvjrIyZ/uwuNj586uvBicenSYUEWkWJWQisaJ7d5gz54fF5IGoa1YKcOSR8KMftT6Wpk4TFhU5Bft33OHcxkLLDhGRVtCWpUgsaVhM3rOnc//zz/tvotqwWenEiU6Bf3l5818/NdU5TdnYaULNeRQROYQSMpFY46s+KyXFfxPVhtuLubmBJ2PJyXDiidCjB3Ts6HuuZn2+mtjWxTRxouY8ikjc0palSDxoTrPSujYagaishKOOgmeegQcfdBLBxhKqQOY8iojEoahre2GMKQQ2ux1HjOgE7HI7iDjkyvveFjIGQA6ABzxe8AKsh9wDUFx3XQJ4RsBITwD/YfOCdxvk7Qzw79MbsjpDN3+PF8L2LbAtkOdqAX29u0Pvuzv0vrtjkLU2syUfGHVbltbazm7HECuMMYtb2i9FWk7vuzv0vrtD77s79L67wxjT4kap2rIUERERcZkSMhERERGXKSGLb0+4HUCc0vvuDr3v7tD77g697+5o8fsedUX9IiIiIrFGK2QiIiIiLlNCFkeMMR2MMXOMMbm1t4f5ua7GGLO09tescMcZK4wxZxpj1hhj1hlj7vTxeIoxZmbt4wuNMX1dCDPmBPC+X22MKaz3NX6dG3HGEmPMU8aYncaY5X4eN8aYh2s/J98aY44Md4yxKID3/SRjzP56X+u/D3eMscgY08sY84kxZqUxZoUx5uc+rmn217wSsvhyJ/CRtTYH+Kj2z76UWWuPqP11XvjCix3GmATgUeAsYCjwY2PM0AaXTQH2Wmuzgb8C/xfeKGNPgO87wMx6X+MzwhpkbHoGOLORx8/C6YGXA9wA/CMMMcWDZ2j8fQeYW+9r/U9hiCkeVAO3W2uHAuOAqT6+zzT7a14JWXyZBDxb+/tngfPdCyXmjQXWWWs3WGsrgZdx3v/66n8+XgNONcaYMMYYiwJ53yXIrLWfA3sauWQS8Jx1LADaG2O6hye62BXA+y4hYK0tsNYuqf19EbAKyGpwWbO/5pWQxZeu1tqC2t9vB7r6uS7VGLPYGLPAGHN+eEKLOVlAXr0/b+XQf7DfX2OtrQb2Ax3DEl3sCuR9B7iwdhvhNWNMr/CEFtcC/bxI8B1jjFlmjHnPGDPM7WBiTW2pyShgYYOHmv01H3Wd+qVxxpgP8T2a5rf1/2CttcYYf0ds+1hrtxlj+gMfG2O+s9auD3asIi55G3jJWlthjPkpzirlKS7HJBIKS3C+nxcbYyYCb1I7Pk1azxiTAbwOTLPWHmjt8ykhizHW2tP8PWaM2WGM6W6tLahdOt3p5zm21d5uMMZ8ipP9KyFrnm1A/ZWXnhw6o7Humq3GmESgHbA7POHFrCbfd2tt/fd4BnBfGOKKd4H8e5Agq58kWGtnG2MeM8Z0stZqxmUrGWOScJKxF6y1b/i4pNlf89qyjC+zgKtqf38V8FbDC4wxhxljUmp/3wk4DlgZtghjxyIgxxjTzxiTDFyK8/7XV//zcRHwsVVjwNZq8n1vUMdxHk79h4TWLODK2pNn44D99conJESMMd3q6lKNMWNxfubrP32tVPuePgmsstY+5OeyZn/Na4UsvtwLvGKMmQJsBi4BMMaMBm601l4HDAEeN8Z4cf7x3mutVULWTNbaamPMLcD7QALwlLV2hTHmT8Bia+0snH/Qzxtj1uEU5l7qXsSxIcD3/VZjzHk4J6X2AFe7FnCMMMa8BJwEdDLGbAX+ACQBWGv/CcwGJgLrgFLgGncijS0BvO8XATcZY6qBMuBS/acvKI4DrgC+M8Ysrb3vN0BvaPnXvDr1i4iIiLhMW5YiIiIiLlNCJiIiIuIyJWQiIiIiLlNCJiIiIuIyJWQiIiIiLlNCJiIiIuIyJWQiIiIiLlNCJiJxxxgzpna4eKoxJt0Ys8IYM9ztuEQkfqkxrIjEJWPM3UAq0AbYaq29x+WQRCSOKSETkbhUO+tyEVAOHGutrXE5JBGJY9qyFJF41RHIADJxVspERFyjFTIRiUvGmFnAy0A/oLu19haXQxKROJbodgAiIuFmjLkSqLLWvmiMSQC+NMacYq392O3YRCQ+aYVMRERExGWqIRMRERFxmRIyEREREZcpIRMRERFxmRIyEREREZcpIRMRERFxmRIyEREREZcpIRMRERFxmRIyEREREZf9fw2ljiGfuJugAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "cost_fun_slices = []\n", "for n in range(1, 4):\n", " plot_and_mse(data_train, data_test, n)\n", " \n", " cost_data = cost_functions.get(n)\n", " cost_x = [line[1] for line in cost_data[:250]]\n", " cost_y = [line[0] for line in cost_data[:250]]\n", " cost_fun_slices.append((cost_x, cost_y))" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:30.037820\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFvCAYAAACfGhUuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAX+UlEQVR4nO3de7BlZXkn4N8roCDiJdKhHMC05agZtQKS9oaEQo14GRM05QWjjlFH4i1iykmCmcowk/wRpxyNziQ66ahRJ4hlEEbLUZAY74loQxAEZFREBUHakAhoBgXf+WPvNodOn9O7m/Ods8/meap2nb3W3mt976mPdfrHWt/6VnV3AAAY507rXQAAwKITuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGm7vAVVXvqKrrqupLM3z32Kq6oKpuqapn7PTZC6rqK9PXC8ZVDACwsrkLXEnemeRJM373m0l+Lcl7lq6sqp9KcmqSRyZ5RJJTq+peq1ciAMDs5i5wdfenkly/dF1V3b+qzq6q86vq01X1s9PvXtndFyX58U67eWKSc7v7+u7+hyTnZvYQBwCwqvZd7wJmtDXJS7v7K1X1yCRvSfK4Fb5/aJJvLVm+aroOAGDNzX3gqqq7JTk6yV9W1Y7Vd1m/igAA9szcB65MLnv+Y3cfuQfbXJ3kuCXLhyX5xOqVBAAwu7kbw7Wz7r4hyder6plJUhNH7Gazc5IcX1X3mg6WP366DgBgzc1d4Kqq05P8bZIHVdVVVfXiJM9N8uKq+mKSS5KcMP3uw6vqqiTPTPKnVXVJknT39Un+IMkXpq/fn64DAFhz1d3rXQMAwEKbuzNcAACLRuACABhsru5SPPjgg3vz5s3rXQYAwG2cf/753+3uTXu7/VwFrs2bN2fbtm3rXQYAwG1U1Tduz/ZDLylW1W9W1SVV9aWqOr2q9h/ZHgDAPBoWuKrq0CSvSrKlux+aZJ8kJ45qDwBgXo0eNL9vkgOqat8kd03y7cHtAQDMnWGBq7uvTvLfknwzyTVJvtfdH935e1V1UlVtq6pt27dvH1UOAMC6GXlJ8V6ZzAh/vyT/KsmBVfW8nb/X3Vu7e0t3b9m0aa8H/wMAzK2RlxR/McnXu3t7d/8oyZlJjh7YHgDAXBoZuL6Z5FFVddeqqiSPT3LZwPYAAObSyDFc5yU5I8kFSS6etrV1VHsAAPNq6MSn3X1qklNHtgEAMO88SxEAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGAwgQsAYDCBCwBgMIELAGCwYYGrqh5UVRcued1QVa8e1R4AwLzad9SOu/vyJEcmSVXtk+TqJGeNag8AYF6t1SXFxyf5Wnd/Y43aAwCYG2sVuE5McvquPqiqk6pqW1Vt2759+xqVAwCwdoYHrqq6c5JfTvKXu/q8u7d295bu3rJp06bR5QAArLm1OMP15CQXdPd31qAtAIC5sxaB6zlZ5nIiAMAdwdDAVVUHJnlCkjNHtgMAMM+GTQuRJN39/ST3HtkGAMC8M9M8AMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYEMDV1Xds6rOqKovV9VlVfXoke0BAMyjfQfv/81Jzu7uZ1TVnZPcdXB7AABzZ1jgqqp7JDk2ya8lSXf/MMkPR7UHADCvRl5SvF+S7Un+vKr+rqreVlUH7vylqjqpqrZV1bbt27cPLAcAYH2MDFz7JjkqyVu7+2FJvp/klJ2/1N1bu3tLd2/ZtGnTwHIAANbHyMB1VZKruvu86fIZmQQwAIA7lGGBq7uvTfKtqnrQdNXjk1w6qj0AgHk1+i7F30hy2vQOxSuSvHBwewAAc2do4OruC5NsGdkGAMC8M9M8AMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgMweuqrrryEIAABbVbgNXVR1dVZcm+fJ0+YiqesvwygAAFsQsZ7j+KMkTk/x9knT3F5McO7IoAIBFMtMlxe7+1k6rbh1QCwDAQprlWYrfqqqjk3RV7Zfk5CSXjS0LAGBxzHKG66VJXpHk0CRXJzlyugwAwAx2e4aru7+b5LlrUAsAwELabeCqqj9P0juv7+4XDakIAGDBzDKG60NL3u+f5OlJvj2mHACAxTPLJcX3L12uqtOTfGZYRQAAC2ZvHu3zgCQ/vdqFAAAsqlnGcN2YyRiumv68NsnvDK4LAGBhzHJJ8aC1KAQAYFEtG7iq6qiVNuzuC1a/HACAxbPSGa43rPBZJ3ncKtcCALCQlg1c3f3YtSwEAGBRzTIPV6rqoUkenMk8XEmS7n73qKIAABbJLHcpnprkuEwC14eTPDmTebgELgCAGcwyD9czkjw+ybXd/cIkRyS5x9CqAAAWyCyB65+6+8dJbqmquye5LsnhY8sCAFgcs4zh2lZV90zyZ0nOT3JTkr8dWRQAwCKZZeLTl0/f/s+qOjvJ3bv7orFlAQAsjt1eUqyqD1bVr1bVgd19pbAFALBnZhnD9YYkxyS5tKrOqKpnVNX+u9sIAICJWS4pfjLJJ6tqn0xml39Jknckufvg2gAAFsKsE58ekOSXkjw7yVFJ3jWyKACARTLLxKfvS/KIJGcn+eMkn5xOEwEAwAxmOcP19iTP6e5bRxcDALCIZhnDdc5aFAIAsKhmGsO1t6rqyiQ3Jrk1yS3dvWVkewAA82ho4Jp6bHd/dw3aAQCYS7PepXhokp9Z+v3u/tSoogAAFsksdyn+10ymg7g0k0uDSdJJZglcneSjVdVJ/rS7t+5i/yclOSlJ7nvf+85YNgDAxjHLGa6nJXlQd9+8F/s/pruvrqqfTnJuVX155zNj0xC2NUm2bNnSe9EGAMBcm+XRPlck2W9vdt7dV09/XpfkrEzm8wIAuEOZ5QzXD5JcWFUfS/KTs1zd/aqVNqqqA5PcqbtvnL4/Psnv355iAQA2olkC1wenrz11SJKzqmpHO+/p7rP3Yj8AABvaLBOfvquq7pzkgdNVl3f3j2bY7ookR9zO+gAANrxZ7lI8LpOHVV+ZpJIcXlUvMC0EAMBsZrmk+IYkx3f35UlSVQ9McnqSnx9ZGADAopjlLsX9doStJOnu/5u9vGsRAOCOaJYzXNuq6m1J/mK6/Nwk28aVBACwWGYJXC9L8ookO6aB+HSStwyrCABgwcxyl+LNSd44fQEAsIeWDVxV9b7uflZVXZzJMxFvo7t/bmhlAAALYqUzXCdPfz51LQoBAFhUy96l2N3XTN++vLu/sfSV5OVrUx4AwMY3y7QQT9jFuievdiEAAItqpTFcL8vkTNb9q+qiJR8dlORvRhcGALAoVhrD9Z4kH0nyh0lOWbL+xu6+fmhVAAALZKUxXN/r7iuTvDnJ9UvGb91SVY9cqwIBADa6WcZwvTXJTUuWb5quAwBgBrMErurun8zD1d0/zmwz1AMAkNkC1xVV9aqq2m/6OjnJFaMLAwBYFLMErpcmOTrJ1UmuSvLIJCeNLAoAYJHM8izF65KcuAa1AAAspN0GrqralOQlSTYv/X53v2hcWQAAi2OWwe8fSPLpJH+V5Nax5QAALJ5ZAtddu/t3hlcCALCgZhk0/6GqesrwSgAAFtQsgevkTELXP1XVDVV1Y1XdMLowAIBFMctdigetRSEAAItqlrsUj93V+u7+1OqXAwCweGYZNP9bS97vn+QRSc5P8rghFQEALJhZLin+0tLlqjo8yZtGFQQAsGhmGTS/s6uS/JvVLgQAYFHNMobrfyTp6eKdkhyZ5IKBNQEALJRZxnBtW/L+liSnd/dnB9UDALBwlg1cVfWx7n58kgebaR4AYO+tdIbrPlV1dJJfrqr3JqmlH3a3y4oAADNYKXD9pyS/l+SwJG/c6bOOaSEAAGaybODq7jOSnFFVv9fdf7CGNQEALJTdTgshbAEA3D57Mw8XAAB7YHjgqqp9qurvqupDo9sCAJhHuw1cVfW/Zlm3gpOTXLYnRQEALJJZznA9ZOlCVe2T5Odn2XlVHZbk3yZ5256XBgCwGJYNXFX12qq6McnPVdUN09eNSa5L8oEZ9/+mJL+d5McrtHNSVW2rqm3bt2/fg9IBADaGZQNXd/9hdx+U5PXdfffp66Duvnd3v3Z3O66qpya5rrvPX+l73b21u7d095ZNmzbt+W8AADDnZrmk+KGqOjBJqup5VfXGqvqZGbZ7TCaz1F+Z5L1JHldVf7H3pQIAbEyzBK63JvlBVR2R5DVJvpbk3bvbqLtf292HdffmJCcm+evuft7tKRYAYCOaJXDd0t2d5IQkf9zdf5LkoLFlAQAsjpWepbjDjVX12iTPT/ILVXWnJPvtSSPd/Ykkn9jj6gAAFsAsZ7ieneTmJC/q7mszeZj164dWBQCwQGZ5luK1SU5Lco/pnYf/r7t3O4YLAICJWWaaf1aSzyd5ZpJnJTmvqp4xujAAgEUxyxiu/5jk4d19XZJU1aYkf5XkjJGFAQAsilnGcN1pR9ia+vsZtwMAILOd4Tq7qs5Jcvp0+dlJPjKuJACAxbLbwNXdv1VVv5LkmOmqrd191tiyAAAWx7KBq6r+dZJDuvuz3X1mkjOn64+pqvt399fWqkgAgI1spbFYb0pywy7Wf2/6GQAAM1gpcB3S3RfvvHK6bvOwigAAFsxKgeueK3x2wCrXAQCwsFYKXNuq6iU7r6yqf5/k/HElAQAslpXuUnx1krOq6rn554C1Jcmdkzx9cF0AAAtj2cDV3d9JcnRVPTbJQ6er/093//WaVAYAsCBmmYfr40k+vga1AAAsJI/oAQAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGGxY4Kqq/avq81X1xaq6pKr+y6i2AADm2b4D931zksd1901VtV+Sz1TVR7r7cwPbBACYO8MCV3d3kpumi/tNXz2qPQCAeTV0DFdV7VNVFya5Lsm53X3eLr5zUlVtq6pt27dvH1kOAMC6GBq4uvvW7j4yyWFJHlFVD93Fd7Z295bu3rJp06aR5QAArIs1uUuxu/8xyceTPGkt2gMAmCcj71LcVFX3nL4/IMkTknx5VHsAAPNq5F2K90nyrqraJ5Ng977u/tDA9gAA5tLIuxQvSvKwUfsHANgozDQPADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAw2LDAVVWHV9XHq+rSqrqkqk4e1RYAwDzbd+C+b0nymu6+oKoOSnJ+VZ3b3ZcObBMAYO4MO8PV3dd09wXT9zcmuSzJoaPaAwCYV2syhquqNid5WJLzdvHZSVW1raq2bd++fS3KAQBYU8MDV1XdLcn7k7y6u2/Y+fPu3trdW7p7y6ZNm0aXAwCw5oYGrqraL5OwdVp3nzmyLQCAeTXyLsVK8vYkl3X3G0e1AwAw70ae4XpMkucneVxVXTh9PWVgewAAc2nYtBDd/ZkkNWr/AAAbhZnmAQAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABqvuXu8afqKqtif5RpKDk3x3ncthz+m3jUm/bUz6bWPSbxvXg7r7oL3deN/VrOT26u5NSVJV27p7y3rXw57RbxuTftuY9NvGpN82rqradnu2d0kRAGAwgQsAYLB5DVxb17sA9op+25j028ak3zYm/bZx3a6+m6tB8wAAi2hez3ABACyMuQpcVfWkqrq8qr5aVaesdz0sr6qurKqLq+rCHXduVNVPVdW5VfWV6c97rXedJFX1jqq6rqq+tGTdLvuqJv779Bi8qKqOWr/K79iW6bf/XFVXT4+7C6vqKUs+e+203y6vqieuT9VU1eFV9fGqurSqLqmqk6frHXNzbIV+W7Vjbm4CV1Xtk+RPkjw5yYOTPKeqHry+VbEbj+3uI5fc4nxKko919wOSfGy6zPp7Z5In7bRuub56cpIHTF8nJXnrGtXIv/TO/Mt+S5I/mh53R3b3h5Nk+rfyxCQPmW7zlunfVNbeLUle090PTvKoJK+Y9o9jbr4t12/JKh1zcxO4kjwiyVe7+4ru/mGS9yY5YZ1rYs+ckORd0/fvSvK09SuFHbr7U0mu32n1cn11QpJ398Tnktyzqu6zJoVyG8v023JOSPLe7r65u7+e5KuZ/E1ljXX3Nd19wfT9jUkuS3JoHHNzbYV+W84eH3PzFLgOTfKtJctXZeVflvXVST5aVedX1UnTdYd09zXT99cmOWR9SmMGy/WV43D+vXJ66ekdSy7b67c5VFWbkzwsyXlxzG0YO/VbskrH3DwFLjaWY7r7qExOh7+iqo5d+mFPbn91C+wGoK82lLcmuX+SI5Nck+QN61oNy6qquyV5f5JXd/cNSz9zzM2vXfTbqh1z8xS4rk5y+JLlw6brmEPdffX053VJzsrkVOp3dpwKn/68bv0qZDeW6yvH4Rzr7u90963d/eMkf5Z/voSh3+ZIVe2XyT/ap3X3mdPVjrk5t6t+W81jbp4C1xeSPKCq7ldVd85kMNoH17kmdqGqDqyqg3a8T3J8ki9l0l8vmH7tBUk+sD4VMoPl+uqDSf7d9M6pRyX53pLLIKyzncb2PD2T4y6Z9NuJVXWXqrpfJgOwP7/W9TG56zDJ25Nc1t1vXPKRY26OLddvq3nMzc3Dq7v7lqp6ZZJzkuyT5B3dfck6l8WuHZLkrMl/n9k3yXu6++yq+kKS91XVi5N8I8mz1rFGpqrq9CTHJTm4qq5KcmqS12XXffXhJE/JZADoD5K8cM0LJsmy/XZcVR2ZyeWoK5P8epJ09yVV9b4kl2Zyt9UruvvWdSib5DFJnp/k4qq6cLrud+OYm3fL9dtzVuuYM9M8AMBg83RJEQBgIQlcAACDCVwAAIMJXAAAgwlcAACDCVzAXKiqm6Y/N1fVr67yvn93p+W/Wc39A+yOwAXMm81J9ihwVdXu5hS8TeDq7qP3sCaA20XgAubN65L8QlVdWFW/WVX7VNXrq+oL0wfI/nqSVNVxVfXpqvpgJpMPpqr+9/SB6pfseKh6Vb0uyQHT/Z02XbfjbFpN9/2lqrq4qp69ZN+fqKozqurLVXXadCZqgL0yNzPNA0ydkuQ/dPdTk2QanL7X3Q+vqrsk+WxVfXT63aOSPLS7vz5dflF3X19VByT5QlW9v7tPqapXdveRu2jrVzJ5KO0RSQ6ebvOp6WcPS/KQJN9O8tlMZqL+zGr/ssAdgzNcwLw7PpNnzV2Y5Lwk987kuWVJ8vklYStJXlVVX0zyuUweLPuArOyYJKdPH077nSSfTPLwJfu+avrQ2gszudQJsFec4QLmXSX5je4+5zYrq45L8v2dln8xyaO7+wdV9Ykk+9+Odm9e8v7W+HsJ3A7OcAHz5sYkBy1ZPifJy6pqvySpqgdW1YG72O4eSf5hGrZ+Nsmjlnz2ox3b7+TTSZ49HSe2KcmxST6/Kr8FwBL+jw2YNxcluXV6afCdSd6cyeW8C6YD17cnedoutjs7yUur6rIkl2dyWXGHrUkuqqoLuvu5S9afleTRSb6YpJP8dndfOw1sAKumunu9awAAWGguKQIADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAM9v8BblYUrda5THEAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:30.351819\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFvCAYAAACfGhUuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAX+0lEQVR4nO3de7BlZXkn4N/LRUXES6RDOYBpy1EzagUk7Q0JhRjxMiZoygtGHaNG4i1iykmCmcowk/wRU45GZxKd6ahRJ4hlEEbLUZAYFTURbQiCgIyKqCBIGxIBTVDwnT/27uTQ6dO9u/t85+yzeZ6qXWevtdde33vqY53+sda3vlXdHQAAxtlnrQsAAFh0AhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYHMXuKrqnVV1Q1V9aYZtj62qi6rqtqp65nafvbCqvjJ9vXBcxQAAOzd3gSvJu5I8ecZtv5nkV5K8d+nKqvqJJKcleXSSRyU5rarus3IlAgDMbu4CV3efn+TGpeuq6oFVdU5VXVhVn66qn55ue3V3X5Lkx9vt5klJzuvuG7v775Ocl9lDHADAitpvrQuY0eYkL+vur1TVo5O8NcnxO9n+0CTfWrJ8zXQdAMCqm/vAVVX3SHJ0kr+oqm2r77p2FQEA7J65D1yZXPb8h+4+cje+c22S45YsH5bkkytXEgDA7OZuDNf2uvumJF+vqmclSU0csYuvnZvkhKq6z3Sw/AnTdQAAq27uAldVnZHkb5I8pKquqaqXJHlekpdU1ReTXJbkxOm2j6yqa5I8K8n/qqrLkqS7b0zy+0m+MH393nQdAMCqq+5e6xoAABba3J3hAgBYNAIXAMBgc3WX4sEHH9wbN25c6zIAAO7gwgsv/G53b9jT7w8NXFX1G0l+NUknuTTJi7r7n5bbfuPGjdmyZcvIkgAAdltVfWNvvj/skmJVHZrk1Uk2dffDk+yb5KRR7QEAzKvRY7j2S3JAVe2X5O5Jvj24PQCAuTMscHX3tUn+W5JvJrkuyfe6+2Oj2gMAmFcjLyneJ5MJSh+Q5N8kObCqnr+D7U6uqi1VtWXr1q2jygEAWDMjLyn+fJKvd/fW7v5RkrMyeQj1HXT35u7e1N2bNmzY48H/AABza2Tg+maSx1TV3auqkjwhyRUD2wMAmEsjx3BdkOTMJBdlMiXEPkk2j2oPAGBeDZ2Hq7tPS3LayDYAAOadR/sAAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMNixwVdVDquriJa+bquo1o9oDAJhX+43acXdfmeTIJKmqfZNcm+TsUe0BAMyr1bqk+IQkX+vub6xSewAAc2O1AtdJSc5YpbYAAObK8MBVVXdJ8otJ/mKZz0+uqi1VtWXr1q2jywEAWHWrcYbrKUku6u7v7OjD7t7c3Zu6e9OGDRtWoRwAgNW1GoHruXE5EQC4ExsauKrqwCRPTHLWyHYAAObZsGkhkqS7v5/kviPbAACYd2aaBwAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGGxo4Kqqe1fVmVX15aq6oqoeO7I9AIB5tN/g/b8lyTnd/cyqukuSuw9uDwBg7gwLXFV1ryTHJvmVJOnuHyb54aj2AADm1chLig9IsjXJn1XV31bV26vqwO03qqqTq2pLVW3ZunXrwHIAANbGyMC1X5Kjkrytux+R5PtJTt1+o+7e3N2bunvThg0bBpYDALA2Rgaua5Jc090XTJfPzCSAAQDcqQwLXN19fZJvVdVDpquekOTyUe0BAMyr0Xcp/nqS06d3KF6V5EWD2wMAmDtDA1d3X5xk08g2AADmnZnmAQAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAabOXBV1d1HFgIAsKh2Gbiq6uiqujzJl6fLR1TVW4dXBgCwIGY5w/VHSZ6U5O+SpLu/mOTYkUUBACySmS4pdve3tlt1+4BaAAAW0iwPr/5WVR2dpKtq/ySnJLlibFkAAItjljNcL0vyyiSHJrk2yZHTZQAAZrDLM1zd/d0kz1uFWgAAFtIuA1dV/VmS3n59d794SEUAAAtmljFcH17y/m5JnpHk22PKAQBYPLNcUvzA0uWqOiPJZ4ZVBACwYPbk0T4PSvKTK10IAMCimmUM182ZjOGq6c/rk/z24LoAABbGLJcUD1qNQgAAFtWygauqjtrZF7v7opUvBwBg8ezsDNcbd/JZJzl+hWsBAFhIywau7n78ahYCALCoZpmHK1X18CQPzWQeriRJd79nVFEAAItklrsUT0tyXCaB6yNJnpLJPFwCFwDADGaZh+uZSZ6Q5PruflGSI5Lca2hVAAALZJbA9Y/d/eMkt1XVPZPckOTwsWUBACyOWcZwbamqeyf50yQXJrklyd+MLAoAYJHMMvHpK6Zv/2dVnZPknt19ydiyAAAWxy4vKVbVh6rql6vqwO6+WtgCANg9s4zhemOSY5JcXlVnVtUzq+puu/oSAAATs1xS/FSST1XVvpnMLv/SJO9Mcs/BtQEALIRZJz49IMkvJHlOkqOSvHtkUQAAi2SWiU/fn+RRSc5J8sdJPjWdJgIAgBnMcobrHUme29237+7Oq+rqJDcnuT3Jbd29aXf3AQCw3s0yhuvcvWzj8d393b3cBwDAujXLXYoAAOyF0YGrk3ysqi6sqpMHtwUAMJdmvUvx0CQ/tXT77j5/hq8e093XVtVPJjmvqr68/femQezkJLn//e8/c+EAAOvFLHcp/mEm00Fcnsng92Ry5mqXgau7r53+vKGqzs7kbsfzt9tmc5LNSbJp06beneIBANaDWc5wPT3JQ7r71t3ZcVUdmGSf7r55+v6EJL+3+yUCAKxvswSuq5Lsn2S3AleSQ5KcXVXb2nlvd5+zm/sAAFj3ZglcP0hycVV9PEtCV3e/emdf6u6rkhyxd+UBAKx/swSuD01fAADsgVkmPn13Vd0lyYOnq67s7h+NLQsAYHHMcpficZk8rPrqJJXk8Kp64YzTQgAA3OnNcknxjUlO6O4rk6SqHpzkjCQ/O7IwAIBFMctM8/tvC1tJ0t3/L5O7FgEAmMEsZ7i2VNXbk/z5dPl5SbaMKwkAYLHMErhenuSVSbZNA/HpJG8dVhEAwIKZ5S7FW5O8afoCAGA3LRu4qur93f3sqro0k2cn3kF3/8zQygAAFsTOznCdMv35tNUoBABgUS17l2J3Xzd9+4ru/sbSV5JXrE55AADr3yzTQjxxB+uestKFAAAsqp2N4Xp5JmeyHlhVlyz56KAkfz26MACARbGzMVzvTfLRJH+Q5NQl62/u7huHVgUAsEB2Nobre919dZK3JLlxyfit26rq0atVIADAejfLGK63JbllyfIt03UAAMxglsBV3f3P83B1948z2wz1AABktsB1VVW9uqr2n75OSXLV6MIAABbFLIHrZUmOTnJtkmuSPDrJySOLAgBYJLM8S/GGJCetQi0AAAtpl4GrqjYkeWmSjUu37+4XjysLAGBxzDL4/YNJPp3kL5PcPrYcAIDFM0vgunt3//bwSgAAFtQsg+Y/XFVPHV4JAMCCmiVwnZJJ6PrHqrqpqm6uqptGFwYAsChmuUvxoNUoBABgUc1yl+KxO1rf3eevfDkAAItnlkHzv7nk/d2SPCrJhUmOH1IRAMCCmeWS4i8sXa6qw5O8eVRBAACLZpZB89u7Jsm/W+lCAAAW1SxjuP5Hkp4u7pPkyCQXDawJAGChzDKGa8uS97clOaO7PzuoHgCAhbNs4Kqqj3f3E5I81EzzAAB7bmdnuO5XVUcn+cWqel+SWvphd7usCAAwg50Frv+c5HeTHJbkTdt91jEtBADATJYNXN19ZpIzq+p3u/v3V7EmAICFsstpIfY2bFXVvlX1t1X14b3ZDwDAerUn83DtrlOSXLEK7QAAzKWhgauqDkvy75O8fWQ7AADzbJeBq6r+9yzrlvHmJL+V5Me7VxYAwOKY5QzXw5YuVNW+SX52V1+qqqcluaG7L9zFdidX1Zaq2rJ169YZygEAWF+WDVxV9bqqujnJz1TVTdPXzUluSPLBGfb9uEzm8Lo6yfuSHF9Vf779Rt29ubs3dfemDRs27NlvAQAwx5YNXN39B919UJI3dPc9p6+Duvu+3f26Xe24u1/X3Yd198YkJyX5q+5+/sqVDgCwPsxySfHDVXVgklTV86vqTVX1U4PrAgBYGLMErrcl+UFVHZHktUm+luQ9u9NId3+yu5+2B/UBAKx7swSu27q7k5yY5I+7+0+SHDS2LACAxbGzZyluc3NVvS7JC5L8XFXtk2T/sWUBACyOWc5wPSfJrUle3N3XZ/Iw6zcMrQoAYIHM8izF65OcnuRe07m1/qm7d2sMFwDAndksM80/O8nnkzwrybOTXFBVzxxdGADAophlDNd/SvLI7r4hSapqQ5K/THLmyMIAABbFLGO49tkWtqb+bsbvAQCQ2c5wnVNV5yY5Y7r8nCQfHVcSAMBi2WXg6u7frKpfSnLMdNXm7j57bFkAAItj2cBVVf82ySHd/dnuPivJWdP1x1TVA7v7a6tVJADAerazsVhvTnLTDtZ/b/oZAAAz2FngOqS7L91+5XTdxmEVAQAsmJ0Frnvv5LMDVrgOAICFtbPAtaWqXrr9yqr61SQXjisJAGCx7OwuxdckObuqnpd/CVibktwlyTMG1wUAsDCWDVzd/Z0kR1fV45M8fLr6/3b3X61KZQAAC2KWebg+keQTq1ALAMBC8ogeAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBhgWuqrpbVX2+qr5YVZdV1X8d1RYAwDzbb+C+b01yfHffUlX7J/lMVX20uz83sE0AgLkzLHB1dye5Zbq4//TVo9oDAJhXQ8dwVdW+VXVxkhuSnNfdF+xgm5OraktVbdm6devIcgAA1sTQwNXdt3f3kUkOS/Koqnr4DrbZ3N2bunvThg0bRpYDALAmVuUuxe7+hySfSPLk1WgPAGCejLxLcUNV3Xv6/oAkT0zy5VHtAQDMq5F3Kd4vyburat9Mgt37u/vDA9sDAJhLI+9SvCTJI0btHwBgvTDTPADAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgAhcAwGACFwDAYAIXAMBgwwJXVR1eVZ+oqsur6rKqOmVUWwAA82y/gfu+Lclru/uiqjooyYVVdV53Xz6wTQCAuTPsDFd3X9fdF03f35zkiiSHjmoPAGBercoYrqramOQRSS5YjfYAAObJ8MBVVfdI8oEkr+num3bw+clVtaWqtmzdunV0OQAAq25o4Kqq/TMJW6d391k72qa7N3f3pu7etGHDhpHlAACsiZF3KVaSdyS5orvfNKodAIB5N/IM1+OSvCDJ8VV18fT11IHtAQDMpWHTQnT3Z5LUqP0DAKwXZpoHABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYrLp7rWv4Z1W1Nck3khyc5LtrXA67T7+tT/ptfdJv65N+W78e0t0H7emX91vJSvZWd29Ikqra0t2b1roedo9+W5/02/qk39Yn/bZ+VdWWvfm+S4oAAIMJXAAAg81r4Nq81gWwR/Tb+qTf1if9tj7pt/Vrr/purgbNAwAsonk9wwUAsDDmKnBV1ZOr6sqq+mpVnbrW9bC8qrq6qi6tqou33blRVT9RVedV1VemP++z1nWSVNU7q+qGqvrSknU77Kua+O/TY/CSqjpq7Sq/c1um3/5LVV07Pe4urqqnLvnsddN+u7KqnrQ2VVNVh1fVJ6rq8qq6rKpOma53zM2xnfTbih1zcxO4qmrfJH+S5ClJHprkuVX10LWtil14fHcfueQW51OTfLy7H5Tk49Nl1t67kjx5u3XL9dVTkjxo+jo5ydtWqUb+tXflX/dbkvzR9Lg7srs/kiTTv5UnJXnY9Dtvnf5NZfXdluS13f3QJI9J8spp/zjm5tty/Zas0DE3N4EryaOSfLW7r+ruHyZ5X5IT17gmds+JSd49ff/uJE9fu1LYprvPT3LjdquX66sTk7ynJz6X5N5Vdb9VKZQ7WKbflnNikvd1963d/fUkX83kbyqrrLuv6+6Lpu9vTnJFkkPjmJtrO+m35ez2MTdPgevQJN9asnxNdv7LsrY6yceq6sKqOnm67pDuvm76/vokh6xNacxgub5yHM6/V00vPb1zyWV7/TaHqmpjkkckuSCOuXVju35LVuiYm6fAxfpyTHcflcnp8FdW1bFLP+zJ7a9ugV0H9NW68rYkD0xyZJLrkrxxTathWVV1jyQfSPKa7r5p6WeOufm1g35bsWNungLXtUkOX7J82HQdc6i7r53+vCHJ2ZmcSv3OtlPh0583rF2F7MJyfeU4nGPd/Z3uvr27f5zkT/MvlzD02xypqv0z+Uf79O4+a7raMTfndtRvK3nMzVPg+kKSB1XVA6rqLpkMRvvQGtfEDlTVgVV10Lb3SU5I8qVM+uuF081emOSDa1MhM1iurz6U5D9M75x6TJLvLbkMwhrbbmzPMzI57pJJv51UVXetqgdkMgD786tdH5O7DpO8I8kV3f2mJR855ubYcv22ksfc3Dy8urtvq6pXJTk3yb5J3tndl61xWezYIUnOnvz3mf2SvLe7z6mqLyR5f1W9JMk3kjx7DWtkqqrOSHJckoOr6pokpyV5fXbcVx9J8tRMBoD+IMmLVr1gkizbb8dV1ZGZXI66OsmvJUl3X1ZV709yeSZ3W72yu29fg7JJHpfkBUkuraqLp+t+J465ebdcvz13pY45M80DAAw2T5cUAQAWksAFADCYwAUAMJjABQAwmMAFADCYwAXMhaq6ZfpzY1X98grv+3e2W/7rldw/wK4IXMC82ZhktwJXVe1qTsE7BK7uPno3awLYKwIXMG9en+TnquriqvqNqtq3qt5QVV+YPkD215Kkqo6rqk9X1YcymXwwVfV/pg9Uv2zbQ9Wr6vVJDpju7/Tpum1n02q67y9V1aVV9Zwl+/5kVZ1ZVV+uqtOnM1ED7JG5mWkeYOrUJP+xu5+WJNPg9L3ufmRV3TXJZ6vqY9Ntj0ry8O7++nT5xd19Y1UdkOQLVfWB7j61ql7V3UfuoK1fyuShtEckOXj6nfOnnz0iycOSfDvJZzOZifozK/3LAncOznAB8+6ETJ41d3GSC5LcN5PnliXJ55eErSR5dVV9McnnMnmw7IOyc8ckOWP6cNrvJPlUkkcu2fc104fWXpzJpU6APeIMFzDvKsmvd/e5d1hZdVyS72+3/PNJHtvdP6iqTya52160e+uS97fH30tgLzjDBcybm5MctGT53CQvr6r9k6SqHlxVB+7ge/dK8vfTsPXTSR6z5LMfbfv+dj6d5DnTcWIbkhyb5PMr8lsALOH/2IB5c0mS26eXBt+V5C2ZXM67aDpwfWuSp+/ge+ckeVlVXZHkykwuK26zOcklVXVRdz9vyfqzkzw2yReTdJLf6u7rp4ENYMVUd691DQAAC80lRQCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDB/j9tyRkhxdP5EgAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:30.662817\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFvCAYAAACfGhUuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAX+UlEQVR4nO3de7BlZXkn4N/LRUXES6RDOUClLUfNqBWQtDckFGLEy5igKS8YdYwaibeIKScJZirDTPJHnHI0cSbRmY4adYJYBmG0HAWJ8Z6INgyCgIyKqCDIMSQCmqDgO3/s3cmh06d7d/f5ztln+zxVu85ea6+1vpf6stpf1vrWt6q7AwDAOPutdwEAAItO4AIAGEzgAgAYTOACABhM4AIAGEzgAgAYbO4CV1W9vapurKovzrDt8VV1cVXdXlXP2OG3F1TVl6efF4yrGABg1+YucCV5R5InzbjtN5L8SpJ3L19ZVT+R5Iwkj0ryyCRnVNV9Vq9EAIDZzV3g6u5PJrlp+bqqekBVnVdVF1XVp6rqp6fbXtPdlyb50Q6HeWKSC7r7pu7+uyQXZPYQBwCwqg5Y7wJmtDXJS7v7y1X1qCRvTnLiLrY/PMk3ly1fO10HALDm5j5wVdU9khyb5C+qavvqu65fRQAAe2buA1cmtz3/vruP3oN9rktywrLlI5J8fPVKAgCY3dyN4dpRd9+c5GtV9cwkqYmjdrPb+UlOqqr7TAfLnzRdBwCw5uYucFXVWUn+JsmDq+raqnpxkucmeXFVfSHJ5UlOnm77iKq6Nskzk/zPqro8Sbr7piS/n+Tz08/vTdcBAKy56u71rgEAYKHN3RUuAIBFI3ABAAw2V08pHnroob158+b1LgMA4E4uuuii73T3pr3df2jgqqrfSPKrSTrJZUle2N3/uNL2mzdvzrZt20aWBACwx6rq6/uy/7BbilV1eJJXJdnS3Q9Lsn+SU0a1BwAwr0aP4TogyUFVdUCSuyf51uD2AADmzrDA1d3XJfmvSb6R5Pok3+3uj4xqDwBgXo28pXifTCYovX+Sf5Xk4Kp63k62O7WqtlXVtqWlpVHlAACsm5G3FH8+yde6e6m7f5jknExeQn0n3b21u7d095ZNm/Z68D8AwNwaGbi+keTRVXX3qqokj09y5cD2AADm0sgxXBcmOTvJxZlMCbFfkq2j2gMAmFdD5+Hq7jOSnDGyDQCAeefVPgAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMNC1xV9eCqumTZ5+aqevWo9gAA5tUBow7c3VclOTpJqmr/JNclOXdUewAA82qtbik+PslXu/vra9QeAMDcWKvAdUqSs9aoLQCAuTI8cFXVXZL8YpK/WOH3U6tqW1VtW1paGl0OAMCaW4srXE9OcnF3f3tnP3b31u7e0t1bNm3atAblAACsrbUIXM+J24kAwI+xoYGrqg5O8oQk54xsBwBgng2bFiJJuvt7Se47sg0AgHlnpnkAgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwQQuAIDBBC4AgMEELgCAwYYGrqq6d1WdXVVfqqorq+oxI9sDAJhHBww+/puSnNfdz6iquyS5++D2AADmzrDAVVX3SnJ8kl9Jku7+QZIfjGoPAGBejbyleP8kS0n+rKr+b1W9taoOHtgeAMBcGhm4DkhyTJK3dPfDk3wvyek7blRVp1bVtqratrS0NLAcAID1MTJwXZvk2u6+cLp8diYB7E66e2t3b+nuLZs2bRpYDgDA+hgWuLr7hiTfrKoHT1c9PskVo9oDAJhXo59S/PUkZ06fULw6yQsHtwcAMHeGBq7uviTJlpFtAADMOzPNAwAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADDZz4Kqqu48sBABgUe02cFXVsVV1RZIvTZePqqo3D68MAGBBzHKF6w+TPDHJ3yZJd38hyfEjiwIAWCQz3VLs7m/usOqOAbUAACykA2bY5ptVdWySrqoDk5yW5MqxZQEALI5ZrnC9NMkrkhye5LokR0+XAQCYwW6vcHX3d5I8dw1qAQBYSLsNXFX1Z0l6x/Xd/aIhFQEALJhZxnB9cNn3uyV5epJvjSkHAGDxzHJL8X3Ll6vqrCSfHlYRAMCC2ZtX+zwwyU+udiEAAItqljFct2Qyhqumf29I8tuD6wIAWBiz3FI8ZC0KAQBYVCsGrqo6Zlc7dvfFq18OAMDi2dUVrjfs4rdOcuIq1wIAsJBWDFzd/bi1LAQAYFHNMg9XquphSR6SyTxcSZLufteoogAAFsksTymekeSETALXh5I8OZN5uAQuAIAZzDIP1zOSPD7JDd39wiRHJbnX0KoAABbILIHrH7r7R0lur6p7JrkxyZFjywIAWByzjOHaVlX3TvKnSS5KcmuSvxlZFADAIpll4tOXT7/+j6o6L8k9u/vSsWUBACyO3d5SrKoPVNUvV9XB3X2NsAUAsGdmGcP1hiTHJbmiqs6uqmdU1d12txMAABOz3FL8RJJPVNX+mcwu/5Ikb09yz8G1AQAshFknPj0oyS8keXaSY5K8c2RRAACLZJaJT9+b5JFJzkvyx0k+MZ0mAgCAGcxyhettSZ7T3Xfs6cGr6poktyS5I8nt3b1lT48BALDRzTKG6/x9bONx3f2dfTwGAMCGNctTigAA7IPRgauTfKSqLqqqU3e2QVWdWlXbqmrb0tLS4HIAANberE8pHp7kp5Zv392fnGHX47r7uqr6ySQXVNWXdtyvu7cm2ZokW7Zs6ZkrBwDYIGZ5SvG/ZDIdxBWZDH5PJleudhu4uvu66d8bq+rcTJ52nCWoAQAsjFmucD0tyYO7+7Y9OXBVHZxkv+6+Zfr9pCS/t+clAgBsbLMErquTHJhkjwJXksOSnFtV29t5d3eft4fHAADY8GYJXN9PcklVfTTLQld3v2pXO3X31UmO2rfyAAA2vlkC1wemHwAA9sIsE5++s6rukuRB01VXdfcPx5YFALA4ZnlK8YRMXlZ9TZJKcmRVvWDGaSEAAH7szXJL8Q1JTuruq5Kkqh6U5KwkPzuyMACARTHLTPMHbg9bSdLd/y+TpxYBAJjBLFe4tlXVW5P8+XT5uUm2jSsJAGCxzBK4XpbkFUm2TwPxqSRvHlYRAMCCmeUpxduSvHH6AQBgD60YuKrqvd39rKq6LJN3J95Jd//M0MoAABbErq5wnTb9+9S1KAQAYFGt+JRid18//fry7v768k+Sl69NeQAAG98s00I8YSfrnrzahQAALKpdjeF6WSZXsh5QVZcu++mQJH89ujAAgEWxqzFc707y4SR/kOT0Zetv6e6bhlYFALBAdjWG67vdfU2SNyW5adn4rdur6lFrVSAAwEY3yxiutyS5ddnyrdN1AADMYJbAVd39T/NwdfePMtsM9QAAZLbAdXVVvaqqDpx+Tkty9ejCAAAWxSyB66VJjk1yXZJrkzwqyakjiwIAWCSzvEvxxiSnrEEtAAALabeBq6o2JXlJks3Lt+/uF40rCwBgccwy+P39ST6V5C+T3DG2HACAxTNL4Lp7d//28EoAABbULIPmP1hVTxleCQDAgpolcJ2WSej6h6q6uapuqaqbRxcGALAoZnlK8ZC1KAQAYFHN8pTi8Ttb392fXP1yAAAWzyyD5n9z2fe7JXlkkouSnDikIgCABTPLLcVfWL5cVUcm+aNRBQEALJpZBs3v6Nok/2a1CwEAWFSzjOH670l6urhfkqOTXDywJgCAhTLLGK5ty77fnuSs7v7MoHoAABbOioGrqj7a3Y9P8hAzzQMA7L1dXeG6X1Udm+QXq+o9SWr5j93ttiIAwAx2Fbj+Y5LfTXJEkjfu8FvHtBAAADNZMXB199lJzq6q3+3u39/bBqpq/0zGgV3X3U/d2+MAAGxUu50WYl/C1tRpSa7cx2MAAGxYezMP18yq6ogk/zbJW0e2AwAwz4YGrkxmpP+tJD8a3A4AwNzabeCqqv81y7qdbPPUJDd290W72e7UqtpWVduWlpZ2d1gAgA1nlitcD12+MB0E/7Mz7PfYTKaUuCbJe5KcWFV/vuNG3b21u7d095ZNmzbNcFgAgI1lxcBVVa+tqluS/ExV3Tz93JLkxiTv392Bu/u13X1Ed29OckqSv+ru561W4QAAG8WKgau7/6C7D0ny+u6+5/RzSHfft7tfu4Y1AgBsaLPcUvxgVR2cJFX1vKp6Y1X91J400t0fNwcXAPDjapbA9ZYk36+qo5K8JslXk7xraFUAAAtklsB1e3d3kpOT/HF3/0mSQ8aWBQCwOHb1LsXtbqmq1yZ5fpKfq6r9khw4tiwAgMUxyxWuZye5LcmLuvuGTF5m/fqhVQEALJBZ3qV4Q5Izk9xrOpnpP3a3MVwAADOaZab5ZyX5XJJnJnlWkgur6hmjCwMAWBSzjOH6D0ke0d03JklVbUryl0nOHlkYAMCimGUM137bw9bU3864HwAAme0K13lVdX6Ss6bLz07y4XElAQAslt0Gru7+zar6pSTHTVdt7e5zx5YFALA4VgxcVfWvkxzW3Z/p7nOSnDNdf1xVPaC7v7pWRQIAbGS7Gov1R0lu3sn6705/AwBgBrsKXId192U7rpyu2zysIgCABbOrwHXvXfx20CrXAQCwsHYVuLZV1Ut2XFlVv5rkonElAQAsll09pfjqJOdW1XPzzwFrS5K7JHn64LoAABbGioGru7+d5NiqelySh01X/5/u/qs1qQwAYEHMMg/Xx5J8bA1qAQBYSF7RAwAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMJjABQAwmMAFADCYwAUAMNiwwFVVd6uqz1XVF6rq8qr6z6PaAgCYZwcMPPZtSU7s7lur6sAkn66qD3f3Zwe2CQAwd4YFru7uJLdOFw+cfnpUewAA82roGK6q2r+qLklyY5ILuvvCnWxzalVtq6ptS0tLI8sBAFgXQwNXd9/R3UcnOSLJI6vqYTvZZmt3b+nuLZs2bRpZDgDAuliTpxS7+++TfCzJk9aiPQCAeTLyKcVNVXXv6feDkjwhyZdGtQcAMK9GPqV4vyTvrKr9Mwl27+3uDw5sDwBgLo18SvHSJA8fdXwAgI3CTPMAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgwlcAACDCVwAAIMJXAAAgw0LXFV1ZFV9rKquqKrLq+q0UW0BAMyzAwYe+/Ykr+nui6vqkCQXVdUF3X3FwDYBAObOsCtc3X19d188/X5LkiuTHD6qPQCAebUmY7iqanOShye5cC3aAwCYJ8MDV1XdI8n7kry6u2/eye+nVtW2qtq2tLQ0uhwAgDU3NHBV1YGZhK0zu/ucnW3T3Vu7e0t3b9m0adPIcgAA1sXIpxQryduSXNndbxzVDgDAvBt5heuxSZ6f5MSqumT6ecrA9gAA5tKwaSG6+9NJatTxAQA2CjPNAwAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMJnABAAwmcAEADCZwAQAMVt293jX8k6paSvL1JIcm+c46l8Oe028bk37bmPTbxqTfNq4Hd/che7vzAatZyb7q7k1JUlXbunvLetfDntFvG5N+25j028ak3zauqtq2L/u7pQgAMJjABQAw2LwGrq3rXQB7Rb9tTPptY9JvG5N+27j2qe/matA8AMAimtcrXAAAC2OuAldVPamqrqqqr1TV6etdDyurqmuq6rKqumT7kxtV9RNVdUFVfXn69z7rXSdJVb29qm6sqi8uW7fTvqqJ/zY9By+tqmPWr/Ifbyv023+qquum590lVfWUZb+9dtpvV1XVE9enaqrqyKr6WFVdUVWXV9Vp0/XOuTm2i35btXNubgJXVe2f5E+SPDnJQ5I8p6oesr5VsRuP6+6jlz3ifHqSj3b3A5N8dLrM+ntHkiftsG6lvnpykgdOP6cmecsa1ci/9I78y35Lkj+cnndHd/eHkmT6b+UpSR463efN039TWXu3J3lNdz8kyaOTvGLaP865+bZSvyWrdM7NTeBK8sgkX+nuq7v7B0nek+Tkda6JPXNykndOv78zydPWrxS26+5PJrlph9Ur9dXJSd7VE59Ncu+qut+aFMqdrNBvKzk5yXu6+7bu/lqSr2TybyprrLuv7+6Lp99vSXJlksPjnJtru+i3lezxOTdPgevwJN9ctnxtdv0fy/rqJB+pqouq6tTpusO6+/rp9xuSHLY+pTGDlfrKeTj/Xjm99fT2Zbft9dscqqrNSR6e5MI45zaMHfotWaVzbp4CFxvLcd19TCaXw19RVccv/7Enj796BHYD0FcbyluSPCDJ0UmuT/KGda2GFVXVPZK8L8mru/vm5b855+bXTvpt1c65eQpc1yU5ctnyEdN1zKHuvm7698Yk52ZyKfXb2y+FT//euH4Vshsr9ZXzcI5197e7+47u/lGSP80/38LQb3Okqg7M5H+0z+zuc6arnXNzbmf9tprn3DwFrs8neWBV3b+q7pLJYLQPrHNN7ERVHVxVh2z/nuSkJF/MpL9eMN3sBUnevz4VMoOV+uoDSf7d9MmpRyf57rLbIKyzHcb2PD2T8y6Z9NspVXXXqrp/JgOwP7fW9TF56jDJ25Jc2d1vXPaTc26OrdRvq3nOzc3Lq7v79qp6ZZLzk+yf5O3dffk6l8XOHZbk3Mn/feaAJO/u7vOq6vNJ3ltVL07y9STPWscamaqqs5KckOTQqro2yRlJXped99WHkjwlkwGg30/ywjUvmCQr9tsJVXV0Jrejrknya0nS3ZdX1XuTXJHJ01av6O471qFskscmeX6Sy6rqkum634lzbt6t1G/PWa1zzkzzAACDzdMtRQCAhSRwAQAMJnABAAwmcAEADCZwAQAMJnABc6Gqbp3+3VxVv7zKx/6dHZb/ejWPD7A7AhcwbzYn2aPAVVW7m1PwToGru4/dw5oA9onABcyb1yX5uaq6pKp+o6r2r6rXV9Xnpy+Q/bUkqaoTqupTVfWBTCYfTFX97+kL1S/f/lL1qnpdkoOmxztzum771bSaHvuLVXVZVT172bE/XlVnV9WXqurM6UzUAHtlbmaaB5g6Pcm/7+6nJsk0OH23ux9RVXdN8pmq+sh022OSPKy7vzZdflF331RVByX5fFW9r7tPr6pXdvfRO2nrlzJ5Ke1RSQ6d7vPJ6W8PT/LQJN9K8plMZqL+9Gr/xwI/HlzhAubdSZm8a+6SJBcmuW8m7y1Lks8tC1tJ8qqq+kKSz2byYtkHZteOS3LW9OW0307yiSSPWHbsa6cvrb0kk1udAHvFFS5g3lWSX+/u8++0suqEJN/bYfnnkzymu79fVR9Pcrd9aPe2Zd/viH8vgX3gChcwb25Jcsiy5fOTvKyqDkySqnpQVR28k/3uleTvpmHrp5M8etlvP9y+/w4+leTZ03Fim5Icn+Rzq/JfAbCM/48NmDeXJrljemvwHUnelMntvIunA9eXkjxtJ/udl+SlVXVlkqsyua243dYkl1bVxd393GXrz03ymCRfSNJJfqu7b5gGNoBVU9293jUAACw0txQBAAYTuAAABhO4AAAGE7gAAAYTuAAABhO4AAAGE7gAAAYTuAAABvv/fNggMdAB+b4AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "#WYKRESY FUNKCJI KOSZTU\n", "for fig in cost_fun_slices:\n", " cost_x, cost_y = fig\n", " fig = plot_data_cost(cost_x, cost_y, \"Iteration\", \"Cost function value\")" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "# Ilość nauki do oceny" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " number_courses time_study Marks\n", "0 3 4.508 19.202\n", "1 4 0.096 7.734\n", "2 4 3.133 13.811\n", "3 6 7.909 53.018\n", "4 8 7.811 55.299\n", ".. ... ... ...\n", "95 6 3.561 19.128\n", "96 3 0.301 5.609\n", "97 4 7.163 41.444\n", "98 7 0.309 12.027\n", "99 3 6.335 32.357\n", "\n", "[100 rows x 3 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
number_coursestime_studyMarks
034.50819.202
140.0967.734
243.13313.811
367.90953.018
487.81155.299
............
9563.56119.128
9630.3015.609
9747.16341.444
9870.30912.027
9936.33532.357
\n

100 rows × 3 columns

\n
" }, "metadata": {}, "execution_count": 56 } ], "source": [ "data_marks_all = pandas.read_csv('Student_Marks.csv')\n", "data_marks_all" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "data_marks_all = data_marks_all[['time_study', 'Marks']]\n", "# data_marks_all = data_marks_all.sample(frac=1)\n", "data_marks_train = data_marks_all[0:70]\n", "data_marks_test = data_marks_all[70:]\n", "data_marks_train = np.matrix(data_marks_train).astype(float)\n", "data_marks_test = np.matrix(data_marks_test).astype(float)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "tags": [] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Wielomian 1 stopnia, MSE = 381.1693728350544\n", "Wielomian 2 stopnia, MSE = 394.1863119057109\n", "Wielomian 3 stopnia, MSE = 391.50171107305584\n" ] }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:34.813658\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAFkCAYAAACHEodbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA7jElEQVR4nO3deXyU5dX/8c81WckCyL5vEkRE4oI7WvcK7rLErrYPrf212lZBjbvWXSpa+rhUaxfbp2oQVFBxFxe0VVEJm2ACgkBYZZtMyDrX7487aUKYmcwkmblnJt/368UrZO5ljmPA43Wd+xxjrUVEREREYsfjdgAiIiIiHY0SMBEREZEYUwImIiIiEmNKwERERERiTAmYiIiISIwpARMRERGJsVS3AwhHjx497JAhQ9wOQ0REkkxVjZ+SbV4sMKR7FrmZaW6HJAnms88+22Gt7RnpdQmRgA0ZMoTFixe7HYaIiCSRmjo/Ex/7CO/GPUwZO4AZk/LdDkkSkDFmfWuuS4gETEREEoDXC0VFUFICeXlQUAC5uW5HFdRj765h6cY99O/aiVvOG+V2ONLBKAETEZG2W7QIJkwAvx98PsjOhmnTYMECGDfO7egOsHzTHv74dgkAMyaN0dajxJyK8EVEpG28Xif58nqd5Aucrw2vl5e7G18zVbV1TJ9dTK3fctkJgzlpeA+3Q5IOSAmYiIi0TVGRs/IViN/vHI8jf3irhNVbvQzpnkXh+JFuhyMdlBIwERFpm5KSxpWv5nw+KC2NbTwhfLZ+F4+/twaPgZlT8slKVyWOuEMJmIiItE1enlPzFUh2NgwfHtt4gthXXcc1zxXjt/DzU4Zx9OBubockHZgSMBERaZuCAvAE+c+Jx+McjwP3v7aKr3f4GNE7h6vPHOF2ONLBKQETEZG2yc11nnbMzW1cCcvObnw9J8fd+ICP1uzg7x+tI9VjmDn5CDLTUtwOSTo4bX6LiEjbjRsHZWVOwX1pqbPtWFAQF8mXt7KGa59bCsCVpw/n8AFdXI5IRAmYiIi0l5wcmDrV7SgOcPcrX7Jp9z5G9+/MFafFRz2aiLYgRUQkaS1ctY1nP91AeoqHB6ccQVqK/rMn8UE/iSIikpR2V1RTONfZepx+9ghG9I7fsUjS8WgLUkREWifOZz/eNn8F27xVHD34IH528jC3wxHZjxIwERGJ3BtvwIUXQl0d1NRAVlZczX5csGwz85aU0SkthZmT80nxGLdDEtmPEjAREYnMG2/Ad7+7/2sVFc7XCROcpyGtdW11bLu3iptfXA7ADRNGMqRHkCaxIi5SAiYiIuHzeuGCC4If9/vhrrvg0Ued3/t8Tk+wGK2OWWu56YVl7PRVc9Lw7vzwuMFRfT+R1lICJiIi4SsqcrYdg/H54MEHnW3Jpq9B4+pYFHuDvfDFJt5YuZWcjFRmTMrHo61HiVN6ClJERMJXUgK1tcGPp6SACZL0+P1OAhclm/fs47b5KwC49fxR9O/aKWrvJdJWSsBERCR8eXlOwX0o1dWBX/f5nC75UWCt5bo5S/FW1nLGyF5MPnpAVN5HpL0oARMRkfAVFDirXMH8+teN8yCby852RhRFwdOffMMHJTvompXGvZccjgm2CicSJ5SAiYhI+JoO3m5YCUtNhYwMeP11uOMO8AT5T4vH4yRw7eybbyu4+5UvAbjzwtH06pzZ7u8h0t5UhC8iIpFpafD2ggVOwX3TpyA9Huf1di7A9/st1zxXTEV1HeeO6cv5+f3a9f4i0aIETEREItcweLuhG/6ddzb2+2opQWtHf/3waz5Zt5MeORnceeHodr+/SLQoARMRkdZZtOjAla6m/b6mTo3q25du8zLj9dUA3HvJ4XTLTo/q+4m0JyVgIiISnqazHwcOhBtugPLyxuMx7PdVW+dn+uxiqmv9TDp6AGeN6h219xKJBiVgIiLSsuarXRkZUFUV+NzKSrjiCnj44aiNH/rTe2so3riHfl0yufX8UVF5D5Fo0lOQIiISmtfrJF9eb+MqV7DkC5wu+E8/Df37O4lbO1tRtodZb5cAMGNSPp0z09r9PUSiTQmYiIiEVlTkrHxFora2MXFruk3ZRlW1dUyfXUxNneVHxw9mXF6Pdru3SCwpARMRkdBKShpXviLVzuOH/vh2Cau2eBncPYvrx49st/uKxJoSMBERCS0vL3h3+5a04/ihL77ZxWPvrsEYeGByPtkZKmOWxKUETEREQisoCN7dviXtNH5oX7Wz9ei38LNxQzlmSLc231PETUrAREQktKbjhxpWwrKzITPT+RVKO40f+v3rq1m7w8fwXjlMP/uQNt9PxG1avxURkZYF6m4/YQIccojTdiKQnJx2GT/07zXf8tcPvybFY3hwSj6ZaSGGgYskiKgmYMaYdYAXqANqrbVjjTHdgCJgCLAOmGKt3RXNOEREpB00jB9qqvncx/R0sNbpiH/zzW1Ovsqrarl2TjEAV5w2nDEDurbpfiLxIhYrYKdZa3c0+f564G1r7X3GmOvrvy+MQRwiItLeojz38e5XvmTjrn0c1q8zV57W9loykXjhxhbkhcCp9b9/CngXJWAiIokr0MpYO3h39Tae+eQb0lM8zJyST3qqypYleUT7p9kCbxhjPjPGXF7/Wm9r7eb6328BAg7wMsZcboxZbIxZvH379iiHKSIi8WRPRQ2Fc5cCcPVZIxjZp7PLEYm0r2ivgI2z1m4yxvQC3jTGrGp60FprjTE20IXW2ieAJwDGjh0b8BwREUlOt7+0gq17qzhyUFcuP2WY2+GItLuoroBZazfVf90GvAAcC2w1xvQFqP+6LZoxiIhIYnlt+RZe+GITmWkeZk7OJ8Vj3A5JpN1FLQEzxmQbY3Ibfg+cDSwH5gOX1Z92GTAvWjGIiEhi+ba8ipteWAbA9eeMZFjP9inmF4k30dyC7A28YIxpeJ+nrbWvGWM+BWYbY6YC64EpUYxBREQShLWWm15Yzre+ak4Y1p0fnzDE7ZBEoiZqCZi1di2QH+D1b4EzovW+IiKSmOYXl/Haii3kZKQyY9IYPNp6lCSmZ3pFRMR1W/dWcsuLywG45bxDGdgty+WIRKJLCZiIiLjKWkvh3KXsrazltEN6MmXsQLdDEok6JWAiIuKqok838O7q7XTplMZ9E8dQXzssktSUgImIiGs27KzgzpdXAnDnRaPp3TnT5YhEYkMJmIiIuMLvt1w7pxhfdR3nHt6X88f0dTskkZhRAiYiIq546t/r+M/anfTISefOi0Zr61E6FCVgIiISc2u2l3Pfq850unsvGUO37HSXIxKJLSVgIiISU7V1fq55rpiqWj8TjxrAWaN6ux2SSMwpARMRkZh64oO1fPHNbvp2yeTW80e5HY6IK5SAiYhIzKzaspeH3vwKgPsnjqFLpzSXIxJxhxIwERGJiepaP9OKiqmps/zw+EGcMqKn2yGJuEYJmIiIxMTD75SwcvNeBnXL4obxh7odjoirojaMW0REEpzXC0VFUFICeXlQUAC5ua26VfGG3Tzy7hqMgQcm55Odof/8SMemPwEiInKgRYtgwgTw+8Hng+xsmDYNFiyAceMiulVlTR3Tnyumzm/5+clDOXZotygFLZI4tAUpIiL783qd5MvrdZIvcL42vF5eHtHtZr6xmtJt5QzvlcP0sw+JQsAiiUcJmIiI7K+oyFn5CsTvd46H6ZOvd/Lkoq9J8RhmTs4nMy2lnYIUSWxKwEREZH8lJY0rX835fFBaGtZtfFW1XPNcMdbCFaceTP7Aru0Xo0iCUwImIiL7y8tzar4Cyc6G4cPDus29r37JNzsrGNW3M1eenteOAYokPiVgIiKyv4IC8AT5z4PH4xxvwftfbef//vMNaSmGmVPySU/Vf25EmtKfCBER2V9urvO0Y25u40pYdnbj6zk5IS/fs6+GwrlLAbj6rBEc2rdztCMWSThqQyEiIgcaNw7KypyC+9JSZ9uxoKDF5AvgjpdWsnlPJUcO6srlJw+LQbAiiUcJmIiIBJaTA1OnRnTJGyu2MPfzjWSmeZg5OZ/UFG20iASiPxkiItIudvqqufGFZQBc992RDOvZ8mqZSEelBExERNrMWsvNLy5jR3k1xw3txk9OHOJ2SCJxTQmYiIi02UtLN7Ng2Ray01N4YHI+Ho9xOySRuKYETERE2mTb3kpueXE5ADefN4qB3bJcjkgk/ikBExGRVrPWcv3zy9izr4bvjOjJpccMdDskkYSgpyBFRCQyXq/TnqKkhOd6j+GdbV3pnJnK/RPHYIy2HkXCoQRMRETCt2gRTJgAfj8bU7K4Y+ojkA53jEyjT5dMt6MTSRjaghQRkfB4vU7y5fXi91Vw3firKE/P4pzVH3Lh5RdBebnbEYokDCVgIiISnqIi8PsB+OdR5/LRkHy6+3Zz1xuPYvx+57iIhEVbkCIiEp6SEvD5+Pqgftx76k8AuPuNR+hRscc5XlrqXmwiCUYrYCIiEp68POpycph+7tVUpmVy8fJ3OOerfzvHsrOdeZEiEhYlYCIiEp6CAv585AV83v9Qenu/5fa3Hm885vE4w7pFJCzaghQRkbCs9sGD474Pfrh/4eN0qfI5K18eDyxY4AzvFpGwKAETEZEW1dT5mTZ7CdV++N6RfTk173+g9BRn27GgQMmXSISUgImISIsefqeUFWV7GXBQJ266aAxkHOV2SCIJTTVgIiIS0rKNe3h4ofOE4wOT88nJ0P+7i7SVEjAREQmqsqaOabOXUOe3/M9JQzl+WHe3QxJJCkrAREQkqIfe/IqSbeUMS6vlukX/hCefdDrii0ibaB1ZREQCWrxuJ0+8vxaP38/Mp28jc22x89TjtGnOU4/jxrkdokjC0gqYiIgcoKK6lulFX2CB//fxHI5cW+wc8PkaZ0Jq9qNIqykBExGRA9z36irW76pk5I71/PbDpw88QbMfRdpEW5AiIsnI63USpJISyMtzenXl5oZ16aKSHfzj3+tJtX5mvvQAGXW1B57k82n2o0gbKAETEUk2ixY5W4R+v5MoRVC3tbeyhuvmONuNv+nu4zDftsAnavajSJtoC1JEJJk01Gd5vU7yBRHVbd350krK9lSSP6ALv/rFBGfMUCCa/SjSJkrARESSSVGRs/IVSAt1W2+t3Mpzn20kPdXDzCn5pHbp7Kya5eY6K17gfM3N1exHkTbSFqSISDIpKWlc+WrO54O5c2HKlAPqwXb5qrn++WUAXPfdQxjeq/74uHFQVuYkbqWlmv0o0k6UgImIJJO8PGeVKlgS9s470L//AfVgt8xbzo7yKo4d0o2fnjR0/2tycmDq1CgGLdLxaAtSRCSZFBQEr9sCqKo6oB7speIyXl66maz0FH4/eQwpHhOjYEU6LiVgIiLJpKE+KzcX0tODn1dfD7bNW8kt85YDcOOEQxncPTtGgYp0bFFPwIwxKcaYL4wxL9d/P9QY87ExptQYU2SMCfE3hIiIRKyhbuuUU4Kf4/NhS0q5Ye4ydlfUcHJeD35w3KDYxSjSwcViBey3wJdNvr8feMhaOxzYBaiwQESkvS1ZAh98EPx4djZzeh/O26u2kZuZyv0Tx2CMth5FYiWqCZgxZgBwLvBk/fcGOB2YU3/KU8BF0YxBRKTDaajxqqoKesqmzj25Y3c3AG4//zD6de0Uq+hEhOivgP0BuA5oaErTHdhtrW2Ya7ER6B/lGEREOpZQvcAAf2YnCqf9CW9VHWeN6s0lR+mvYZFYi1oCZow5D9hmrf2slddfboxZbIxZvH379naOTkQkiYXqBQb868q7WLSjlm7Z6dxz8eHaehRxQTRXwE4CLjDGrAOexdl6nAV0NcY09B8bAGwKdLG19glr7Vhr7diePXtGMUwRkSTT0AssgHX9hnFPah4Ad100mp65GbGMTETqRS0Bs9beYK0dYK0dAlwKvGOt/QGwEJhUf9plwLxoxSAi0iEF6QVWZzxcc+av2Gc9XHhEPyYc3teF4EQE3OkDVghMM8aU4tSE/cWFGEREklfTXmBNZjj+ZdwUFvcdSa/cDH53wWHuxijSwcVkFJG19l3g3frfrwWOjcX7ioh0WM1mOH41cCQPbOoJdZb7J46ha5ZaMIq4SbMgRUQShdfrJFQlJU6dV0HBAUO191M/w7Gmzs/0Rz+ium4Plx4zkNNG9opdzCISkBIwEZFEsGiR09vL73eecMzOhmnTDhiqHchj765h2aY99O/aiZvOPTRGAYtIKJoFKSIS7xoaq3q9je0lfL4DhmoHsnzTHv74dgkAv588htzMtFhELCItUAImIhLvQjVWrR+qHUhVbR3TZxdT67f85MQhnHhwjygGKSKRUAImIhLvQjVW9fmgtDTgoT+8VcLqrV6G9sim8JyRUQxQRCKlBExEJN6FaKxKdjYMH37Ay5+t38Xj763BY+CByfl0Sk+JcpAiEgklYCIi8S5IY1XAeb2gYL+X9lXXcc1zxfgt/OI7B3P04INiEKSIREIJmIhIvAvSWPW/r+fk7Hf6/a+t4usdPg7pnctVZ+a5ELCItERtKEREEkGzxqoMH+6sfDVLvj5as4O/f7SOVI9h5pR8MlK19SgSj5SAiYgkivrGqsF4K2u49rmlAPzmjDxG9+8Sq8hEJELaghQRSRJ3v/Ilm3bvY8yALvzy1IPdDkdEQtAKmIhIImhhDNHCVdt49tMNpKd6mDk5n7QU/f+1SDxTAiYiEu9aGEO0u6KawrnO1uM1Z48gr3eI+ZAiEheUgImIxLOmY4gaNDRlnTABysq47eUStnmrOGbIQUwdN8ydOEUkIkrARETiWQtjiBY8+SLzthxEp7QUHpicT4rHxDY+EWkVFQmIiMSzEGOItts0bt7itKG48dxDGdw9SLd8EYk7SsBEROJZkDFEFrhp/K/ZSRon5/Xgh8cNin1sItJqSsBEROJZkDFEzx92Om8MP47cqgruH1SFMdp6FEkkSsBEROJZgHFDZbk9uP3MywG47a0/0W/ieVBe7laEItIKSsBEROLduHFw772Qno4FCsf/Bm9mDmeW/IeJy99xivSLityOUkQioARMRCQRbNgA1dX864jxfDD0KA6q2MM9rz+MAadIv7TU7QhFJAJKwEREEkFeHuv7DuOe0/4HgLveeJRevt3OsexsZzi3iCQM9QETEUkAdZOncO37u6lI78T5K9/j3NUfNh70eJxifRFJGErAREQSwN+W7uCTfofS07eLOz76h/NidraTfDUr0heR+KcETEQkzpVu8zLj9dUA3PvTcRx0xN1Ozdfw4c7Kl5IvkYSjBExEJI7V1vmZNruY6lo/k48ewJlHDYGjprodloi0kYrwRUTi2GPvrmHpxj3065LJLeePcjscEWknSsBEROLUirI9zHq7BIAZk/LpnJnmckQi0l6UgImIxKGq2jqmzy6m1m/58QmDGZfXw+2QRKQdKQETEYlDs94qYdUWL4O7Z3H9+JFuhyMi7UwJmIhInPn8m1386b01GAMzJ+eTla7npUSSjRIwEZE4sq+6jmtmF+O3cPnJwxg7pJvbIYlIFCgBExGJIzNeX8XaHT7yeuVw9Vkj3A5HRKJECZiISJz4aM0O/vbhOlI8hgenHEFmWorbIYlIlCgBExGJA+VVtVz73FIArjxtOIcP6OJyRCISTUrARETiwN2vrGTT7n0c1q8zV54+3O1wRCTKlICJiLhs4eptPPPJBtJTPDw45QjSUvRXs0iy059yEREX7a6opnCOs/V49VkjOKRPrssRiUgsKAETEXHR7fNXsM1bxVGDunL5KcPcDkdEYkQJmIiIS15bvpkXl5SRmeZh5pQjSPEYt0MSkRhRAiYi4oId5VXc9MJyAG4YfyhDe2S7HJGIxJISMBGRGLPWcvMLy/nWV82JB3fnR8cPdjskEYkxJWAiIjE2b0kZr63YQk5GKjMmjcGjrUeRDkcJmIhIDG3ZU8mt85ytx1vPG8WAg7JcjkhE3JDqdgAiIh2FtZbCuUvZW1nL6SN7MXnsgNbfzOuFoiIoKYG8PCgogFy1sBBJFErARERi5NlPN/DeV9vp0imN+y45HGNaufW4aBFMmAB+P/h8kJ0N06bBggUwblz7Bi0iUaEtSBGRGNiws4K7Xl4JwJ0XjaZX58zW3cjrdZIvr9dJvsD52vB6eXk7RSwi0aQETEQkyvx+yzXPFeOrruPcw/ty/pi+rb9ZURHU1QV7I+e4iMQ9bUGKiETZ3z9ax8df76RHTjp3XjQ68NZjuDVdCxdCRUXgN/L5oLS0fYMXkahQAiYiEkVrtpdz/2urALj3kjF0y04/8KRwa7q8Xpg7N/ibZWfD8OHt/E8gItHQ4hakMebXxpiDYhGMiEgyqa3zM312MVW1fiYeNYCzRvU+8KRIarqKiiAlJfgb1tU5K2ciEvfCqQHrDXxqjJltjDnHtPqxHRGRjuXx99eyZMNu+nbJ5NbzRwU+qajIWfkKpHlNV0lJ8O1HgIkTISen9QGLSMy0mIBZa28G8oC/AD8BSowx9xhjDg51nTEm0xjziTGm2Bizwhjzu/rXhxpjPjbGlBpjiowxAdbjRUQS25eb9/KHt74C4P6JY+jSKS3wiSUljStfzTWv6Ro4EDIyAp+blQWnndaGiEUklsJ6CtJaa4Et9b9qgYOAOcaYGSEuqwJOt9bmA0cA5xhjjgfuBx6y1g4HdgFTWx++iEj8qa71M212MTV1lh8eP4hTRvQMfnJenlO7FUjTmq5Fi+CGG6CqKvC5KSnafhRJIOHUgP3WGPMZMAP4EDjcWvtL4GhgYrDrrKOheCGt/pcFTgfm1L/+FHBRq6MXEYlD//tOCV9u3sugblncMP7Q0CcXFIAnyF/FHo9zvKUeXzk5TsG+th9FEkY4K2DdgEustd+11j5nra0BsNb6gfNCXWiMSTHGLAG2AW8Ca4Dd1tra+lM2Av1bG7yISLxZsmE3j767BmPggcn5ZGe08LB5bq6TPOXmNq6EZWc3vp6TE7pOLD0d7rtPHfBFEkyLbSistbeFOPZlC9fWAUcYY7oCLwAjww3MGHM5cDnAoEGDwr1MRMQ1lTV1TJ+9hDq/5ecnD+XYod3Cu3DcOCgrcxKt0lJn27GgoHFFK1SdWHU1bNzYPv8AIhIzMekDZq3dbYxZCJwAdDXGpNavgg0ANgW55gngCYCxY8faWMQpItIWD7y+mjXbfQzvlcP0sw+J7OKcHJgapCS2oU4sUBKm3l8iCSlqo4iMMT3rV74wxnQCzgK+BBYCk+pPuwyYF60YRERi5eO13/KXD78mxWOYOTmfzLQQ/boiFU6dmIgklGjOguwLLDTGLAU+Bd601r4MFALTjDGlQHec9hYiIgnLV1XLNXOKsRauOPVg8gd2bd83CKdOTEQSStS2IK21S4EjA7y+Fjg2Wu8rIhJr9yz4kg079zGqb2euPD0vOm/SUp2YiCQUzYIUEWmD977azr8+/oa0FMODBfmkp0ZxYyFUnZiIJJRobkGKiCS1PftqKJyzFICrzxrByD6dXY5IRBKFEjARkVb63Usr2LK3kiMHdeXyk4e5HY6IJBAlYCIirfD6ii08//kmMo1l5vo3Sf3bX52O9SIiYVACJiISoW/Lq7ip6HMArnvvKYbN+B1cdRX07+/MbBQRaYESMBGRCFhruXnOEnZUW45fv5Sf/Huuc8Dna3lmo4hIPSVgIiIRmF9cxqurdpBdvY/fL/gDHpoN6vD7nVYRoXi98OSTUFjofNXWpUiHozYUIiJh2rq3klvnrQDglrf/zMC92w48yedz+nQFs2iRs0rm9zvnZmfDtGlOQ1UN1BbpMLQCJiISBmst189dyp59NZyaVUnBmg8DnxhqNmPDFqXX2zjXUVuXIh2SEjARkTDMXryBhau306VTGvf/7DuY1sxmLCpyVr4CCWfrUkSShhIwEZEWbNhZwR0vrQTgjgsPo3e/Hq2bzVhS0rjy1ZzPB3/+s2rCRDoI1YCJiITg91uum7MUX3Ud40f34YL8fs6B1sxmzMtzErVgSdjHH8Py5aoJE+kAjLW25bNcNnbsWLt48WK3wxCRZOf1OglVSYmTLBUU8NSyb7lt/gq6Z6fzxtWn0D0no233798/vBWu3FwnwdOwbZG4Zoz5zFo7NtLrtAUpIgLO04n9+zsNVWfMgKuu4utRR3Pvy85Tj/dccnjbki9o3KJsunUZjGrCRJKaEjARkQBPJ9ZV7GP6qZdT6YdLDu/Ndw/r0z7v1bB1OWsWHHdc8PNaamchIglNNWAiIgGeTvzzMRfzef9D6VP+Lbf5tgIR7zAEl5MDU6eCtU7NV6CasFDtLEQk4WkFTESk2dOJq3sM5sGTfwjA/Qtm0eXrkui8b0GB07YikFDtLEQk4SkBExFpeDoRqPGkMO3cq6lOTeP7X7zKd7atjt5KVKCasHDaWYhIwtMWpIhIQYHT+gF4+IQCVvQZzsDdW7jx3b9CRmp0V6Ja085CRBKeEjARkfoVp2WXXcHDJxZgrJ/fv/MncjJSY7MS1VATJiIdhhIwEekYAvT4Ijf3v4crjzuBab/8A3U7KpjKJo4v/H9aiRKRqFECJiLJb9Eip82E3+8U22dnH9Bt/qE3v6JkRwXDemZz7W+mQlqKy0GLSDJTAiYiya1pj68GDU88TpgAZWUs3lHNEx+sxWPgwSlHkKnkS0SiTAmYiCS3AD2+/svvp+KZ2UzfPRRr4YrThnPEwK4xDU9EOiYlYCKS3Jr1+NqPz8d9a+pYTwUj++TymzPyYhubiHRY6gMmIsmtSY+v5hYdchz/oB9p1s+DaWtJ3xckURMRaWdKwEQkeXm9UFkJ1dUHHNqbnsV1p/8CgKve/yejCq90hnEvWhTrKEWkA9IWpIgkp6ZPPtbU7H8sK4s7v/Nzyjr3Ir9sNb/4eC7Y+jqx+sJ8tZ8QkWjSCpiIJJ+mTz42r/9KT+etS3/Fc2POIqOmipmvPESqbVKk7/c7hfsiIlGkBExEkk+IJx935R7E9V2PAeC6959i+M6N+5/g8zkjgUREokgJmIgknxBPPt5y0mXsSMvmuE0r+Onilw48ITs7esO3RUTqKQETkeQT5MnHl0aezMuHnkKW8fP7hU/gwR54rccT3eHbIiIoARORZFRQ4CRSTWzL7sotZ/8SgJvHH8KgZ//uzIJsSNSys/87lFsF+CISbXoKUkSST0MiVf8UpPX5uOHcq9ndqTOn9EzleyfngRnhPO1YVOTUfA0fruHbIhIzSsBEJDmNG/ffBGtOyV7eZgSdM1OZ8bPvYIxxzsnJgalT3Y1TRDokJWAikrxyctg08fvc8dD7UFXL7RccRp8umW27p9frrJqVlDi1ZgUFzoqbiEgElICJSNLy+y2Fc5birarl7FG9ufjI/m27YdPmrj6fUzc2bZqz3TluXPsELSIdgorwRSRp/evj9Swq3UG37HTuvvjwxq3H1gjU3NXna3y9vLx9ghaRDkEJmIgkpXU7fNyzYBUAd100mp65GY0HvV548kkoLHS+er0t3zBEc1d1zxeRSGkLUkSSTp3fcs1zxeyrqePCI/ox4fC+jQdbu40YormruueLSKS0AiYiSecvi9ayeP0ueuVm8LsLDms8EK1tRHXPF5EIKQETkaTy1VYvD7z+FQD3TxxD16z0xoOt3Ub0euHRR4O/qTHqni8iEVECJiJJo6bOz/TZxVTX+bn0mIGcNrLX/ie0dhuxqAhsgLFFDa64Qg1cRSQiSsBEJGk8unANyzbtoX/XTtx07qGNBxqK7ouLIT098MWhthFDJW4A774bfjG/iAgqwheRJLF80x7+950SAH4/eQy5mWnOgeZF98GEGsLdMNw72PUffwzLl6snmIiETStgIpLwqmrrmDZ7CbV+y09OHMKJB/dwDgQqum8unCHcAYZ7H0A9wUQkAkrARCThPfRmCV9tLWdoj2wKzxnZeCBU0X1GBowfD7NmOTMjQ61aNSRoublOwhaKeoKJSBiUgIlIQvts/U6eeH8NHgMPTM6nU3pK48FQtVtVVZCf7wzjDqeAvmG496xZcNxxwc9TTzARCYNqwEQkYVVU1zJ9djF+C7889WCOHnzQ/ieEqt1qTe+unBwnYbPWqflqr/uKSIejFTARSVgzXlvNum8rOKR3LledmXfgCaFqt0IV3bckWvcVkQ5DCZiIJKSPSnfw94/WkeoxzJyST0ZqyoEnBardaqnoPpw5ka25r4hIE9qCFJGE462s4do5SwH4zRl5jO7fJfjJDbVbRUVObdbw4c4KVaAkKZI5kZHcV0SkGWNDdXduy42NGQj8A+gNWOAJa+0sY0w3oAgYAqwDplhrd4W619ixY+3ixYujEqeIJJ7COUspWryBMQO6MPeXJ5KW0g6L+V4v9O8ffMWrrEzJlYgcwBjzmbV2bKTXRXMLshaYbq0dBRwPXGGMGQVcD7xtrc0D3q7/XkQkLO+s2krR4g2kp3qYOTnfSb7C2TZsSWvnRIqItELUtiCttZuBzfW/9xpjvgT6AxcCp9af9hTwLlAYrThEJHns8lVTOHcZANeefQh5vXOdbcPx46G62vmVng5XXw2vvhpZR/rWzokUEWmFmBThG2OGAEcCHwO965MzgC04W5QiIi26bf4KtnurOGbIQfzPuKHOStfZZzud56urnZOqq53vG15vSVvnRIqItELUi/CNMTnAXOAqa+1eY8x/j1lrrTEmYBGaMeZy4HKAQYMGRTtMEYlzryzdzPziMjqlpfDA5HxSPAaeegr27Qt8wb59zvErrgh+0/aYEyki0gpRXQEzxqThJF//stY+X//yVmNM3/rjfYFtga611j5hrR1rrR3bs2fPaIYpInFuu7eKm190th5vPPdQBnevb/3w8suhL3zlleD1YeHMiczIcFbFfvlLp/mqiEg7idoKmHGWuv4CfGmtfbDJofnAZcB99V/nRSsGEUl81lpueH4ZuypqGDe8Bz88LoIV8V27nCcbA7WVWLUqeNF9WppzzFpnS/ORR+CxxwK3oxARaYVoroCdBPwION0Ys6T+1wScxOssY0wJcGb99yIiAT3/+Sbe+nIruRmpzJg0hqZlDJx3XuiLv/hi/xUun69x5WvFiuArXzU1UFfXWFfW9Lpw6spERFoQtQTMWrvIWmustWOstUfU/1pgrf3WWnuGtTbPWnumtXZntGIQkcRWtnsft7+0AoDbLjiMfl077X/CZZdBVlbgi9PTISVAd3xwVrd27mzsYh8utaMQkXaiUUQiEpestRTOXYq3spYzD+3NxKP6H3hSbi68/rrTIDUjw3ktI8P5ftIkqKgIfHOfD3r0CD7PMRi1oxCRdqJRRCLiPq/XWVkqKYG8PCgo4F8rdvJByQ4OykrjnktG77/12NS4cbB584EjgZ59FubNC7zNmJ0No0Y5NV3NRw/V1TnnVFYGvk7tKESkHURtFFF70igikSQWYP7i+q59GH/ZLCrq4JHvH8W5Y/pGft9wRwuVl++fvE2YAIccopFEIhKW1o4i0gqYiLinaSuIenUV+7j2wp9TUQfnj+rZuuQLnGQp0AqXx+O83pBE5eTA1Kn7XxvOdSIibaAETETcE2D+4t/GXsAnA0fT07eLOyq3gvfQA7Ynyc0N7/7jxjkrVs23J1tKolp7nYhImJSAiYh7ms1fLO0+gBmn/BiA+179IwftGgHXXBW4j1e4/bgCrXA1F6AGjdzclq8TEWklJWAi4p68PCep8vmoNR6mnTuN6tR0pix9gzM2r4A5S6GqqvH8hmRtwoT2q8UKUIMWcZInIhIhtaEQEfcUFPy3FcRjx09mad8R9N+zjVve/rOTEAXr41VX58x4bD5eKFKBxhGp6aqIxIASMBFxT32h/Ioho5l10vcAmLHwcXIzUuGSS4L38aqogGeegRkz4KqrnKcdFy0K7z2bzoa88srGthPNqemqiESRtiBFxFVVx5/A9F//L7XbfFxGGSdd+/OW+3iBMy4IItuWbL7dmJbWeJ/m1HRVRKJIK2Ai4qpZb5WwapuPId2zKLzjp07he07OftuTYWlpxSrQdmOw5AvUdFVEokorYCLims+/2cWf3luDx8DMKflkpTf5KylQH6/UVKitDXyzpitWgZ5qDNDyIiSPx7lORCQKlICJiCv2Vddxzexi/BZ+8Z1hHD2424EnNe/HVVYGc+cG3pbMynKO/+AH8PzzTgJVUdH4VOP55wffzoTG5E5NV0UkBjSKSERc8buXVvC3D9cxoncO868cR2ZakCcemwo1XgicJCxY4X5mZmNS1lx2tjO8u29fNV0VkYhoFJGIJIyP1uzgbx+uI9VjmDn5iPCSLwi8Ldk06QqWfIGTfAV74tHjgYcfVtIlIjGjBExEYqq8qpZrn1sKwJWnD+fwAV0iu0Ek25JNVVQ425Pz52vGo4i4TgmYiMTU3a+sZNPufYzu35krTmvlU4ZNxwsVFracfIGTbJ12GvzpT5rxKCKuUwImIjGzcPU2nvlkA+kphgc9a0i78eXIB2w312ScUUgNTzWGMxtSRCTK1AdMRGJid0U1hXOcrcfpH/wfIwqvbF0n++Za6heWnd1YO6aVLhGJE0rARCQmbp+/gm3eKo7evJqfLSpqv9mLDclVbq6TbIFTmJ+R4dR8zZrl1IlpsLaIxBFtQYpI1L26bDMvLimjk/Ez861HSLEBGqI2dLJvzfZg88J81XaJSJxTAiaSLAJ1f29tXVU72lFexU0vLgfgBv8ahpStDXxiW2cvqrZLRBKIEjCRZNB8yHRD9/cFC1zderPWcuPzy9jpq+ak4d35od0cvGBesxdFpANRDZhIogs0ZLqtdVXt5MUlm3hj5VZyMlKZMSkfz6UhCuY1e1FEOhAlYCKJLtSQ6Ya6Khds3rOPW+etAODW80bRv2unwAXzekpRRDogbUGKJLqSkuA9sNpaV9VK1loK5y7DW1nLGSN7MXnsgMaDKpgXEVECJpLwQjUidamu6plPNvD+V9vpmpXGvZccjjFm/xNUMC8iHZy2IEUSXahGpC7UVX3zbQV3vbISgDsvHE2vzpkxfX8RkUSgFTCRRNdQP9X8KUgXhkz7/ZZr5hRTUV3HuWP6cn5+v9bfLE7baoiItAclYCLJIE7qqv720To++XonPXIyuPPC0a2/UZy21RARaS9KwESShRt1VU1WqUoHj2RGWR8A7r3kcLplp7f+ng1tNRo01LdNmOAkmirYF5EEpxowEWmdRYucIdpXXUXt7x9g+id7qKr1M2lAGmeN6t36+8ZpWw0RkfakBExEItes+evjx02kuE8e/fZu49bbf9S25q9x2FZDRKS9KQETkcg1WaVa2XMofxj3fQBmLJhF50pf61apvF548kkoLob0INuXGlckIklCNWAiErn6VapqTyrTzptGTUoaP/r8ZcatL3aOR7pK1bzoPhiNKxKRJKEETCQRxFtLhvrmr3886mJW9RrK4F1lXP/u351jka5SBSq6b86lthoiItGiBEzEbS0lV/HYkqGggC/ue4RHj5+MsX4eeOUPZNdUOsciXaUKVXSfkQGnnw4TJ2pckYgkFSVgIm5qKbmK05YMlZlZTL/sHvw+P5d/Pp9jNq1s/SpVqKL7qirIz9fYIhFJOirCF3FLsycJAedrw+vl5XHbkuH3Ly1jrc/PcH850/pWO0njrFlOQhjpqlzDLMtAVHQvIklKK2AibgknuVqxIu5aMvxn3rv89WMvKdby4D9vJtO7uW31WQUFTgIXiIruRSRJaQVMxC0t9btauBAeeyz49S6sDpXv2MW1r63FGg9X/LuIMVtKD1y1i1TDLMvc3MaVsOzsxtdV9yUiSUgrYCJuadh6C5SEZWXBnDlODVQwLqwO3fPEm2zo0pvDtpRy5Uez9z/YsGrXmnqtOJllKSISK0rARNwSauvN74eUlODXZmbGfHXova+28/TebNJra5j5ykOk+2v3P6GtW6JuzLIUEXGJtiBF3BJq6+2SS6CiIvi1v/pVTFtQ7NlXQ+GcpQBc/clsRu5Yf+BJbdkSbeiCX1jofA3VE0xEJAloBUzETcG23p59FubNC7w9mZ0No0bFNMzfvbSCLXsrObJ/LpcXvxL4pNZuicZjnzMRkSgz1lq3Y2jR2LFj7eLFi90OQyR2vF7o3z/wSlBubkz7f72+Ygu/+OdnZKZ5WPCbkxm2esmBCVPDU5CRJkxx9M8pItIaxpjPrLVjI71OK2Ai8ahhezJYohOjpOTb8ipuemEZANefM5JhPXOgZ5gF8+GMTwqnFYfqwkQkCSkBE4lXLj8ZaK3l5heXs6O8mhOGdefHJwxpPNhSwXy424otteJwoc+ZiEgsKAETiUfNV49uvDHmw7fnF5fx6vIt5GSkMmPSGDweE96FkYxPCtWKQ13wRSSJKQETiTduFKU3S/i2TriIW+etAOCW8w5lYLes8O8VybaiuuCLSAelBEwknrgxfLtZwmezs7n+7S3sGXwkpx3SkyljB0Z2v0i2FeOk1k1EJNaUgInEk1gXpQdI+GYffCILBx9Jl8py7jvneIwJc+uxQaTbiuqCLyIdUNQSMGPMX4HzgG3W2tH1r3UDioAhwDpgirV2V7RiEEk4sS5Kb5bwbejciztO/zkAd7z3F3ofXh55wteabUV1wReRDiaanfD/DpzT7LXrgbettXnA2/Xfi0iDhtWjQKJRlN4k4fNjuG7Cb/FlZDFh1SIuWPLm/glfuN3qNVxbRKRFUVsBs9a+b4wZ0uzlC4FT63//FPAuUBitGEQSTqyL0ptsF/7jqHP59+B8evh2cecbj2KaJnyRPhigbUURkZCi2gm/PgF7uckW5G5rbdf63xtgV8P3Aa69HLgcYNCgQUevXx9g9pxIMgqU7LS203xL6jvRr03NZcJP/0hlWiaPP38X3y35T2MnemvVrV5EJIiE64RvrbXGmKDZn7X2CeAJcEYRxSwwkVgL1DE+VqtHubnUvfIK0/+ymMq0TC5Z9jbfLVu2/3bhk0+qW72ISDuLdQK21RjT11q72RjTF9gW4/cXiS+htvZilNQ8UdePL/qMoE9qHbcdngWXzNo/4VO3ehGRdhfrBGw+cBlwX/3XeTF+f5H44UbPr6bvXVTEqpJNPGSOBgwzfnwCXUZccOC5odpKpKY6cXq9Me/ULyKSyKL2FKQx5hng38AhxpiNxpipOInXWcaYEuDM+u9FOqZwen61N6/XeYqxRw+qf3MV07d2pRrDD5a/ySnbVge+pqDAqUELpLYW5s51asQWLWr/eEVEklQ0n4L8XpBDZ0TrPUUSSqy39hYtgvHjobwcgIfHTWJFn+EM3L2FG994HN7/a+BVt6bd6uvqoKLiwFgh+qt2IiJJJJp9wEQklFj2/GrY7qxPvpb2Gc4jJxRgrJ8HXnmI7JrK0KtuDW0lJk2CtLTA50Rr1U5EJAkpARNxS6itvfbu+dVku7MyJY1p506jzpPC1E/ncdxGZ+h2i6tuOTnQpw/U1AQ+roJ8EZGwKQETcUssO8Y32e588OQfUtpjEAd/u4FrPvhn4zktrbp5vbBlS/AVsGh06hcRSVIaxi3iprZ2jA/UQyzQ04j1252fdh3Mn4+9mBR/HTNfeYjM2urGc0KtujW0y6irC74CFo1O/SIiSUoJmIibmidQU6aEn3xFMh6ooADfdTcw/dyrscbDr/79LEds/qrxeE5O8FW3QO0ymmraqV8F+CIiYVECJuKWSOcrNhVpD7HcXO67+2m+WV/NodvX8esPn4X0dGfM0LRpcPPNwZOnUO0yUlOdwvyHH1byJSISASVgIm5oaxPWcHqINemk/0HJdv65vpo0j+HBo3NI73VN+Nudodpl1NZC375KvkREIqQETMQNoRKourqW5ytG0ENsb2UN181ZCsBVZ43g0NMmRBZrqE74KrwXEWkVPQUp4oZQCVRFBSxcGPr6CHqI3fHSSjbvqeSIgV35xSnDIo81lu0yREQ6CCVgIm7Iy4OsrODH5879b9PUgMJMit5cuZU5n20kI9XDzCn5pKa04o98LNtliIh0EErARNxQUOBsNQaTkhK6q3wYSdFOXzU3PL8MgMJzRnJwzzYkSg3tMmbNguuvd76WlbX8sICIiASkGjARN+TmwsSJ8PTTgY+H01W+hR5it8xbzo7yKo4b2o2fnDjkwOvD7SHWICcndF2aiIiETQmYiFtOOw3mzWtbcXuQpOil4jJeWbqZ7PQUHpicj8dj9j+hLS0wRESkzbQFKeKWKBW3b9tbyS3zlgNw83mjGNitWa1Z0xYYDcmfz3fAwG4REYkeJWAibom0uN3rhSefhMJC52uAzvTWWm54fhm7K2r4zoieXHrMwAPfN5weYiIiElXaghRxU7izIMPcMnzus428vWobnTNTuX/iGIxptvUIEfUQExGR6FACJuK2lorbw+yav3FXBXe8tBKAOy4cTZ8umYHvp8aqIiKu0xakSLwLY8vQ77cUzl1KeVUt5xzWhwuP6Bf8fmqsKiLiOiVgIvEujC3D//t4PR+Wfkv37HTuunh04K3HBmqsKiLiOm1BisS7FrYMvx50CPcuWAXA3RePpkdORsv3DLf2TEREokIJmEi8KyhwCu4DqEtJ4Zq6g9lXs5eLj+zPOaP7hn9fNVYVEXGNtiBF4l2ILcMn//g8n23cS+/OGdx+/mHuxikiImHTCphIIgiwZfjV6ecx88nPAbh/4hi6ZKW5HKSIiIRLCZhIomiyZVhT52faox9SXefne8cO5NRDerkcnIiIRMJYa92OoUXGmO3Aerfj6AB6ADvcDqKD0WceW/q8Y0+feWzp8469Q6y1uZFelBArYNbanm7H0BEYYxZba8e6HUdHos88tvR5x54+89jS5x17xpjFrblORfgiIiIiMaYETERERCTGlIBJU0+4HUAHpM88tvR5x54+89jS5x17rfrME6IIX0RERCSZaAVMREREJMaUgHVgxphuxpg3jTEl9V8PCnJenTFmSf2v+bGOM9EZY84xxqw2xpQaY64PcDzDGFNUf/xjY8wQF8JMKmF85j8xxmxv8nP9MzfiTBbGmL8aY7YZY5YHOW6MMX+s//ex1BhzVKxjTCZhfN6nGmP2NPn5vjXWMSYbY8xAY8xCY8xKY8wKY8xvA5wT0c+5ErCO7XrgbWttHvB2/feB7LPWHlH/64LYhZf4jDEpwCPAeGAU8D1jzKhmp00FdllrhwMPAffHNsrkEuZnDlDU5Of6yZgGmXz+DpwT4vh4IK/+1+XAYzGIKZn9ndCfN8AHTX6+74hBTMmuFphurR0FHA9cEeDvlYh+zpWAdWwXAk/V//4p4CL3QklaxwKl1tq11tpq4Fmcz72ppv8e5gBnGGNMDGNMNuF85tKOrLXvAztDnHIh8A/r+A/Q1RgTweR4aSqMz1vambV2s7X28/rfe4Evgf7NTovo51wJWMfW21q7uf73W4DeQc7LNMYsNsb8xxhzUWxCSxr9gQ1Nvt/IgX9o/3uOtbYW2AN0j0l0ySmczxxgYv02wRxjzMDYhNZhhfvvRNrPCcaYYmPMq8aYw9wOJpnUl4kcCXzc7FBEP+cJ0QlfWs8Y8xbQJ8Chm5p+Y621xphgj8QOttZuMsYMA94xxiyz1q5p71hFYugl4BlrbZUx5hc4K5CnuxyTSHv5HOfv7XJjzATgRZxtMWkjY0wOMBe4ylq7ty33UgKW5Ky1ZwY7ZozZaozpa63dXL9Mui3IPTbVf11rjHkXJ/NXAhaeTUDT1ZUB9a8FOmejMSYV6AJ8G5vwklKLn7m1tunn+yQwIwZxdWTh/DmQdtI0MbDWLjDGPGqM6WGt1YzINjDGpOEkX/+y1j4f4JSIfs61BdmxzQcuq//9ZcC85icYYw4yxmTU/74HcBKwMmYRJr5PgTxjzFBjTDpwKc7n3lTTfw+TgHesGvS1RYufebO6jAtw6jkkeuYDP65/Sux4YE+T8gdpZ8aYPg11pMaYY3H+W6//qWuD+s/zL8CX1toHg5wW0c+5VsA6tvuA2caYqcB6YAqAMWYs8P+stT8DDgUeN8b4cf4Q32etVQIWJmttrTHmSuB1IAX4q7V2hTHmDmCxtXY+zh/qfxpjSnEKay91L+LEF+Zn/htjzAU4TzbtBH7iWsBJwBjzDHAq0MMYsxG4DUgDsNb+CVgATABKgQrgp+5EmhzC+LwnAb80xtQC+4BL9T91bXYS8CNgmTFmSf1rNwKDoHU/5+qELyIiIhJj2oIUERERiTElYCIiIiIxpgRMREREJMaUgImIiIjEmBIwERERkRhTAiYiIiISY0rARERERGJMCZiIdAjGmGPqh29nGmOyjTErjDGj3Y5LRDomNWIVkQ7DGHMXkAl0AjZaa+91OSQR6aCUgIlIh1E/G/JToBI40Vpb53JIItJBaQtSRDqS7kAOkIuzEiYi4gqtgIlIh2GMmQ88CwwF+lprr3Q5JBHpoFLdDkBEJBaMMT8Gaqy1TxtjUoCPjDGnW2vfcTs2Eel4tAImIiIiEmOqARMRERGJMSVgIiIiIjGmBExEREQkxpSAiYiIiMSYEjARERGRGFMCJiIiIhJjSsBEREREYkwJmIiIiEiM/X8sBYE0AavlTQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:34.957659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAFkCAYAAACHEodbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABKpUlEQVR4nO3deXxU9b3/8dd3spKFLexhX2QXFAQV3MAVcakLqbXVWvqzi9Zae2+lvb31trW119tWbW29bamt3lbFugsogqKCO/sOCTtkYYchIet8f3+cGQhxJpksM2eW9/Px4DHJnHMmH8cQPvl+P+fzMdZaRERERCR6PG4HICIiIpJslICJiIiIRJkSMBEREZEoUwImIiIiEmVKwERERESiTAmYiIiISJSluh1AOLp06WL79+/frGu2lHmpqvUxoEs2ORlx8Z8pIpLQ6qxlY/ExLDC8Z3tSPcbtkERabfny5QestV2be11cZCb9+/dn2bJlzbrmoTc28qf3tnHLpP48cM3ICEUmIiLhmrummLufWcmEAZ15/hvnuR2OSJswxuxsyXUJuwV5+YjuACzcUIaazYqIRIHXC7Nnw/33O49e72mHF24oA+Cy4d3diE4kpsTFClhLjO3TiS456ew5fIJNpV6G92zvdkgiIolr6VKYNg18Pigvh+xsuO8+mD8fJk+mps7H4k37ALh0hBIwkYRdAUvxGKYOc/6SL/L/1iUiIhHg9TrJl9frJF/gPAaeP36cz3Yc4lhlLYO75TCgS7a78YrEgIRNwODUb1kLNyoBExGJmDlznJWvYHw+mDPn5Pbjpdp+FAESPAGbPLgLmWke1uw5SunRSrfDERFJTIWFp1a+GiovxxYWscj/i/BlI7pFMTCR2JXQCVi79BQuGOLcGapVMBGRCBkyxKn5CiY7my19h7H70Am65KQztk+n6MYmEqMSOgEDuGyE6sBERCKqoAA8If458XhYOHA8AFOGdSNFvb9EgCRIwKYO64Yx8NHWgxyvqnU7HBGRxJOb69ztmJt7aiUsO/vk8wu3HgFU/yVSX8K2oQjIy8lgXN9OLNt5mPc27+fqM3u6HZKISOKZPBmKi52C/KIiGDwYCgooqUth9dx3yEj1nCwJEZEkSMDA2YZctvMwCzeUKgETEYmUnByYOfO0p+Yt2QY424/t0lPciEokJiX8FiScqgN7Z9M+aupC3CotIiJt7vU1JQBMP7OXy5GIxJakSMAGds1hUNdsjlXW8tn2Q26HIyKSFHYfqmD17iNkpacwZZjaT4jUlxQJGMAVI3sAMHdticuRiIgkiCZmP871r35NHd5d248iDSRNAnbNGGf5+811pdqGFBFprbfegm7d4Nvfhocfhu9+F/LznZmQfnPXFAMwXbW3Ip+TNAnYsB65DO6Ww6Hyaj7cetDtcERE4tdbb8EVV0BlJdTUOM9VVJw2+3H7zn2sLz5Grq3log/mfm51TCTZJU0CZow5+VvY66uLXY5GRCROeb1w7bWhj/t88OCDzP3qvwNw2fr3ybzv3s+tjokku6RJwODUXTgL1pdSVVvncjQiInFozhyoa+TnZ3k5/Pa3zB04AYDpG993nqu3OiYiSZaADe6Ww/Ce7fFW1vL+lgNuhyMiEn8KC6G2kakiKSkU5vVhc9f+dDjhZfKOVaeO+XxOAiciyZWAAVwzxtmGDBSHiohIMwwZAllZjZ7y+uBzAbii8CPSffWStfJyp0u+iCRhAubfhly4oYwT1dqGFBFploICSAndUsJ+5zvMHXERANM3Ljn9YHa2M6JIRJIvAevTOYsxfTpSUV3HO5v2uR2OiEh8qT94O7ASlpoKGRmwYAEb7/oB2zrl07niKOfvXH36tR6Pk8CJSHLMgmzomjN7snr3EeauKdZsSBGR5goxeJucHOa+uQmAK7d/RmpWO2fbMTvbSb7mz3fmRYpIciZgV5/ZkwfnbeSdTfs4XlVLTkZSvg0iIi0XGLzt9TqJ2M9/jh08hLkHBwAw/aH74JNRn0vQRMSRlJlHzw7tmNC/M5/uOMSiDWVcf1a+2yGJiMSfpUud1hI+H5SXs3bAaHbNeIiuGYaJI3rDqJluRygSs5KuBiwgcDekmrKKiISp/uzHxx+Hq65ynisvB2Buv/EATPvsTVIqyt2MVCTmJeUKGMCVo3rywGvreb9wP0crauiQleZ2SCIisavBahcZGVBVdfKwBeYNuwCA6Rveg7vucpK03FyXAhaJbUm7AtY1N4PzB3Whps6yYH2p2+GIiMSuQBf7eqtd9ZMvgBW9hrG3Qzd6eA8wbudaeOYZjR8SaUTSJmBQbxtSTVlFREKbM8dZ+WrE3OH+1a+NS/BgnW75Gj8kElJSJ2BXjOxBqsfwQdEBDhyvavoCEZFkVFh4auUrCB+G+UMnAzB9U4Pmqxo/JBJUUidgHbPSufCMrvgsvLFO25AiIkENGeL08grhs94jKMvNo8+RUsaUbDn9oMYPiQSV1AkYwPQzdTekiEijCgqcRqohBLYfr960BNPwoMYPiQSV9AnYZSO6k57q4bMdhyg9Wul2OCIisaf++KHASlh2NmRmUtsuizeGTgKCzH4EjR8SCSHpE7DczDSmDO2GtTBvbYnb4YiIxKbA+KHHHoNZs5zHbdv4pN+ZHMjuxIBDexm5b9vp1+TkaPyQSAgR7QNmjNkBeIE6oNZaO94Y0xmYA/QHdgAzrLWHIxlHU6aP6cmb60t5fXUxMycPcDMUEZHYFRg/VM/c7/wUdtUwfevHzvZjejpYC/fdBz/+sZIvkRCi0Yj1EmvtgXqfzwLettb+yhgzy//5/VGII6Qpw7qRlZ7Cqt1H2H2ogj6ds9wMR0QkLtTU+XjD/9N9+o0XwYTumvsoEiY3OuFfB1zs//gp4F1cTsCy0lOZOrw7r68uZu6aEr518SA3wxERiQsfFB3gSEUNQ7rlMPTbV7sdjkhciXQNmAXeMsYsN8bc6X+uu7U2UGxVCnQPdqEx5k5jzDJjzLL9+/dHOEy4xn835Fw1ZRURCcvcNc6P8uln9nI5EpH4E+kEbLK19mzgKuAuY8yF9Q9aay1OkvY51to/W2vHW2vHd+3aNcJhwkVDu5Kbmcr64mNs3a+uzSIijamqrTs5xm26f6qIiIQvogmYtXav/3Ef8DIwASgzxvQE8D/ui2QM4cpITeHyET0AmLtad0OKiDRmyZYDeCtrGd6zPYO6qt5LpLkiloAZY7KNMbmBj4HLgXXAa8Dt/tNuB16NVAzNVX82pLM4JyIiwQTKNQLNrEWkeSJZhN8deNkYE/g6z1hr3zTGfAY8b4yZCewEZkQwhmaZNLgLnbLSKNp3nM1lXob1aO92SCIiMaeypo6FG8oAuEb1XyItErEEzFq7DRgT5PmDwNRIfd3WSEvxcOWonjz76S7mri5RAiYiEsS7m/dRXl3Hmb070DdPbXtEWiLpO+E3pG1IEZHGvX7y7kdtP4q0lBKwBiYOyKNrbgY7D1awdu9Rt8MREYkpFdW1vLPRuXfqam0/irSYErAGUjyGq0cHeoLpbkgRkfre3riPEzV1nN23I/kd27kdjkjcUgIWRGAbcu7qYnw+bUOKiAScuvtRq18iraEELIiz+nSiV4dMio9WsnK3q3PCRURihreyhsWb92MMXK36L5FWUQIWhMdjmD7G+e3udTVlFREBYNHGMqprfZzTvzPd22e6HY5IXFMCFkLg7p55a0uo0zakiMjJX0iv0eqXSKspAQthdH4H+uVlsd9bxSfbD7odjoiIq45W1LCkcD8eA1eOUgIm0lpKwEIwxpzs8KxtSBFJdgvWl1JTZzlvkNOqR0RaRwlYI6b774Z8Y10JNXU+l6MREXHP67r7UaRNKQFrxNDuuQzplsORiho+KDrgdjgiIq44eLyKD7ceJNVjuHJkD7fDEUkISsAaYYw5+duetiFFJFm9ub6UOp9l0uAudMpOdzsckYSgBKwJgW3It9aXUlVb53I0IiJR5PXC7NnMfWkpANPP6ORyQCKJQwlYEwZ1zWFkr/Z4q2p5b/N+t8MREYmOpUshP599P3qAT2wu6XU1XH79Bc7zItJqSsDCcHIbUrMhRSQZeL0wbRp4vbzR52x8nhQu3LacDgfLnOePH3c7QpG4pwQsDIGmrIs2lFFRXetyNCIiETZnDvicO7/nDrsAgGs2LnGO+XzOcRFpFSVgYejTOYuxfTpyoqaOdzbtczscEZHIKiyE8nJKcvP4rM9IMmqqmLr1U+dYeTkUFbkbn0gCUAIWpmv8syHn6m5IEUl0Q4ZAdjbzhk4GYMq2ZeRUn3COZWfD4MEuBieSGJSAhenq0T0xBt7ZvA9vZY3b4YiIRE5BAXg8zB3ubD9O3/j+qWMej3NcRFpFCViYenTI5Jz+namu9bFwQ5nb4YiIRE5uLrtfmMuqXsPIqq5kytZlzspXbi7Mnw85OW5HKBL3lIA1w8ltSN0NKSIJbm56PgBTO1va/dv34LHHoLgYJk92OTKRxJDqdgDx5KpRPfiv19bz/pb9HKmopmOWOkKLSOKx1vLiij0AXHfDBTDiJpcjEkk8WgFrhi45GZw/KI9an2XB+lK3wxERiYiVu49QtO84XXMzuHhoV7fDEUlISsCa6Rp/U9bXVhe7HImISGT8a9luAG44K5/UFP0zIRIJ+pvVTFeM7EF6qocPtx5kz+EKt8MREWlTFdW1vO5vt3Pz+N4uRyOSuJSANVOHrDSuHNkDa+GF5XvcDkdEpE29sbaU41W1nN23I4O75bodjkjCUgLWAgXn9AHgX8v24PNZl6MREWk7z/u3H2eM7+NyJCKJTXdBtsB5A/Po3akdew6f4MOtB5k8pIvbIYmItNrOg+V8sv0Q7dJSuNo/Azcor9eZB1lY6HTNLyhweoSJSNi0AtYCHo/h5nHOb4dz/L8tiojEu0BZxbTRPcnNTAt+0tKlkJ8P994LDz/sPObnO8+LSNiUgLXQTeN7YwwsWF/KkYpqt8MREWmVOp89mYDNCFV87/XCtGnOY3m581x5+annjx+PUrQi8U8JWAvld2zH5MFdqK718eoqtaQQkfi2tOgAJUcr6ZeXxYQBnYOfNGcO+HzBj/l8znERCYsSsFYIFKnO+UzbkCIS3wLF9zeP640xJvhJhYWnVr4aKi+HoqIIRSeSeJSAtcLlI7vTMSuNDSXHWLf3qNvhiIi0yOHyahauL8MYuHFcI72/hgxxhnIHk50NgwdHJkCRBKQErBUyUlO4fqwzsPZ5FeOLSJx6ddVequt8XDikKz07tAt9YkEBeEL8s+HxOMdFJCxKwFopsA35ysq9VNbUuRyNiEjzPb8sUHzfRO+v3FyYP995DKyEZWefej4nJ8KRiiQO9QFrpRG92jM6vwNr9x5lwfpSrvOviImIxIN1e4+yoeQYHbPSuHREt6YvmDwZioudgvuiImfbsaBAyZdIMykBawMzxvdm7d6jPL9stxIwEYkrgdYT14/NJyM1JbyLcnJg5swIRiWS+LQF2QauHZtPRqqHD4oOsvuQBnSLSHyorKnj5ZV7AQ3eFok2JWBtoEO7NK4a1QOAf2lAt4jEiUUbyzh6ooaRvdozslcHt8MRSSpKwNpIoHj1hWW7qdOAbhGJA2EX33u9MHs23H+/8+j1RiE6kcSmGrA2cu7APPp0bsfuQyf4oOgAF57R1e2QRERCKj5ygiWF+0lP8XDd2F6hT1y61Bkz5PM5zVazs+G++5y7HidPjl7AIglGK2BtRAO6RSSevLh8D9YGGkqnBz9Jsx9FIkYJWBu6aZwzoHvh+jIOl2tAt4jEJp/PnqxXbXT7UbMfRSJGCVgb6tWxHRcO6Up1nY9XVu11OxwRSWaN1G19sv0Quw5V0KtDJpMGdwn9Gpr9KBIxSsDaWP0B3daqGF9EXLB0KeTnw733wsMPO4/5+c7zwL+WO2USN47rTYonxOBt0OxHkQhSAtbGLh3RjU5ZaWwq9bJu7zG3wxGRZNNE3Zb34BHmry0BnLKJRmn2o0jEKAFrYxmpKVx/ltMNf86yXS5HIyJJp4m6rblPzaeyxse5AzvTLy/E6laAZj+KRIwSsAgoOMfZhnx1VbEGdItIdDVRt/X89hNAGL2/AgKzHx97DGbNch6Li9WCQqSV1AcsAob1aM+Y3h1Yvecob64rPbkiJiIScYG6rSBJWGFeH1Zm9yCnuoKrvNuBMMcPafajSJvTCliE3Oz/7fJ59QQTkWhqpG7rX6MvBeCaDe/R7pqr1cdLxEVKwCLk2rG9yEj18OHWg+w6qAHdIhIl9eu20k81WK3xpPDSqCkAzFizUH28RFwW8QTMGJNijFlpjJnr/3yAMeYTY0yRMWaOMSZEC+b41j4zjWmjewKnbvkWEYmKQN3WhReefOrdgeM4kN2JwQd2MbZki/p4ibgsGitg3wU21vv8v4FHrLWDgcNAwhYWnBzQvXyPBnSLSHStWgVLlpz89PnRlwEwY+1CDKiPl4jLIpqAGWN6A1cDs/2fG2AK8IL/lKeA6yMZg5uc27yzKDlayZLC/W6HIyLJItALrKoKgH3ZHXln8ARSfHV8Yd1i5xz18RJxVaRXwB4FfgAEmtLkAUestbX+z/cACXuLoDGGm/2NDv+1bI/L0YhI0mjQC+yVkZdQ50lhStGndK04ApmZ6uMl4rKIJWDGmOnAPmvt8hZef6cxZpkxZtn+/fG7enTjuN54DLy1oZRDGtAtItFQrxeY5fTtRwC+/W318RJxWSRXwCYB1xpjdgDP4Ww9PgZ0NMYE+o/1BoJOrbbW/tlaO95aO75r164RDDOyenZox4VndKWmzvLySg3oFpEoqDfDcWWvoRR16UuX44e5eNty5/kRI1wOUEQiloBZa39ore1tre0PfBF4x1p7K7AYuMl/2u3Aq5GKIVYU+Ivx/7VMA7pFJArq9QL7l3/168b175Dmq1Ptl0iMcKMP2P3AfcaYIpyasL+6EENUTR3enc7Z6Wwq9bJmz1G3wxGRROfvBVbRqQuvj3BaUdxc9IFmOIrEkKgkYNbad6210/0fb7PWTrDWDrbW3mytrYpGDG5KT/XwBf84InXGF5GomDyZN+d+zPH0LM7iGIP/6wea4SgSQ9QJP0oCPcFeW1XMiWoN6BaRFvB6YfZsuP9+59HrbfT059ftA2DGDZOcWY5a+RKJGUrAomRoj1zG9OmIt6qWN9aVuB2OiMSbpUshPx/uvRcefth5zM93ng9i58FyPt52iMw0D9PP7BnVUEWkaUrAoqhAA7pFpCUCjVW93pPtJSgvP/V8kKHaLyx3eg9OG92T3My0aEYrImFQAhZF14zpSWaah4+3HWLnwXK3wxGReNGgseppggzVrvPZkwlYoPxBRGKLErAoyq0/oFud8UUkXPUaq35OkKHaS4sOUHK0kn55WUwc0DkKAYpIcykBi7ICDegWkeaq11j1c4IM1Q6UOdx0dm+cEbwiEmuUgEXZhAGd6Z+XRemxSt7fEr8jlkQkiuo1Vv2cBo1Vj1RUs3B9GcY4o9BEJDYpAYsyYww3qxhfRJoj0EA1N/fUSlh2dtDGqq+uKqa6zscFQ7rSq2M7lwIWkaakNn2KtLWbxvXmN29tZtHGMg4eryIvJ8PtkEQk1k2e7DRSnTPHqfkaPNhZ+WrQ2yvwi92M8Vr9EollSsBc0L19JhcP7cY7m/bx8sq9fP2CgW6HJCLxICfHaagawopdh1lffIyOWWlcOrx7FAMTkebSFqRLZtTbhtSAbhFpC08u3Q7ALRP6kpmW4nI0ItIYrYC5ZMqwbuRlp7Ol7Dgrdx/h7L6d3A5JRGKZ1+tsPxYWOndFFhQ4NWB+JUdP8Ma6UlI8hq+c28/FQEUkHFoBc0l6qoeb/DUaT324w91gRCS2hTGG6OmPdlLns1w1qoeK70XigBIwF912Xn9SPIZ5a0ooPVrpdjgiEovCGEN0orqOZz7ZBcDXJg9wMVgRCZcSMBfld2zHlaN6UOuzPPXRDrfDEZFYFMYYopdW7uHoiRrG9umocgaROKEEzGVfm+T8tvrMJ7s4UV3ncjQiEnOaGENkC4v42wc7AK1+icQTJWAuG9evE2P7dOToiRpeXKH5kCLSQGNjiDIyWNJ1MEX7jtOjfSZXjeoR3dhEpMWUgMWAmf7fWp/8YDs+zYcUkfoaG0NUVcWTy0oA+Mp5/UhL0Y90kXihv60x4KpRPejVIZNt+8t5T/MhRaS+IOOGAoo69+bdfmeRUVvNl0bmuRCciLSUErAYkJri4bbz+wPOKpiIyGkmT4aHHoL09NOe/vu4awC4YdP7dHr9JTciE5EWUgIWI245py/t0lJYUniAzaVet8MRkVizezdUV5/89GhGNi+OmgrAHZ+85MyHFJG4oQQsRnTISuNmf2PWwDgREZGTGhTjPzfmCk6kZ3LB9hWcceKgM5xbROKGErAYcoe/JcXLq/Zy4HiVy9GISEypV4xfazw8NW46AF9b9przfEGBm9GJSDMpAYshA7pkM3VYN6prfSe7WouIAKeK8XNzWTD6Eorbd2Pg4WIu2r8lZJG+iMQuJWAxJtCS4umPdlJVq8asIlLP5MlQXMzfvnAXAHeckY2neK/zvIjEFSVgMea8QXkM65HLgeNVvL66xO1wRCTGrD5cy7LKdHIzU7nh7hla+RKJU0rAYowx5uQq2F+XbsdaNWYVkVP+5m9Vc8uEvmRnpLocjYi0lBKwGHTNmF50yUlnY8kxPt52yO1wRCRGlB2rZO6aEjwGbjuvn9vhiEgrKAGLQZlpKXz5XOeH61/VkkJE/P7vo53U+ixXjupB705ZbocjIq2gBCxGffncfqSnenh7Uxk7DpS7HY6IuKyypo5nPnXujv6av2WNiMQvJWAxqktOBteP7YW18PcPd7gdjoi47NVVezlUXs3o/A6M69fJ7XBEpJWUgMWwr/mL8Z9ftpujJ2pcjkZE3GKt5cmlOwD42uT+GGPcDUhEWk0JWAwb1qM9kwbnUVFdx5zP1JhVJFl9uPUgm8u8dM3N4OrRvdwOR0TagBKwGBdoSfHUhzuprfO5HI2IuCEwH/Y2f22oiMQ//U2OcRef0Y2BXbLZe+QEC9aXuR2OiETZ9gPlvLN5H+mpHr40sa/b4YhIG1ECFuM8HsMdk/oD8Nel29wNRkSi7qkPd2AtXD+2F3k5GW6HIyJtRAlYHLhxXG86tEtjxa4jrNx12O1wRCRKjp6o4flluwG4Q60nRBKKErA4kJWeyi0TnK0HNWYVSR7/Wrabiuo6zh+Ux/Ce7d0OR0TakBKwOHHbef1I8RjeWFdK8ZETbocjIhFW57MnewCq8apI4lECFid6dWzHtNE9qfNZnvpoh9vhiEiELdxQxp7DJ+iXl8WUYd3cDkdE2pgSsDgSaEnx7Ce7KK+qdTkaEYmkJz9wyg2+en5/PB41XhVJNErA4sjYPh0Z168TxypreWnFHrfDEZEIWbf3KJ9uP0RuRio3j+/jdjgiEgFKwOJMoBbkyQ924PNZl6MRkUgIrH7NOKcPORmpLkcjIpGgBCzOXDGyO/kd27H9QDmLN+9zOxwRaWP7vJXMXV2CxzjbjyKSmJSAxZnUFM/JH8pqSSGSeP758S6q63xcOrw7fTpnhT7R64XZs+H++51Hrzd6QYpIqykBi0MFE/qQnZ7Ch1sPsrHkmNvhiEgbqayp45+f7ATga5MbaT2xdCnk58O998LDDzuP+fnO8yISF5SAxaH2mWknC3Of1CqYSMJ4fXUxB45XM6JneyYO6Bz8JK8Xpk1zHsvLnefKy089f/x49AIWkRZTAhan7pjUH2Pg1VXF7PdWuR2OiLSStZa/fbADcFa/jAnRemLOHKirC37M53OOi0jMUwIWp/rlZXPp8O5U1/n4x8c73Q5HRFrpk/V72FByjC62mmtWvBm6pmvxYqioCH6svByKiiIXpIi0GSVgcSzQmPWfn+yksibEb8QiEvuWLuXJn/0VgFs/eIGM790bvKbL64UXXwz9OtnZMHhw5OIUkTbTZAJmjPmOMaZTNIKR5pk4oDMjerbnwPFqXltd7HY4ItISXi+7vvhVFg4YR3ptDbeumh+6pmvOHEhJCf1adXVQUBD5mEWk1cJZAesOfGaMed4Yc6UJWZgg0WaMObkK9uTS7VirxqwicWfOHGafeRXWeLhm43t0Kz9y6ljDmq7CwtDbjwA33gg5ORELVUTaTpMJmLX2x8AQ4K/AV4FCY8wvjTGDGrvOGJNpjPnUGLPaGLPeGPNT//MDjDGfGGOKjDFzjDHpbfDfkbSuGdOLrrkZbCr18tHWg26HIyLNVFy4i+dGTMVYH3d++vLpBxvWdPXpAxkZwV8oKwsuuSRygYpImwqrBsw6Syul/j+1QCfgBWPMw41cVgVMsdaOAcYCVxpjzgX+G3jEWjsYOAzMbHn4kp7q4bZz+wHwlyXbXI5GRJrrDx1GUZ2axvSNSxh6oMENNfVrupYuhR/+EKpC3PWckqLtR5E4Ek4N2HeNMcuBh4EPgNHW2m8B44AbQ11nHYHihTT/HwtMAV7wP/8UcH2LoxcAvjSxL+3SUli8eT+rdx9xOxwRCdPuQxU8fzwHj8/Hdz949vMneDxOUtVUj6+cHJg/X9uPInEknBWwzsAN1torrLX/stbWAFhrfcD0xi40xqQYY1YB+4CFwFbgiLW21n/KHiC/pcGLIy8ng69O6g/AbxZucTcYEQnb4+8UUeOzXNcng8E1R50VL3Aec3NPJVVz5jj1YMGkp8OvfgWTJ0cvcBFptdSmTrDWPtDIsY1NXFsHjDXGdAReBoaFG5gx5k7gToC+ffuGe1nSuvOCgfzfRzt5f8t+PttxiHP6h+iiLSIxYefBcl5YsYcUj+GeWybBHcVOolVU5Gw7FhScWtEqLDzV9b6h6mrYsyd6gYtIm4hKHzBr7RFgMXAe0NEYE0j8egN7Q1zzZ2vteGvt+K5du0YjzLjWKTv95B2Rv16wWXdEisS4x94upM5nueGsfAZ0yXaSrZkz4aGHnMf624lDhpxaHWtIvb9E4lLEEjBjTFf/yhfGmHbAZcBGnETsJv9ptwOvRiqGZDPzggF0aJfGJ9sP8aHuiBSJWVv3H+eVlXtJ9RjumTqk6QsKCpx6sGACdWIiElciuQLWE1hsjFkDfAYstNbOBe4H7jPGFAF5OO0tpA20z0zjzgsHAvDrt7QKJhKrfvd2IT4LN4/vQ5/OWU1fEKgHy80NXScmInGlyRqwlrLWrgHOCvL8NmBCpL5usvvq+f15cul2Vu46wrub93PJsG5uhyQi9Wwp8/La6mLSUgx3T2nG1uHkyVDcSJ2YiMSViCVg4o7sjFS+dfEgHpy3kV+/tZmLh3ZFwwtEYsdjiwqxFr54Tl/yO7Zr3sWBOjERiXsaxp2AvnxuP7rlZrC++BgL1pe6HY6I+G0sOca8tSWkp3q46xIVzoskMyVgCSgzLYXv+Lc2frtwC3U+1YKJxIJH/H36bp3Ylx4dMl2ORkTcpAQsQc04pw/5Hduxpew4c9cUux2OSGLyemH2bLj/fufR6w156to9R3lrQxmZaR6+dXGjo3RFJAkoAUtQGakp3DPVWQV7bFEhtXUhumiLSMssXQr5+XDvvfDww85jfr7zfBCPLnJWv247rz/dcrX6JZLslIAlsBvO7k2/vCy2HSjn5ZVB+92KSEsEZjN6vac61JeXh5zZuHLXYd7etI+s9BS+4W8VIyLJTQlYAktL8XDvpU6Tx8feLqS6VqtgIm2isdmMPp9zvJ5HFhUCcPv5/cnLyWjW1qWIJCYlYAnu2jH5DO6Ww57DJ/jX8t1uhyOSGBqbzVhe7vTp8lu24xDvb9lPTkYqd14wsNlblyKSmJSAJbgUj+F7l54BwO/fLqKyps7liEQSQDNmM/7Wf+fj1yb1p5OvqllblyKSuJSAJYGrRvVgeM/2lB6r5JlPdrkdjkj8C3M240dbD/Lh1oPkZqYyc/LAZm9dikjiUgKWBDwew/cvc1bB/vjuViqqa12OSCTOhTGb0VrLI/47H//fBQPpkJXW9NblX/6imjCRJKEELElMHd6NMX06cuB4FU9/tNPtcETiX2A242OPwaxZzmNxsfM88EHRQT7dfogO7dK4Y1J/55rGti4BPvlENWEiScJYG/td0sePH2+XLVvmdhhx7/0t+7ntyU/pmJXGkh9cQm5mmtshicQWr9fZBiwsdJKlggJnVauZrLXc+MSHrNh1hH+/YuipsUNer5NchbPClZvrJHQati0S04wxy62145t7nVbAksgFQ7owoX9njlTU8LcPdrgdjkhsacO7E9/bsp8Vu47QOTudr57f/9SBYFuXoagmTCShKQFLIsYY7rvcqQX7y/vbOFJR7XJEIjGimY1VG2OtPXnn4zcvGkh2RurpJ9Tfupw4MfQLNWhnISKJRQlYkjl3YB6TB3fBW1XLX5ZsczsckdjQhncnvr1xH2v2HKVLTgZfObd/8JNycmDmTPj618NuZyEiiUUJWBIKrIL97YMdHDxe5XI0IjGgGY1VG1N/9evbFw+iXXpK4xeE2c5CRBKPErAkdHbfTkwZ1o2K6jr+972tbocj4r5mNFZtzIL1pWwoOUb39hl8aWLfpi8Io52FiCQmJWBJ6j5/X7CnP9pJ2bFKl6MRcVkbrET5fJZHFjozH++6ZDCZaU2sfgU00c5CRBKTErAkNSq/A1eO7EFVrY8/LlahryS5NliJmr+uhM1lXnp1yKTgnD7N+/qBmrCHHnIetfIlkvBSmz5FEtX3LjuDBRtKefbT3dx50SDyO7ZzOySRyGmqx1dgJWrOHKfma/Bg55wwkqE6n+XRRc7q191ThpCRGubql4gkLSVgSWxoj1yuHdOLV1cV8/g7hTx0w5luhyQSGUuXOu0kfD6nqD47G+67z1ndqr/VF1iJaqbXVxdTtO84vTu146ZxvdswcBFJVNqCTHLfnToEj4Hnl+1hx4EQd4GJxLM27PEVTG2dj8fedla/7pk6hPRU/VgVkabpJ0WSG9g1hxvP7k2dz/I7/z8iIgmlDXt8BfPKqmK2HyinX14WN5yV36rXEpHkoQRMuGfqENJSDK+s2kvRvjBm1InEkzbq8RVMTZ3v5C8u3506hNQU/UgVkfDop4XQp3MWM8b3wWfhkUVaBZME01iPr6wsp/D+/vth9uzwhmTX8+LyPew6VMHArtlcN1arXyISPiVgAsDdUwaTnuph3poSNhQfczsckbbh9UJlJVSHmHtaUQEvvNCi4duVNXX8/h1n9ezeS88gxWPaKGgRSQZKwASAnh3acau/c/cji7a4HI1IG1i61EmoZs2CmprTj2Vlnfq4osJ5bGZh/h/f3creIycY1iOXq0f3bMPARSQZKAGTk7518SDapaWwcEMZK3YddjsckZYLdudjQHo6XHfd6UlYfWEU5m8/UM7/vuuM8fr59aO0+iUizaYETE7qlpvJHZP6A/Cfr6yjti7EnWMisa6xOx/T0uDw4VMrXw01UZhvreUnr66jus7HTeN6c07/zm0QsIgkGyVgcpq7pwwmv2M71hcf4+mPdrodjkjLNHXnI7R4+Pb8taUsKTxAh3Zp/PCqYa0MVESSlRIwOU1Weio/vXYkAL95azOlRzWoW+JQY3c+ZmfD9OktGr7trazhZ3PXA3D/lcPIy8loi2hFJAkpAZPPuXREdy4f0Z3y6rqT/9iIxJWCgsYTrNtvb9Hw7UcXFVJ2rIoxfTryxeYO3BYRqUezICWoB64dydKiA8xfW8riTfu4ZFg3t0MSCV8gkWo4/9HjOZVgNXP49obiY/z9wx14DPzi+lF4VHgvIq2gBEyCyu/Yju9dega/mL+Rn7y2jrcGXkS79BS3wxIJXzgJVpjDt30+y3++uo46n+Wr5/dnVH6HCAYuIslACZiE9NVJ/XlxxR42lXp5fHEh/36FCo4lzoSZYDXlheV7WL7zMF1zM7jvvF5O1/zCQqfWrKDAWXETEWkG1YBJSGkpHn55w2iMgT+/v43CMs2JlORzuLyah97YCMCPB3toP6if0zW/Bd3zRUQClIBJo87u24lbJvSlps7yHy+vw1rrdkgiUfXfb27icEUN5/fvyLX/7/rTm7s2s3u+iEiAEjBp0v1XDCMvO51PdxziheV73A5HpPW8XmcbsYkh3Mt3Hua5z3aTlmL4mW8LJlRz1zC654uI1KcETJrUISuNH08fDsAv52/kcHmIwcYi8SAwI7KJbcTaOh8/fmUdAN+4cBCDd25qvLlrI93zRUQaUgImYbl+bD7nDczjcEUNv3pjk9vhiLRMsBmRIbYRn/poJxtLjtG7UzvuuiR0Z3ygye75IiINKQGTsBhjePALo0hP8TBn2W4+23HI7ZBEmq+xGZH1thFLj1by27c2A/DTa0fSrqoC/vjH0K9rTMju+SIiwSgBk7AN6prDNy8aCMB/vLyWGg3rlnjT1IxI/zbig/M2UF5dx2UjujN1eHcnMWvsBpS77grZwFVEJBglYNIs375kMP3ysthSdpy/Lt3udjgi4QkU3a9eDenpwc/xbyMuKdzP3DUltEtL4YFrRjjHGkvcAN59t9FifhGRhpSASbNkpqXws+tGAfDooi3sPlThckQiTahfdL9gAVSHuInE46Hyxpv5yavO/NN7pg6hd6cs51hjw70BPvlEPcFEpFmUgEmzXXRGV6af2ZPKGh8PvLZevcEkdgUrum+o3hDuPy8vY/uBcgZ3y2Hm5AGnzmlsuHeAeoKJSDMoAZMW+cn0EeRmpPLOpn0sWF/mdjgiwTVWdJ+RAVddBY89BsXF7Bx+Fo8vdmrAfn7dKNJT6/14DAz3zs1tfCUM1BNMRMKiBExapFv7TP79yqEA/PT19RyvqnU5IpEgGqvdqqqCMWNg5kxsdjb/9dp6qmt9fOGsfM4blPf58wPDvR97DCZODP011RNMRMKgBExa7NaJ/TizdwdKjlby6MItbocj8nmN1W7V6921YH0pizfvJzczlR9NGx769QLDvb/+9bBeV0QkFCVg0mIpHsMvrh+Nx8DfPtzB+uKjbockcrrGarc8HigooLyqlp++vgGAH1wxlK65GW3yuiIijVECJq0yuncHbjuvP3U+Z1i3z6eCfIkhwWq36hXdk5PD794upORoJaPzO/Clif3CmxMZxuuKiDTGxMMdbOPHj7fLli1zOwwJwVtZw9TfvMc+bxUPXj+KL5/bz+2QRE53/LhTGF9U5GwPFhRATg6bS71c/bsl1FnLq3dN4swd65y7GH0+p5YrO9tZ0Zo/36kBC/N1RSR5GGOWW2vHN/u6SCVgxpg+wNNAd8ACf7bWPmaM6QzMAfoDO4AZ1trDjb2WErDYN29NCXc9s4LczFTe+f7F4W3jiLjIWkvBnz7m0x2H+Mq5/fj51H5OH69QK17FxUquRORzWpqARXILshb4vrV2BHAucJcxZgQwC3jbWjsEeNv/ucS5aaN7cNEZXfFW1vKLeRvcDkeSTTjbhg28uGIvn+44RJecdP7t8qFhz4kUEWkLEUvArLUl1toV/o+9wEYgH7gOeMp/2lPA9ZGKQaLHGMPPrhtJRqqHV1YV80HRAbdDkmSxdCn06uXMY3z4YeexV69GO9IfqajmofkbAfjRtOF0yEoLe06kiEhbiEoRvjGmP3AW8AnQ3Vpb4j9UirNFKQmgX14235ni3H7/41fWUVlT53JEkvC8Xrj8cqcWKzBiqLra+TzwfBD/s2AzB8urmTCgM18Y3D7sOZEiIm0l4gmYMSYHeBG411p7rP4x6xSgBS1CM8bcaYxZZoxZtn///kiHKW3kzgsHMbhbDtsPlPOn97a5HY4kuqeeghMngh87ccI53sCq3Ud45tNdpHoMD/atxvTuHdacSLWWEJG2FNEEzBiThpN8/dNa+5L/6TJjTE//8Z7AvmDXWmv/bK0db60d37Vr10iGKW0oPdXDg9c7w7r/8G4R2w+E2NIRaQtz5zZ+fN680+rDjv3pr3z3meVYCzMn5nNGwTWNz4nMyHBWxb71LYiDO8ZFJH5ELAEzxhjgr8BGa+1v6x16Dbjd//HtwKuRikHcce7APG48uzfVtT5++NIa6tQbTNxy+LBzZ+O992IffpgfLNrJzsOVjGjv4Xtln4Uuuk9Lg5QUJ+mqroY//MF5nUbqykREmiOSK2CTgK8AU4wxq/x/pgG/Ai4zxhQCl/o/lwTzo2nDyMtO5+Nth3h0kcYUSYRMn9748ZUrT65wPTn+Wt4cNJHcqnKe+ON3yNy4PvTKV00N1NWd2pIsL3deZ9q0kHVlIiLNEcm7IJdaa4219kxr7Vj/n/nW2oPW2qnW2iHW2kuttYciFYO4Jy8ng9/dchYeA79/p4h3NpW5HZIkottvh6ys4MfS051VLGB5r2E8dPHXAPif+Y/S70gpHDoUep5jKGpHISJtRKOIJGImDe7C9y8fCsC9z61i96EKlyOShJOb6xTP5+Q49VrgPObkwE03QUUFh9q15+7r7qc2JZWZn73ClVs+cla0unQJPc8xFLWjEJE2ogRMIupbFw1i6rBuHKus5Vv/XK7WFBJcCxqpnjR5MpSUOHVas2Y5jyUlcMkl+LJzuHf69ylp35Wz925k1rt/c67JzoYRI4LPc8zMdP4Eo3YUItJGNAtSIu5oRQ3TH1/C7kMnuGVCHx664Uy3Q5JYsnRp8+Yvhsvr5ffX3s1vJs6gU8VR5v39u/Ty+hsE1x8t1HCe47RpMHSoRhKJSFhaOoooNRLBiNTXISuNJ24dxw1PfMizn+7mrL6dmDG+j9thSSwIFLbXT3YChfHTprUq2fmwrIpHJs7AWB+PLvqDk3zVT+4Cr5uTAzNnnn7x/Pmhk0IlXyLSBpSASVSMyu/Ag9eN4gcvruE/X1nHyF7tGdmrg9thidvCmb84Y4bzWFgIQ4Y4DVFzcxt92bJjldzz3Ep8wD0X9OeiM74GRRc6K1wFBU0nUZMnO8lf/ZWxcK4TEQmTEjCJmhnn9GH5zsPMWbabb/1jBa9/ZzId2qW5HZa4qan5i4sXw/e+d/pK1H33Nbo9WVvn4zvPruTA8WomDc7ju9NGgWd043F4vcGTvIYrYyIibURF+BJVP71uJCN7tWfXoQq+//wqfGrSmtyGDAndCiIrC1544fRO9WH04/r1W1v4dPshuuVm8GjBWaR4TOMxLF16slkrDz/sPKrpqohEmBIwiarMtBSeuHUc7TNTWbRxH//7/la3QxI3FRSEbgXh853s4/U5dXVw112fu2vy7Y1l/O97W0nxGB7/0tl0zc1o/OvXr0FrRpInItJaSsAk6vrmZfFIwVgAfr1gMx8WHXA3IHFPbm7wVhC5uXDDDVARondcRQU8++xpK1a733qf781ZBcC/XzGUCQM6B7+2fsuLu+92krlg1HRVRCJINWDiiqnDu3P3JYN5fHER33l2JfPuuYAeHUL0XpLEFqrg/bnn4NVXGx8XBFBeTlVKKnc9t4pj3QZx6fBu3HnBwODXNGx5kZZ26nUaUtNVEYkgrYCJa7532RlMGpzHwfJqvv3P5VTXhrgbThJfoBXEQw85jzk5jW9PNvDglK+zptsgeqfW8pubx+IJVvcVbLsxVPIFaroqIhGlBExck+Ix/O6LZ9GzQyYrdh3hoTc2uh2SxJJg25Opn1+0f234hfzf2dNJr63hj7Xr6JCVFryzfmMtL4LxeJwkUEQkAtQJX1y3YtdhCv70ETV1lse/dBbTz+zldkgSS+p3qi8uhhdfPLmCVdS5N9fe/ggV6e34+buz+crQ9lBbCy+95CRQFRWnmqhecw0880zor5Oa6lzbVp34RSQptLQTvhIwiQlPfbiDB15bT3Z6Cq/ePYnB3RpvtClJyut1WkR4vVSkZXD9V37Llq79uGbDe/zu9f/BZGWFLtzPzDyVlDWUne0M7+7ZU01XRaRZNIpI4tpt5/Vj+c7DvLa6mG/+YwWv3jWJ7Ax9e0oD/m1JO20aP57yTbZ07cfAw3t5aMHjGAidfIGTfIW649HjgccfV9IlIlGjGjCJCcYYHrphNEO65VC07zizXlpLPKzOigsmT2bOvOW8NOwiMqnjidq15KSF8aOsosJZ5QrW8kIzHkUkypSASczIzkjliS+PIzs9hddXF/PUhzvcDkli0Prio/xkgdMe4hc3n83QLlmhW1XUl50Nl1zi1JE99hjMmuU8Fher1ktEok57PBJTBnfL4eGbxnDXMyt4cN5GRvfuyLh+ndwOS9paqNmLTThWWcO3/7mC6lofXzynDzeO6w0r/eOMmkrCAnc1BlpeiIi4SCtgEnOuPrMnMycPoNZnueufKzhwvMrtkKQttXD2orWWH/xrDTsPVjC8Z3v+69qRzoGm+oVpm1FEYpASMIlJs64axvh+nSg9Vsk9z66kTkO7E0MrZi8++cEO3lxfSk5GKn+89Wwy0/xzIoP1C8vKgowMuPVWbTOKSExSAiYxKS3Fwx9uPZsuOel8uPUgv1242e2QpC001gy1kdmLc9cU88v5TqPe/7npTAZ0yT79hMA4o0Bt1+9+BwcOwD/+caqzvohIDFENmMSs7u0z+f0tZ3Pr7I/5w+KtDOyS49T8SHAtrKuKqsLC0LVaIWYvvrpqL9+bswqfhXumDOaq0T2DX6/aLhGJI1oBk5h23qA8fjRtOAD/9sJqnv10l8sRxagW1lVF3ZAhp7YJGwoye/HllXtOJV9Th/C9y86IQpAiIpGnBExi3tcvGMisq4ZhLfzwpbVqT9FQK+qqoq6xgvkGsxdfWL6H+55fjc/CvZcO4b7LzsCYIEO2RUTikBIwiQvfvGgQD1wzAoAHXlvPn97b6nJEMaSFdVWuCFYwH+Quxec/282/v7Aaa+H7l53BvZdq5UtEEotqwCRu3DFpAOmpHv7j5XU89MYmqmp93DN1iNthua8FdVWuChTMBwZsN5i9+Oynu/jhS2sB+MGVQ/n2xYMbezURkbikBEziyq0T+5GRmsIPXljNbxduoaq2jn+7fGhyb00NaaQRaZC6qpgQomD+Hx/v5MevrAPgh1cN4xsXDYp2ZCIiUaEtSIk7N43rzaNfPIsUj+EPi7fyi3kbk3tuZDPqqmLZ0x/tOJl8/fjq4Uq+RCShaQVM4tK1Y3qRnuLhO8+uYPbS7VTV+vjptSPxeJJwJSxQPzVtmlPzVV7urHx5PHHT/f1vH2znp69vAOAn00fwtckD4qOthohIC5l4WDkYP368XbZsmdthSAx6Z1MZ3/yHMxtwxvjePHTDmaQkYxIGzt2OIeqqYtnsJdt4cJ7TZPVn143ktvP6O+0zQiWU6mgvIjHEGLPcWju+2dcpAZN4t7TwAF9/+jMqa3xcP7YXv755DKkp2l2PilauUv35/a38cv4mAB68fhRfPref85r5+c5jQ7m5TgF/HCSWIpIcWpqA6V8piXuTh3ThqTsmkJ2ewiurirnnuZVU14ZoyyBtp5XNX59491Ty9csvjHaSL4ivthoiIi2kBEwSwsSBeTw9cyK5GanMX1vKt/+5nKraOrfDSlytbP76+DuF/PebmzAGHr7xTL40se+pg/HWVkNEpAWUgEnCGNevE8/8v3Pp0C6NRRv38f+eXs6JaiVhEdGKVarHFhXy67e2YAz8z01jmHFOH+eA1wuzZ8Pq1ZCeHvziWG2rISLSTErAJKGM7t2B5+48l7zsdN7fsp87/v4p5VW1boeVeFqwSmWt5bcLt/DIoi14DPx2xhhuCgxXr7+duWABVFcHf+04aqshItIYJWCScIb3bM+cb5xLt9wMPt52iNue/JRjlTVuh9U6gdWh++93HoMVqEdTM4dqW2v5zVtb+N3bhXgMPFIwli+c5U++gm1nBnvNBuOKRETime6ClIS1/UA5t/7lY4qPVjKmdwee+toEOmaF2NpyU1N3EsZiS4Zm3KloreXhBZt54t2tpHgMjxaM5ZoxvU6dP3u2s/IVLPnKyIApU+DGG+OmrYaIJBfdBSnSwIAu2cz5xnn06dyO1XuO8qW/fMLB41Vuh3W6pu4kbGWxe8SEOVTbWstDb2ziiXe3kuox/P6Ws05PvqDx7cyqKhgzxhlbpORLRBKIEjBJaH06Z/H8N85jQJdsNpQc44t//ph93kq3w3KEk1zFaksGrxc2bXISoxtvhPvug8cec1a+/Ktyh8uruee5Vfz5/W2kegyPf+lspo3u+fnXauZ2pohIItAoIkl4PTu0Y86d53Lr7E8o3Heca3//AQ9eP4pLR3R3N7Bwkqv162OvJUNjW6L+Vao31pbwn6+u48DxajLTPPzui2dx+cgewV+voMBJ4IJR0b2IJCitgElS6NY+k+fuPJez+nak9FglX396GXc/s4L9Xhe3JJu6k3DxYnjiidDXu7E61MSq3YGyQ9z1zxV8658rOHC8mgkDOvPmdy8MnXxB2NuZIiKJRCtgkjTycjJ44Zvn87cPtvObt7Ywd00JSwoP8OOrh3PTuN4YE+UZkoGtt2BJWFYWvPCCUwMVihurQyFW7Swwd+BEHvjdBxyq85CVnsKsq4bx5Yn9whuQPnmys30Zh7MsRURaQndBSlLafaiCH728liWFBwCYPLgLv/zCaPrmZUUviMbuJMzMdBKsiorg12ZmwsKF0b8L8v77nZsF6tmf1ZH/vPxbvDl0EgDnD8rjv288kz6do/heioi4RHdBijRDn85ZPP21Cfx2xhg6ZqWxtOgAlz/6Hn95fxu1dVGaI9nY1tsNN4ROvgC+/W13WlDUK5i3wCsjLuayr/+RN4dOIqe6gl92O8o/vz6x+clXrPU5ExGJMK2ASdI7cLyKn72+gddWFwNwZu8O/OqGMxnRq310Agjc7Vh/6+2550L3xsrOdu44nDkzOvHV51+1K7Np/Mfld7FoyEQALti+gl8teZL8LWubv20Yi33ORETC1NIVMCVgIn7vbCrjxy+vo/hoJSkewzcuHMg9U4eQmZYS/WCa0eg0mqy1vPjcYn72yX6OZeaQW1XOfy59mps3v49pScIUo/+dIiLh0hakSCtNGdadt+67iNvP64fPWv747lamPbaEj7cdjH4wMXhnYMnRE9zx98/4t9UnOJaZwyVZlbyVsZ4Z3/wCpl7/r5PC2VaM1T5nIiIRprsgRerJyUjlp9eN4tqxvbj/xbUU7TvOF//8MbdM6MsPpw2jfWZa9IKJkTsDrbU8v2w3D87diLeqlvaZqTxwzUhuODsfY24MflGwbcX77vv8tmILhnqLiCQCJWAiQYzr15l590zmiXe38ofFRTz76S7e3ljGz68fxRWN9bRqKw3nQ/7oR6fPh4ySvUdOMOvFNSfvFr10eHd++YVRdGufGfqi+r3CAgJJ1rRpp28rNtaKQ13wRSSBqQZMpAlbyrzc/+IaVu46AsBVo3rw02tHNp6EtIYbRekNEj47YwbPbDzML+dtpLy6jo5Zafz02pFcO6ZX0/3SGhuu3fAGAtWAiUica2kNmFbARJpwRvdcXvjm+fzj4508/OYm3lhXygdFB/jhtOHccHY+GaltWKTfnNWjtlIv4TvkS2HBqIv411IvK3qcAcCVI3vw8+tH0TU3I7zXa862YqCmrYnRRiIiiUYJmEgYUjyG28/vz6UjuvPjl9eyePN+fvjSWn4xbyMXD+3KFSN7cMmwbuRktPKvVDhF6W3ZfsLr5fAXZvDWgHOZO+wCPuw3hjqPk1B2PnGMn906kavPGdC8KQHN3VaMkVo3EZFoitgWpDHmSWA6sM9aO8r/XGdgDtAf2AHMsNYebuq1tAUpscRay2uri3ni3a1sKj21UpWe4mHS4DyuGNmDS0d0p0tOmCtG9QXpNH+aWbPgoYdaEPXpjlRU89b6Mua98SkfeFOpTXESxxRfHZN2rGL6pqVcsWcVHf7noeYnfNpWFJEkEotbkH8HHgeervfcLOBta+2vjDGz/J/fH8EYRNqcMYbrxuZz3dh8dh2s4K0NpSxYX8qynYdZvHk/izfvx/PyWsb368zlI7tzxcge4XeGj2BR+tGKGt7aUMq8tSUsLTxArc8CmaSYOi7YvoLpm5Zw+ZaP6VRZL3Gqv13Y8MaAgoLgNwZoW1FEpEkRLcI3xvQH5tZbAdsMXGytLTHG9ATetdYObep1tAIm8WC/t4pFG8tYsL6UD4sOUl1vpNGInu25YmQPrhjVnaHdc0Nv6bXx6tHREzUs2lDGvLUlLCncT02d8/fdY+D8QV24+mgRVzz0b3Q+WPr5i+sXzLfkxoBgHf6VfIlIgonJTvhBErAj1tqO/o8NcDjweZBr7wTuBOjbt++4nTt3RixOkbbmraxh8eb9vLW+lMWb9lFeXXfyWL+8LCcZG9mds/p0wuNpkIy18i5Ib2UNizaWMW9NCe9vOXAyEfQYOG9QHtNG9+TKkT3Iy8kIL+GzVluKIiIhxF0C5v/8sLW2U1OvoxUwiWdVtXV8WHSQBetLWbihjIPl1SePdcnJ4LIhnThj92Z8+w/g69IV35gx1Fmwa9ZQd/AQvs6d8Y0YiS8tnTpr8VmLz2fxWU77uM5ayo5WsqTw9KRr4oA8rj6zJ1eO6hG8Lq2phK85bSVERJJMLNaABVNmjOlZbwtyX5S/vkjUZaSmcMmwblwyrBu/+IJl+c7DLFjv1I3tOXyCZ1eWAh3AdICDwDvb/VfmOn8OAUt3hf31jIFzB3bm6tE9uWJUD7rlNtGvrKm7ENWtXkSkzUU7AXsNuB34lf/x1Sh/fRFXpXgMEwZ0ZsKAzvz4wt5sGDOJt3uN4lC79hgsKT4fHuvDk5aK5+67ScnMwBhDijF4DHg8Bo8xpHjAY4z/j/O6xhjapaVwwZAuTTeJDVZQH2oVq7EbA1JTneTN63WlU7+ISLyKZBuKZ4GLgS5AGfAA8ArwPNAX2InThuJQU6+lLUhJSG5s7Xm98OCD8OijzlJZVVXTNWaN1YkFYo10p34RkRgVc1uQ1tpbQhyaGqmvKRJXor21t3QpXHWVc3diw68FoTvt128rUVcHFRXNu15ERD7H43YAIkkrsLUXTFsPog6MOGqYfNUX6LQfTKBO7KabIC2t+deLiMhplICJuKWgwNm6C8bjcY63lcZGHAU0teqWkwM9ekBNTcuuFxGRk5SAibglsLWXm3tqJSw7+9TzbbmV19h2Z0BTq25eL5SWhl4Ba+tVOxGRBKZh3CJuau0g6nDHAzV2J2NAY6tugV5hdXWhV8DaetVORCSBKQETcVPDBGrGjPCTr2ANVO+7L/jdiAUFzrFQcnJCr7oF6sfCuQtSBfgiImHRFqSIW5Yuddo73HsvPPyw85if7zzflPpJUWBVq7w8dLF9sO3O9HRnO/H++6GkJHQLicbqx1JTncL84mK1oBARaQatgIm4IdiqUnPaOTSWFAXuRmzYQ6yl252N1Y/V1kLPnlr5EhFpJiVgIm5oLIGqqwueQNXX0h5iOTnNb+7aWP2YCu9FRFpEW5AibmgsgaqogMWLG78+mj3EotkuQ0QkSSgBE3HDkCGQlRX6+IsvNt40NZpJUTTbZYiIJAklYCJuKChwthpDSUlpvKt8tJOiQP3YY4/BrFnOowrvRURaTDVgIm7IzYUbb4Rnngl+PJyu8tHqIRbQkvoxEREJSgmYiFsuuQRefbV1xe0tTYqa00NMRETanLYgRdziVnF7c3uIiYhIm1MCJuKW5tZxeb0we7bTOHX27NCd6ZsSTg8xERGJKG1Birgp3DquttwybGkPMRERaTNKwETc1lQdV2u75jekxqoiIq7TFqRIrGvrLUM1VhURcZ0SMJFY19ZbhmqsKiLiOm1BisS6SGwZtraHmIiItIqx1rodQ5PGjx9vly1b5nYYIu7weiE/P/hdj7m5za8BExGRNmOMWW6tHd/c67QFKRLrtGUoIpJwtAUpEg+0ZSgiklCUgInEC81iFBFJGHFRA2aM2Q/sdDuOJNAFOOB2EElG73l06f2OPr3n0aX3O/qGWmtzm3tRXKyAWWu7uh1DMjDGLGtJIaG0nN7z6NL7HX16z6NL73f0GWNadJegivBFREREokwJmIiIiEiUKQGT+v7sdgBJSO95dOn9jj6959Gl9zv6WvSex0URvoiIiEgi0QqYiIiISJQpAUtixpjOxpiFxphC/2OnEOfVGWNW+f+8Fu04450x5kpjzGZjTJExZlaQ4xnGmDn+458YY/q7EGZCCeM9/6oxZn+97+uvuxFnojDGPGmM2WeMWRfiuDHG/M7//2ONMebsaMeYSMJ4vy82xhyt9/39k2jHmGiMMX2MMYuNMRuMMeuNMd8Nck6zvs+VgCW3WcDb1tohwNv+z4M5Ya0d6/9zbfTCi3/GmBTgD8BVwAjgFmPMiAanzQQOW2sHA48A/x3dKBNLmO85wJx639ezoxpk4vk7cGUjx68Chvj/3Ak8EYWYEtnfafz9BlhS7/v7Z1GIKdHVAt+31o4AzgXuCvJzpVnf50rAktt1wFP+j58CrncvlIQ1ASiy1m6z1lYDz+G87/XV///wAjDVGGOiGGOiCec9lzZkrX0fONTIKdcBT1vHx0BHY0zP6ESXeMJ4v6WNWWtLrLUr/B97gY1AfoPTmvV9rgQsuXW31pb4Py4Fuoc4L9MYs8wY87Ex5vrohJYw8oHd9T7fw+f/0p48x1pbCxwF8qISXWIK5z0HuNG/TfCCMaZPdEJLWuH+P5G2c54xZrUx5g1jzEi3g0kk/jKRs4BPGhxq1vd5XHTCl5YzxiwCegQ59B/1P7HWWmNMqFti+1lr9xpjBgLvGGPWWmu3tnWsIlH0OvCstbbKGPMNnBXIKS7HJNJWVuD83D5ujJkGvIKzLSatZIzJAV4E7rXWHmvNaykBS3DW2ktDHTPGlBljelprS/zLpPtCvMZe/+M2Y8y7OJm/ErDw7AXqr6709j8X7Jw9xphUoANwMDrhJaQm33Nrbf33dzbwcBTiSmbh/D2QNlI/MbDWzjfG/NEY08VaqxmRrWCMScNJvv5prX0pyCnN+j7XFmRyew243f/x7cCrDU8wxnQyxmT4P+4CTAI2RC3C+PcZMMQYM8AYkw58Eed9r6/+/4ebgHesGvS1RpPveYO6jGtx6jkkcl4DbvPfJXYucLRe+YO0MWNMj0AdqTFmAs6/9fqlrhX87+dfgY3W2t+GOK1Z3+daAUtuvwKeN8bMBHYCMwCMMeOBb1prvw4MB/5kjPHh/CX+lbVWCViYrLW1xpi7gQVACvCktXa9MeZnwDJr7Ws4f6n/zxhThFNY+0X3Io5/Yb7n9xhjrsW5s+kQ8FXXAk4AxphngYuBLsaYPcADQBqAtfZ/gfnANKAIqADucCfSxBDG+30T8C1jTC1wAviifqlrtUnAV4C1xphV/ud+BPSFln2fqxO+iIiISJRpC1JEREQkypSAiYiIiESZEjARERGRKFMCJiIiIhJlSsBEREREokwJmIiIiEiUKQETERERiTIlYCKSFIwx5/iHb2caY7KNMeuNMaPcjktEkpMasYpI0jDGPAhkAu2APdbah1wOSUSSlBIwEUka/tmQnwGVwPnW2jqXQxKRJKUtSBFJJnlADpCLsxImIuIKrYCJSNIwxrwGPAcMAHpaa+92OSQRSVKpbgcgIhINxpjbgBpr7TPGmBTgQ2PMFGvtO27HJiLJRytgIiIiIlGmGjARERGRKFMCJiIiIhJlSsBEREREokwJmIiIiEiUKQETERERiTIlYCIiIiJRpgRMREREJMqUgImIiIhE2f8HbCDGe3oBUMAAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:35.105659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAFkCAYAAACHEodbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA/qElEQVR4nO3deXzV5Zn38c+dfSdACIQQFk0AAQUEV6jFDZS665D26bTWsWMXp1OH9qm2T592pqt1ptP6TNvpWGu1i4pVrFRpBRWsUVF22QmyJwEStpzsyTn388fvhIRwzsk5Sc6a7/v1yivJbzm5OAa9vO/rd13GWouIiIiIRE5StAMQERERGWyUgImIiIhEmBIwERERkQhTAiYiIiISYUrARERERCJMCZiIiIhIhKVEO4BgFBQU2PHjx0c7DBER6aO6hlZqTreQn5VKydCsaIcjMmDWr19fZ60dEep9cZGAjR8/nnXr1kU7DBER6aNPP/E+f9tdy0/LZ3DbzOJohyMyYIwxB/pyX1wkYCIiEgdcLliyBCoroawMysshN5eWdjfv7T0OwJzSgigHKRIblICJiEj/VVTAwoXg8UBjI2Rnw+LFsHw560ZOprXDw5SiPEbkpkc7UpGYoCJ8ERHpH5fLSb5cLif5Auez9/hb26sA+MhErX6JdFICJiIi/bNkibPy5YvHw9/W7wPgqrKQ65RFEpYSMBER6Z/Kyq6Vrx6OmAx2tKWSkZrErHFDIxyYSOxSAiYiIv1TVubUfPmwcupVgLP6lZGaHMmoRGKaEjAREemf8nJI8v2fk1fPvxSABVNHRTIikZinBExERPonNxeWL3c+d66EZWdzumAUa8ZeSHKS4doLCqMbo0iMURsKERHpv7lzobraKcjfswdKS3ljyjw6XtrJlecNIz8rLdoRisQUJWAiIjIwcnLg3nvPfPvq79YD2n4U8UVbkCIiMuBa2t28ubsWgOunjIxyNCKxRwmYiIgMuL/trqW53c1FY4YwOj8z2uGIxBxtQYqISN/4mf0IsGL7UUDbjyL+KAETEZHQrVgBt94Kbje0t0NW1pnZjx1XXMnrO5wEbL62H0V80hakiIiEZsUKWLAAWlqc5AugqenM7Mf3d1Rxsqmd81I7KP3P78HjjzvnROQMJWAiIhI8lwtuucX/eY+HFb//CwDz17yMeeQReOABKC6GiorIxCgSB5SAiYhI8JYscbYd/bCNjaysTwVg/va3nIONjWdWx2hoiESUIjFPCZiIiASvshI6Ovye3jp6IlV5hRS6jjOjevfZJz0eJ4ETESVgIiISgrIyp+DejxWllwEwv3INSdizTzY2Ol3yRUQJmIiIhKC8HJKT/Z5+9bKPAbCg8t1zT2ZnQ2lpuCITiStKwEREJHjdB293roSlpEB6Ovte/Cu7k3LIbW3ksoNbz703KclJ4EREfcBERCREPgZvU17OivVHgZ1ce14+admZTs1XY6Oz8pWU5CRuOTnRjl4kJigBExGR0HUO3u7shv/d7/Jq5uVAGgvmXegzQVPyJdJFCZiIiPRNRYXTWsLj4RhpbPinq0jraOOq43vgwo84CZqI+KQETEREgtN99mNJCXz962f6eq2YcRUAV+3bSPYtP3VWwLTiJeKXEjAREeldt9UuGhshPR1aW8+cXlF2OQDzK991RhTdfz/87GdnhnOLyNn0FKSIiATW2cXe5XKSLzgr+apPy+LdcReR5HFz7Z73nfmQTz+t8UMiASgBExGRwJYscVa+/Fh1/iW0J6dyyeHtDG+udw52dGj8kEgASsBERCSwysqulS8fVkx0th8X7PbRfFXjh0R8UgImIiKBlZU5vbx8aElOZfWEWQBcX7nm3As0fkjEJyVgIiISWHm500jVh7fHz6AxPYupR/ZQUn/s3As0fkjEJyVgIiISWPfxQ50rYdnZkJHBislzAFjga/ULNH5IxA+1oRARkd75GD/kvuFGXvvRagDm+6r/ysnR+CERP8KagBlj9gMuwA10WGtnG2OGAUuA8cB+YJG19mQ44xARkQHQOX7Ia93e4xzPGsK400eY1FznHExLA2th8WL45jeVfIn4EYkVsKuttXXdvn8IeN1a+7Ax5iHv9w9GIA4RERlAK7YfBWDBgtmY2Y9q7qNICKKxBXkrMM/79VPAapSAiYjEFWstr247AsD8GSUwfnqUIxKJL+EuwrfACmPMemPMfd5jI621Nd6vjwAjfd1ojLnPGLPOGLOutrY2zGGKiEgottfUc/hkMwU56Vw8dmi0wxGJO+FeAZtrra0yxhQCK40xO7uftNZaY4z1daO19jHgMYDZs2f7vEZERKLj1W3O9uP1U0aSlGSiHI1I/AnrCpi1tsr7+RjwInApcNQYUwTg/eyjcYyIiMSyFZ3bj1N9bmKISC/CloAZY7KNMbmdXwPzga3AMuBu72V3Ay+FKwYRERl4B483sfOIi5z0FK48f3i0wxGJS+HcghwJvGiM6fw5T1tr/2qMWQs8Z4y5FzgALApjDCIiMsA6i++vnlxIekpylKMRiU9hS8CstXuBcx6LsdYeB64N188VEZHwWrHdScAWaPtRpM80ikhERIJW62pl3YGTpCUn8dGJI6IdjkjcUgImIiJBe23HUayFOaXDyc1IjXY4InFLCZiIiASt8+nHBVNHRTkSkfimBExERILiamnn7T3HMQauvUD1XyL9oQRMRESCsnpXLW1uD7PHDWVEbnq0wxGJa0rAREQkKGeGb2v7UaTflICJiEivWjvcrNrpDC6ZP0UJmEh/KQETEZFevfPhcRpaO5g8Kpexw7OiHY5I3FMCJiIivdLTjyIDSwmYiIgE5PZYVnrrvzR8W2RgKAETEZGANh48SV1DG2OGZjKlKC/a4YgkBCVgIiIS0Kvdth+NMVGORiQxhG0Yt4iIxDmXC/vsElbsyQeTyfwJudGOSCRhaAVMRETOVVEBxcXs+t6POWAyGd50mtlXTnOOi0i/KQETEZGzuVywcCG4XLw6ZgYA11WuIbm+3jne0BDd+EQSgBIwERE525Il4PEAsKLscgDmV65xznk8znkR6RclYCIicrbKSmhs5FBeIdtGlZLd2sSc/Zucc42NsGdPVMMTSQRKwERE5GxlZZCdzYqJzurXvH3ryXC3O+eys6G0NIrBiSQGJWAiInK28nJISmJF2RUAzN+9putcUpJzXkT6RW0oRETkbLm5HH/xZda+eppUdwdXf7jWWflKSoLlyyEnJ9oRisQ9JWAiInKO1/Mm4En6gLlZ7eQt/mdn27G8XMmXyABRAiYiIudYtrkagBsWzIbL7ohyNCKJRzVgIiJylprTzbz9YR1pyUl87MKiaIcjkpCUgImIyFn+tLEaa+G6KYUMyUqNdjgiCUkJmIiInGGtZemGwwDcMXNMlKMRSVxKwERE5IytVfVUHmtgWHYaH500ItrhiCQsJWAiInLGC97Vr1umjyY1Wf+JEAkXPQUpIiIAtLs9Z55+vPPiANuPLpczD7Ky0umaX14OubkRilIkMSgBExERAN7cVcuJxjbKCnOYVpzn+6KKCli40BnK3djoNGhdvNhp0Dp3bmQDFoljWl8WEREAlm70Ft9fPAZjzLkXuFxO8uVyOckXOJ87jzc0RDBakfimBExERDjd1M5r249hDNw2c7Tvi5YscVa+fPF4nPMiEhQlYCIiwitbamhze5hzfgFFQzJ9X1RZ2bXy1VNjI+zZE74ARRKMEjAREenq/XVxsf+Lysqcmi9fsrOdeZEiEhQlYCIig9yB442sO3CSrLRkFkwd5f/C8nJI8vOfjaQk57yIBEUJmIjIILd0QxUAN0wbRXZ6gIfjc3Odpx1zc7tWwrKzu47n5EQgWpHEoDYUIiKDmLW26+nHYEYPzZ0L1dVOwf2ePc62Y3m5ki+RECkBExEZxNYdOMmhE82MysvgivOHB3dTTg7ce294AxNJcNqCFBEZxDqL72+bWUxyko/eXyISFkrAREQGqZZ2Ny9/UAP08vSjiAw4bUGKiAxSr+04iqulgwuLhzBxZIBZjpr9KDLglICJiAxSnU8/Blz90uxHkbDQFqSIyCBU62rlzd21pCQZbp7uZ/SQZj+KhI0SMBGRQWjZ5mrcHsu8SSMoyEn3fZFmP4qEjbYgRUQSUS91W12jhwL0/tLsR5GwUQImIpJoeqnb2nmknm3V9eRlpHDN5EL/r9M5+9FXEqbZjyL9oi1IEZFEEkTd1ove4vubpo8mIzXZ/2tp9qNI2CgBExFJJL3UbbmfXcKLG50E7M7een9p9qNI2GgLUkQkkfRSt/X2ivc5dt4oxg3P4uKxQ3t/Pc1+FAkLJWAiIokkUN0WsLR1CAB3DHdjTJCjhzT7UWTAaQtSRCSRBKjbakjL5K+llwFw+7c+rz5eIlGkBExEJJF0r9tKSzvr1F8mXklLagaXHtrK2FNH1MdLJIrCnoAZY5KNMRuNMS97v59gjHnPGLPHGLPEGJPW22uIiEgIOuu2rrrqrMNLp10DwB1b31AfL5Eoi8QK2JeBHd2+/xHwE2ttKXASUGGBiMhA27QJ3nrrzLeH80bw7rjppHW0sXBnhfp4iURZWBMwY8wY4GPA497vDXAN8Lz3kqeA28IZg4jIoNPZ86u19cyhl6bMA2B+5Rry2prUx0skysK9AvZT4GtAZ1Oa4cApa22H9/vDQC+NaEREJCQ9eoFZ4AXv9uOdW9+AjAz18RKJsrAlYMaYm4Bj1tr1fbz/PmPMOmPMutra2gGOTkQkgfXoBba5aCJ7h5dQ0HiSj+zbAF/8olMnJiJRE84VsDnALcaY/cCzOFuPjwL5xpjO/mNjgCpfN1trH7PWzrbWzh4xYkQYwxQRSTCdvcC8lk51Vr9u3f4mKVmZMGVKtCITEa+wJWDW2q9ba8dYa8cDHwfesNZ+ElgF3OW97G7gpXDFICIyKHXrBdaWlMKyKc7TkHdsfV21XyIxIhp9wB4EFhtj9uDUhP06CjGIiCSubr3AVk2Zw6nMPCbXHWBKc51qv0RiRERGEVlrVwOrvV/vBS6NxM8VERm0vL3Alv7kVWiEOyYPxVRXK/kSiRGaBSkiEi9cLucJx8pKp86rvNxZ7fLjpEnjjZZMkozl1vtuh5yMCAYrIoEoARMRiQcVFU5vL4/HecIxOxsWL3a2FP080fjyB9W0uy1XTRzByDwlXyKxRLMgRURiXWdjVZerq71EY2PXcT9DtV/Y4DxkfufFarcoEmuUgImIxLoejVXP4vH4HKr9YW0Dmw6dIjstmflTRoU5QBEJlRIwEZFY16Ox6ln8DNV+0bv6tfDCIjLTksMZnYj0gRIwEZFY16Ox6ll8DNX2eCwvbnQSsDsuHhPu6ESkD5SAiYjEum6NVc/ho7Hqe/tOUHWqmeL8TC6bMCwCAYpIqJSAiYjEum6NVc+shGVndx3v0dtr6YbDANw+s5ikJBPpaEUkCGpDISISD7yNVVmyxKn5Ki11Vr56JF/NbW6Wb6kB4HY9/SgSs5SAiYjEi5wcuPfegJes2H6ExjY3M0ryOX+Eut6LxCptQYqIJBD1/hKJD1oBExGJB0GMITp8somKylpSkw03XTQ6SoGKSDCUgImIxLogxxD97t0DeCzcNK2IodlpUQxYRHqjLUgRkVgW5BiiprYOnnn/IAD/MHdCtKIVkSApARMRiWVBjiFauqGK+pYOZo7NZ0ZJfuTiE5E+UQImIhLLghhDZK3lyXf2A3DPHK1+icQDJWAiIrEs0Bii9HQYM4a3KuvYc6yBUXkZ3DhNg7dF4oESMBGRWBZoDFFrKzz0EL95eQMAn7piHKnJ+te6SDzQ31QRkVjmZ9xQp72peaw61kF6ShKfuHRshIMTkb5SAiYiEuvmzoUf/hDSzm0t8dSsmwG4LauBYWo9IRI3lICJiMSDQ4egre2sQ/VpWTw/7VoA7qnfGY2oRKSPlICJiMQDH8X4z110PY3pWVxxeCuTy9T5XiSeKAETEYkHPYrx3SbpzPbjPR/81TkvInFDCZiISDzoLMbPzYXsbF4rvZRD+aMoOX2Ua3/+Hb9F+iISmzQLUkQkXsydC9XVsGQJv6nMAODuu64k+SOToxyYiIRKK2AiIvEkJ4cdC/+ONeSTnZbMojnnRzsiEekDJWAiInHmN2/vA+DvZpeQl5Ea5WhEpC+UgImIxJHjDa38aVM1xsDdV46Pdjgi0kdKwERE4sgz7x+krcPD1ZMKmVDgZ0akiMQ8JWAiInGi3e3hd2sOAHDPnPHRDUZE+kUJmIhInFi+pYaj9a2UFeYwt7Qg2uGISD8oARMRiRO/eXs/AJ+ZMx5jTHSDEZF+UQImIhIHNh48yaZDpxiSmcodM8dEOxwR6SclYCIicaBz9evjl5aQmZYc3WBEpN+UgImIxLgjp1tYvqWG5CTDp68YH+1wRGQAKAETEYlxv19zgA6PZcHUkRTnZ0Y7HBEZAErARERiWEu7m6ffPwjAPXMmRDkaERkoSsBERGLYsk3VnGhsY1pxHrPHDY12OCIyQJSAiYjEKGstT3jnPt5z5QS1nhBJIErARERi1Lt7j7PziIuCnHRuml4U7XBEZAApARMRiVGdrSf+/vKxpKeo9YRIIlECJiISgw4eb+K1HUdJS07ik5eNi3Y4IjLAlICJiMSgp97dj7Vw0/QiRuSmRzscERlgSsBERGJMQ2sHz609BMA/qPWESEJKiXYAIiJythfWH8bV2sEl44cyrXiI74tcLliyBCoroawMysshNzeygYpInykBExGJIR6P5cl39gMBGq9WVMDCheDxQGMjZGfD4sWwfDnMnRu5YEWkz7QFKSISQ97cXcu+ukaK8zOZP2XkuRe4XE7y5XI5yRc4nzuPNzRENmAR6RMlYCIiMaSz8eqnrhhHSrKPf0UvWQJut++bPR7nvIjEPG1BiojEApeLPb97gbcOjiDDWD5+gZ+xQ6tWQVOT73ONjbBnT/hiFJEBoxUwEZFoq6iA4mJ+88pGAO7Y8hr5peOd4925XPDCC/5fJzsbSkvDF6eIDJheEzBjzJeMMZoAKyISDt7ardNtHpZOugqAe9Ys9V3TtWQJJAfoiO92O09DikjMC2YFbCSw1hjznDHmBqNpsCIiA2fJEvB4eHb6AprTMvjIvg2UHXd6gJ1T01VZ6X/7EeDOOyEnJ7zxisiA6DUBs9Z+EygDfg18Bqg0xvzAGHN+oPuMMRnGmPeNMZuNMduMMf/mPT7BGPOeMWaPMWaJMSZtAP4cIiLxqbKSjqZmfnvxTQDcs25Z17meNV0lJZDupyt+VhZcfXUYAxWRgRRUDZi11gJHvB8dwFDgeWPMIwFuawWusdZOB2YANxhjLgd+BPzEWlsKnATu7Xv4IiJxrqyMlRd+lKohhUw4UcW8veu7znWv6aqogK9/HVpbfb9OcrK2H0XiSDA1YF82xqwHHgHeBi601n4BmAXc6e8+6+gsXkj1fljgGuB57/GngNv6HL2ISJzzLFrEo5fcBTirX0nYrpNJSU5S1VuPr5wcpwmrth9F4kYwbSiGAXdYaw90P2it9Rhjbgp0ozEmGVgPlAI/Bz4ETllrO7yXHAaKQ45aRCRBvLKvgZ0F4yhqOM6iD992DmZnO8lXZ1L1+ONOPZgvaWnw8MPqgC8SZ3pNwKy13w5wbkcv97qBGcaYfOBFYHKwgRlj7gPuAxg7dmywt4mIxI0Ot4efrNwNwD8vuoKMmf/h1HyVljorX50rWpWVXV3ve2prg8OHIxSxiAyUiDRitdaeMsasAq4A8o0xKd5VsDFAlZ97HgMeA5g9e7b1dY2ISDxbuqGKvXWNjB+exV1zzoerynxfWFbmrIr5SsLU+0skLoWtEasxZoR35QtjTCZwPbADWAXc5b3sbuClcMUgIhKrWjvcPPp6JQD/cv1EUn2NHepUXu5sSfrSWScmInElnJ3wi4BVxpgPgLXASmvty8CDwGJjzB5gOE57CxGRQeWZ9w5SdaqZyaNyufmi0YEvzs116sFyc50VL3A+dx5X8b1I3AnbFqS19gNgpo/je4FLw/VzRURiXVNbBz9b5fT3Wnz9RJKSguhvPXcuVFc7jVl91YmJSFzRMG4RkQj7zdv7qWtoY3pJPtdPGRn8jTk5cK9aJ4okAg3jFhGJoNPN7fzPmx8C8LUFk9B0N5HBSQmYiEgE/epve6lv6eCK84Yzp7Qg2uGISJRoC1JEpK9cLqcmq7LSaRVRXu4UxvtR19DKE2/vA+CrCyZFKkoRiUFKwERE+qKiwhkP5PE4/bmys2HxYuepRD9d6X+x6kOa2txcO7mQWeOGRjhgEYkl2oIUEQlV52xGl6urOWpjY8CZjdWnmvn9e85Et6/M1+qXyGCnBExEJFRLlvifzejxOOd7+K83Kmnr8HDTRUVMyTXOfMcHH3Q+u1xhDlhEYo22IEVEQhVoNmNjo9Onq5t9dY08t+4wyUmGxcNcUFwc0taliCQerYCJiISqczajLz5mM/70td24PZa7LhzJeYtuDmnrUkQSkxIwEZFQhTCbceeRepZtriYtOYl/PrU55K1LEUlMSsBEREIVwmzGH6/YjbXwvy4bS/H+XYG3Ln/1K9WEiQwSqgETEemLIGYzbjx4kpXbj5KZmsz9V5fCMe/Wpb8k7L33YOtW1YSJDAJKwEREOoXYWLW32Yz/sWIXAPfMGc+I3HTn9RYvDhxDZ3K2cKGT4GnYtkhC0hakiAg4jVWLi+GBB+CRR5zPxcXO8T54Z08db+85Tm5GCp+76nznoK+tS39UEyaS0JSAiYj0obFqINZa/t27+vW5q85jSFZq18nOrctHH4XLLvP/Ij7aWYhI4lACJiLSh8aqgbyx8xgbD55ieHYa98yZcO4FnVuXn/1sSO0sRCRxKAETEQmxsWogHo/l3191Vr++eHUp2ekBSm1DaGchIolFCZiISIiNVQN5ZUsNO4+4KBqSwScvGxv44hDaWYhIYtFTkCIigZ5ODGElqsPt4T9X7gbgy9eWkZGa3PtNQbSzEJHEowRMRKRzxWnhwrNnNCYlhbQS9cKGw+yra2T88CzunDUm+J/fSzsLEUk8SsBEZHDorcdXP1eiWjvcPPpaJQD/cv1EUpNV4SEi/ikBE5HEV1Fx7uqWr27z/ViJevq9g1SfbmHyqFxuvmj0AAUuIolK/4smIoltgHt8+dLU1sHPVzlPSn5l/iSSkky/X1NEEpsSMBFJbAPc48uX37y9n7qGNmaU5HPdBYX9fj0RSXxKwEQksQ1gjy9fTje38z9vfgjA/14wCWO0+iUivVMCJiKJLVCPr6wsp/D+wQfh8cedbckQ/epve6lv6eDK84czp7Sgn8GKyGChInwRSVwuF7S0QFub7/NNTfD8885nf4X5AdQ1tPLE2/sA+OqCSQMVtYgMAkrARCQxdX/ysb397HNZWU7SBV2fO7cpFy50VsWCaD/xi1Uf0tTm5roLCrl47NABDF5EEp22IEUk8fh68rFTWhrcequThPkSZGH+h7UN/H7NAQAWX6/VLxEJjRIwEUk8gZ58TE2Fkye7Vr56CqIw3+OxfH3pFtrcHu6aNYYpo/P6GbCIDDZKwEQk8fT25CP0a/j2s2sP8f6+ExTkpPHNj13Qj0BFZLBSAiYiiSfQk4/Z2XDTTc6cR196Gb59tL6FHy7fAcC/3jKV/Ky0/kYrIoOQEjARSTzl5YETrLvvdp52zM3tStSys7uGcvspwLfW8n//tBVXawfXXVDIxy4sCtMfQEQSnZ6CFJHE05lI9Zz/mJTUlWD1Yfj2X7ceYcX2o+Skp/Dd26ap6aqI9JkSMBFJTMEkWCEM3z7d1M63lm0D4MEbJ1M0JDMcUYvIIKEETEQSVwgJVm9+sHwHta5WZo/J45NbVsKLlU6tWXm5s+ImIhICJWAiIr14Z08dS9YdIi0JHn7kH0k6cbhrWzPE7vkiIqAifBGRgFra3Xz9xS0AfOnd5yg9tKurlUVjY1fT14aGKEYpIvFGCZiIDD4ulzN8O4gh3D95bTcHjjcxKa2dz63/k++LguyeLyLSSVuQIjK4dJ8R2cs24taq0zz+1j6MgYdbt5Lmqvf9mkF0zxcR6U4rYCIyePiaEelnG7HD7eHBFz7A7bHcc+UEZuJ/lSyY7vkiIt0pARORwSPQjMge24iPV+xjW3U9xfmZfOXK0fCLX/h/XWMCds8XEelJCZiIDB69zYj0biPur2vkJyt3A/D926eR/eLzYK3/173//oANXEVEelICJiKJr7PofvNmSPMzu9G7jWit5etLt9Da4eH2mcXMm1QYOHEDWL2612J+EZHuVIQvIomtZ9G9P94h3M+tO8S7e48zLDuN/3vTFOdc53Bvf/e/9x5s3aqeYCISNK2AiUji8lV031O3IdzHPCl8/5UdAHz75ikMy/aulgUa7t1JPcFEJARKwEQkcQUquk9PhxtvhEcfdWZGzp3Lv/55G/UtHcybNIJbpo/uurZzuHdurpOwBaKeYCISBCVgIpK4AtVutbbC9OnOrMicHF7ddoTlW46QlZbM92+/EGPM2dd3Dvd+9FG47DL/P1M9wUQkCKoBE5HEFah2q1vvrvqWdr710lYAvrZgEsX5mb5fr3O4t7VOzVcvrysi4o9WwEQkcQWq3fIW3QM8/JedHK1vZebYfD51xfgBe10REX+UgIlI4vJVu9Wt6J6cHN7be5yn3ztIarLhR3deRHJjQ+9zIoN4XRGRQIwN1FwwRsyePduuW7cu2mGISLxqaHAK4/fscbYHy8shJ4eWdjcLH32LvXWNfPnaMv4l89i5cyKTkvy3lvDzuiIyeBhj1ltrZ4d6X9hqwIwxJcBvgZGABR6z1j5qjBkGLAHGA/uBRdbak+GKQ0TkTO1WD//1RiV76xopLczhi7NHwrjZZ694ddZ4LVzoFOD3TK78vK6ISG/CuQXZAXzFWjsFuBy43xgzBXgIeN1aWwa87v1eRKTvOjvdB9o27GF7dT3/8+ZejIEf3XkR6S/8Meg5kSIi/RW2FTBrbQ1Q4/3aZYzZARQDtwLzvJc9BawGHgxXHCKS4CoqnH5ebW3OR1oa/Mu/wF/+4rcjfYfbw0NLP6DDY7n7inHMGjc06DmRIiIDISJF+MaY8cBM4D1gpDc5AziCs0UpIhI6lwvmz3dqsdranGNtbc73ncd9ePKd/Xxw+DRFQzL433OKg54TKSIyUMLeB8wYkwO8ADxgra3v3tzQWmuNMT6fAjDG3AfcBzB27Nhwhyki8eipp6C52fe55mbn/P33n3X44PEm/mPFLgC+PzGJnPPGBT0nUkRkoIQ1ATPGpOIkX3+w1i71Hj5qjCmy1tYYY4qAY77utdY+BjwGzlOQ4YxTROLUyy8HPv/KK/DpTzv1W5WVtJxfxj81l9HS7uGWqSO45p7rAteLpac7TVe/8AXns4jIAAnbFqRxlrp+Deyw1v5nt1PLgLu9X98NvBSuGERkkDt5EoqL4YEHsI88wteXV/JBTQNjMg3/2rTFf9F9aiokJztJV1sb/PznzutUVEQ2fhFJWOGsAZsDfAq4xhizyfuxEHgYuN4YUwlc5/1eRCR0N90U+PzGjc4KV2Mjv77kNl6cfBVZbc386smvMWynn1FCAO3t4HZ31ZU1Njqvs3Ch37oyEZFQhC0Bs9ZWWGuNtfYia+0M78dya+1xa+211toya+111toT4YpBRBLc3XdDVpbvc2lpzioW8OaEi/nBvHsA+PErP+GC2v1w4kRXF/tgqR2FiAwQjSISkfiVmwuvvuo0RE1Pd46lpzvf33UXNDWxb+hovnTL1/AkJfPPbz/NjbvfcVa0Cgr8z3P0R+0oRGSAhP0pSBGRXrlcZwrlKStznjjMzQ3u3rlzoabm3JFAzz6La/kK/vGOb1KfkcP1u9/lgYpnnHuys2HKFGfEUM/RQ263c01Ly7k/S+0oRGSAaBakiERXRUVo8xeD5Kmv575//CmvTZjFxNoDLP39V8lp87asyM3tGi3Uc57jwoUwaZL/Idy+RhKJyKAVc7MgRUR61VnYHsr8xSD9ZE0Nr02YxZCWBn71lx87yVf35K7zdX3Nc/S1MtbzPhGRflACJiLRs2RJ7/MXFy0KeXvylQ9q+K839pBk4Gf/cAXjLvzG2duTvSVRc+c6yV/PbU0lXyIyQJSAiUj09DZ/cdUqZ65j95WoxYsDbk9uqz7NV/+4GYD/87EpfOSisXDRvT6vPcNfDVrPlTERkQGiBExEoqeszEmqfCVhWVnw/PPQ2tp1rJftyeMNrdz32/U0t7u58+Ix/MOc8b3H4KsGrZckT0Skv9SGQkSip7zcfysIj+dMH69zuN3OjMcHH3QGabtctLs9fPEPG6g61cz0kny+f/s0us+e9al7DVpncqemqyISAVoBE5Hoyc31X/B+883w9NO+72tqgmeecTrWe1esvvujF3jvQBuFuek89qlZZKT6Sd66bzceOdLVdqKnzho0bUOKSBgoAROR6PJX8P7ss/DSS4HHBQE0NvLM9AX89kAbacmGX35qFiPzMnzf03O7MTW163V6UtNVEQkjJWAiEn2+WkGUlzu1WL1YV3wB37r+8wB8b/gpLh471PeFvlpe+Eu+QE1XRSSslICJSGzytT2ZkgIdHWcuqc4t4PO3f4P25FTuWfcSiy4Z7pzw9VRjoJYXviQlOfeJiIRBXCRgja0dnG5uZ0hmarRDEZFI6rk9WV0NL7wAjY00p6Rz3x3fpC57KHP2b+L/rHkGiu+AT34Sli51Eqimpq6nGm++2f92JnQld2q6KiIREBejiNKLymzR3T+lZFgmU4rymDp6CFNH5zFldB6j8jJ6f9JJRBKDywXFxViXiwdu+iovTZ3H2JM1vPTbxQxtcTmtK5qafN+bkdGVlPWUne0M7y4qUtNVEQlJQo8iykxNJj0liUMnmjl0oplXtx09c25Ydpo3KXMSsqmj85hQkENykpIykYTj3ZZ87Bu/4KWp88hqa+ZXy//DSb7Af/IFTvLl74nHpCT42c+UdIlIxMTFCtjs2bPtmvfeZ29dI9uqT7Otqp7tNfVsq67ndPO5RbQZqUlMHuUkY1NHD2HK6Dwmj8r1/1i6iMSN1buOcc9v1mKBX7KDG2q2nNmW7NUnPwnLlg344G8RGbwSegUMICU5iYkjc5k4MpfbZzrHrLVUnWpme7WTjG2vqWd7dT1Vp5rZdOgUmw6dOnN/koGywlzmlhUwb9IILp0wjPQUJWQi8WRvbQNfemYjFnjgujJuuO5jTjPWYJKv7Gy4+mr45S8141FEoi5uVsDWrVsX9PUnG9vY4V0h21Z9mu019ew51oCn2x81MzWZK88fzrxJI5g3qZCSYVlhiFxEfPI3ezGA+pZ2bvv52+ytbWTB1JH89ydnkZRknE74DzzQexKWm+tzfJGISH/0dQUsIRMwX1ra3Ww6dIrVu2pZvesYO4+4zjp/3ohs5k0sPLM6pu1KkTDxNXuxl23Atg4Pn/vdOlbtqmXSyFyWfvFKstO9C/jewvyz+nt1p21GEQkjJWAhOnK6hTd3H2P1rloqKutwtXb1FspMTeaKztWxiYWMHa7VMZEBEShZ8rNC1dzm5gt/WM/qXbXkZ6Wy7P655/6d7JnUZWU5Bfd33eVsO2qbUUTCRAlYP7S7PWw8eIrVu5yEbHtN/VnnzyvI5qPercrLtDom0neBtguzs+HRR8/qiH+6uZ17n1zLugMnGZadxlP3XMqFY4b4fu2GBtV2iUjEJXwRfjilJidx6YRhXDphGF+7YTLH6ltYvbuWN3fV8rfKWvbWNbK3rpHfvL2fjNQkLj9vONdPGcnCaUUMzU6Ldvgijj7UVUVcZaX/Wq0esxdrXa3c/cT7bK+pp2hIBr+79zJKCwMkVL7GGYmIxCglYD4U5mWwaHYJi2aX0OH2sPFQ1+rYtup6bx1ZLd9+aRsfnTiCW2aM5roLRnbVpIhEmq+6qsWLY6/uqazMic3fCph39uLhk0186tfvs6+ukQkF2fzu3ksZM1SlACKSOLQFGaJjrhZW76zl5S01vL2nDrf30crM1GSumzKSW6eP5qqJI0hLSYpypDJo9KGuKmqCiHVPE3zq1+9Rc7qFKUV5/PbeSynISY98rCIiQdAWZIQU5maw6JISFl1SQl1DK8u31PDSpmrWHzjJnzdX8+fN1QzJTGXhhaO4ZXoxl04Ypq78El6Bhkx7PM75WNma8zVgu9tTiltOubn7N+9zorGNS8YP5fG7L9EMWBFJSErA+qEgJ51PXzGeT18xnkMnmvjzB9Us21TNziMunnn/EM+8f4iReencfNFobpkxmguLh2hupQy8EOqqYkLPAdvegvk1x1r57K/W0NDawbxJI/jvT84iM00PvIhIYlICNkBKhmXxxXmlfHFeKbuOuFi2uYplm6s5dKKZxyv28XjFPiYUZHPz9NHcMn104GJikVAEWVcVU3oUzL++4yhf/MMGWjs83HRREf+5aIa28UUkoakGLIystWw6dIqXNlXz8gc11DW0njk3dXQet84YzU0XjWZ0fmYUo5S4F081YD78aWMVX/njZtwey/+6bCzfvXWatu1FJG6oD1iM63B7WLP3BMs2V/GXrUdwtTiNX42BuaUF/N3sEuZPGakeY9I3feguHwt+9+5+vrVsG9bCF+adz9cWTOrapo+HthoiMugpAYsjLe1uVu+q5c+bq1m54yhtHU4B9ZDMVG6bMZpFl5QwdbSfZpMi/sRRI1JrLT97Yw8/XrkbgIdunMznP3p+1wVxmlCKyOCjBCxOnW5q56XNVTy37hBbq7o68E8dncei2SXcOmM0+Vlq9ioxqg+rVNZavv/KDh6v2Icx8IPbL+QTl449+zXjeEtVRAYXJWAJYFv1af647jAvbqzidHM7AGkpSSyYOopFs8cw5/wCklQbI7GiD6tUHW4P33hxC8+tO0xqsuEn5TO46aLRZ18U4rgiEZFoUh+wBDB19BCm3jKEh26czMrtR3lu3SEq9tSd6S9WnJ/JXbPGcNesMZQMU1dwiSKXy0m+uq9SdSZMCxf6XKVq7XDz5Wc28ddtR8hITeKXfz+LeZMKz33teGurISLSB0rAYlBGajI3Tx/NzdNHU3WqmefXHeaP6w9x+GQzj75eyf97o5I55xfwd7PHsGDqKBXuS+SF2Py1sbWDz/9+PW9V1pGbkcJvPnMJs8cPO/u+zu3MzZshLQ3a2s597VhtqyEiEiIlYDGuOD+TL19XxpeuKeXdvcd5bt0h/rL1CBV76qjYU0deRgq3zSxm0ewSphWrcF8iJIRVqlNNbdzz5Fo2HjxFQU4av/2Hy5gyOu/se3puZ/qTlOTUmYmIxDklYHEiKckwp7SAOaUFfKepnWWbq1jiLdz/7bsH+O27B5hSlEf5JSXcNqOYIVka35JQYq0lQ5DNX2tON/OZJ9ay66iL4vxMfv/Zy5hQkH329b62M329Zmd9mQrwRSQBqAg/znUW7v9pUxWnmroK9xdOG8WiS0q4fMJwFe7Hut6Sq1hsydDLk4q2qooXdp/mO3/eRn1LB+ePyOb3n72MoiE+mg4HKrpPT4drroE774zpthoiMnjpKchBrqXdzcrtR1my1inc7zRueBaLZpdw16wxjMzLiGKE4lNvyVUst2TwE/uRF17m64czWLWrFoCrJ43gx4tmMCzbTzuVBx+ERx7x/3Meegh++MMw/AFERPpPT0EOct0L9w+daOKP6w7xx/WHOXC8iX9/dRc/XrGLqycVUn5JCVdPLiQ1WXP2oi6YJwlDLHaPGJcLdu50fvaJE1BQgL1gCn+c/FG++9qHuFpc5GWk8O2bp3LHxcWBh9DH4yxLEZF+UgKWgEqGZbF4/iS+fN1E/lZZy3NrD7Fy+1Fe33mM13ceoyAnnbtmjWHR7DGcN0JbOlETTHK1bVvstWTwsfJVk1vAQ1+dz5sv7wLg2smF/OCOC4NbdS0vh8WLfZ9T0b2IJCglYAksOclw9aRCrp5USF1DKy9uqOLZtQf5sLaRX775Ib9880MunTCM8tklLLywiMw0tbOIqN6eJFy1Cp5/3v/90Vgd6rFqZ4Hnzr+S713zWVy1HQzJSOFfb53KbTN6WfXqLjfX2XL1txWrui8RSUCqARtkrLVsOHiSJWsP8efNNTS3uwHITU/h1pmjKZ89lmnFecH/x1P6LlDxeVYWuN3Q2ur//mjUgHWLuSp3BA/d+CXemnAxANftXcsPrh1H4efu6dtrx9EsSxGRTirCl5A1tHbw8uZqnl17iE2HTp05fkFRHndeXMwtM0ZTmKvC/bAJVGCfkeGsADU1+b43IwNWroz8U5APPoh95BGWXDSf713zWRrSsxjS7OLfXvsfbt2+GqOCeREZZJSASb/sOuJiydpDvLjxMCe97SySDMwtG8EdM4uZP3UkWWnasR5w/p6CvPlmePpp//ctXgw//nHk4vSq+u8neOitI7w1djoA83e/y/dW/JzCxlP9m9MYa33ORESCpARMBkRrh5s3dhxj6cYqVu86Rrvb+f3ITktmwbRR3DFzDFecP5xk9RYbOL623p59NqYGUltreeb9Q/zgle00tLnJb67n31b+klt2/I0zvwl93RKNxT5nIiJBUgImA+5kYxsvf1DN0o1VbDx46szxkXnp3DajmNtmFnNBUZ7/F5C+i6H+X4dPNvHQC1vO9JdbMCqF7/3ws4xoPNn/hCmG/pwiIn2hBEzCal9dIy9urOJPG6s4eKKrLmnyqFzuuLiYW2cUq9HrQIvyypDHY3n6/YP8cPkOGtvcDM1K5Tu3TuOmi4owjY29F8wHs60Y6EGEKKz0iYiESgmYRETnU5RLN1Tx8gc1nG7uqhebU1rA7TOLWTB1FNnpqhcbEFF6MvDQiSYefOED3vnwOAA3ThvFd26dxojc9OBeINjkUV3wRSTOqRO+RIQxhlnjhjFr3DC+dfMUVu2s5cWNh3lj5zHeqqzjrco6MlO3csO0Udw+s5g5pQWqF+uLnqtH3/hGRIrSNx86xZPv7OeVD2poc3sYlp3Gd2+dxscuKgr+RYLp8N+ZRKoLvogMUloBkwFxqqmNlz+o4cWNVaw/cPLM8WHZaVwzuZDrLhjJVRML9CRlMCK89djW4WH52r08+dctbGp15jUa4Obpo/nWzVMoyAly1atTKNuKqgETkTinFTCJqvysNP7+8nH8/eXjOHC8q15s//Emnl9/mOfXHyY9JYm5pQVcN2Uk104upFA1Y+cKZfWon47Vt/CH9w7ydMUealstkEZeSwMf3/4Gn9r2GiU3PQWhJl/Qe4f/7uOT1AVfRAYpJWAy4MYNz+aB6yby5WvLqDzWwMrtR1m5/SibDp06M48SYEZJPtdPGcn1U0ZSVpij7vsQ9uHb1lo2HjrFU+/sZ/mWmjNtRibV7ufu9X/mtu2ryWr3dt/va8IX6rbi3Lldg8fVBV9EBomwbUEaY54AbgKOWWuneY8NA5YA44H9wCJr7Ul/r9FJW5CJ4Vh9C6/vPMbK7Uep2FNHW0dXojFueBbXXeAkY7PHDSUlOSmKkUZRmIrSWzvcvPJBDU++s58PDp8GnAcnrs9q4TO//xGX717LOelvX59C1LaiiAwisbgF+STwM+C33Y49BLxurX3YGPOQ9/sHwxiDxJDCvAw+celYPnHpWJraOvjb7jpe23GUN3Ye48DxJn5dsY9fV+wjPyuVayYVcv2UkXxk4ghyBtMTlQNclH7kdAt/eO8Az7x/kLqGNgDys1L5+CVj+fvLxzLm4X+D3Wt939xzuzDYbvXaVhQR6VVYi/CNMeOBl7utgO0C5llra4wxRcBqa+2k3l5HK2CJze2xrD9wktd2OFuV++q6ko+05CSuLB3OtZMLuWTCMMoKcxP7qcoBWD2y1nk/n3xnP3/deoQOj/N3/IKiPD5z5ThunVFMRmqyc3GwBfN9eTBAw7VFZBCIyT5gPhKwU9bafO/XBjjZ+b2Pe+8D7gMYO3bsrAMHDoQtTokd1lo+rG1k5fajvLbjKBsOnqT7r2hOegozSvKZOTafi8cOZUZJPkOz06IXcDj08SnIk41trNxxlKfe2c+26noAkpMMC6aO5DNXTuCS8UPPrbMLJuGzVluKIiJ+xOIWZEDWWmuM8Zv9WWsfAx4DZwUsYoFJVBljKC3MobQwhy/MO59aVyurdh7jzcpaNh08RdWpZir21J0ZiwNwXkE2M7wJ2cyx+UwamRtfNWS+tvZ6KUrvcHvYecTFxoMn2XjwFBsPnTpr5XBYdhqfuLSET142jtH5mf5/djDbhY8/HtYHA0REBqNIJ2BHjTFF3bYgj0X450ucGZGbzqJLSlh0SQkAR+tbziQdGw6e5IPDp9lb18jeukaWbqgCICstmYvGDPEmZE5SFnIvq0jxtdq1eLGT/HRLao65Wti47QgbvH/2LYdP09zuPuulMlKTmD4mn7tmjeHm6aO7thl709tTiKG0lRARkaBEOgFbBtwNPOz9/FKEf77EuZF5GdwwrYgbpjmd2dvdHnbU1DurQAdPsuHgKQ6eaGLN3hOs2XvizH1jh2Wd2bYsK8xh5JAMRuVlRHdkkp+eX63JKWz/zJfY+NgzbDjSxEbvyl9P44dnnUkwZ5YMZXJRLqnBrvz5WnXzt4oV6MGAlBQneXO5ItKpX0QkUYSzDcUzwDygADgKfBv4E/AcMBY4gNOG4oSflzhDRfgSirqG1m4JmbNK1tTm9nltTnoKI/PSGTUkg5G5GYwcksHIXO/3ec7HiNz04BObIFhrae3w0PTEkzT963dp6rDsLhjLxtGT2TB6MttGnk9bSupZ92SnJTPDm2jNHJvPjJJ8hvdlVc/lgu99D376UzAGWlt7rzELVCcGER8SLiISS2KyCH+gKAGT/uhwe9h11OVNyk5x6EQTR+pbOFLfclYvMn+MgeHZ6Ywaks6ovAwK85zVs6HZabS2u2luc9Pk/dz1dQdNbW6azhzrcD63uWlud9PbX7vSuoNcXJDGzDuuZ+bY/IF5+rOiAm680Xk60ZdABfWdW6VuNzQ1hX6/iEiCUgImEiJrLaeb2zlS38LR+laOnm7xfu18dB6va2jtNWEKVVpKEpmeDrJOnyCzrZmS00e5uGonM6t3Mb1mN0NS6FsTVH96W8WC3huvNjTA/ffDM89Ae3vo94uIJKC4ewpSJNqMMeRnpZGflcbkUf6va3d7qGto5cjpzuSslSP1LZxqaiM9JZmsNOcjIzWZrLQUstKSyUzrOp6ZmtL1dVoymanJzlOagZKitFynLmugBBpx1Km3gvqcHBg1ynfyFcz9IiJyhhIwkV6kJidRNCSToiEB2jn0RSQ7xgd6krFTb532XS44cgRSU/2vgIXYqV9EZLBSAiYSTf0dRB3seKBATzJ2Skryv+rWvQbM3wpYoPtFROQsSsBEoqlnArVoUfDJV6AeYj2fRiwvd875k5Pjf9XNV7uM7jTnUUQkZHHULlwkwVRUODVgDzwAjzzifC4udo73pntS1Lmq1djYdbznk46d2525uU7CBJCW5mwnPvgg1NT4byERqH4sJQXuustZxVMLChGRoGkFTCQa/DRhBZzjvbVzCJQU+RsP1NftzkD1Yx0dUFSklS8RkRApAROJhkAJlNvd+3zFvo4HyskJvU1EoPoxFd6LiPSJtiBFoiFQAtXUBKtWBb6/MynyZaCTovJyp8bLFxXei4j0iRIwkWgoK4OsLP/nX3jBf8d6iGxS5Kt+LDu767i2H0VEQqYETCQaysudrUZ/kpOdbUh/Ip0UddaPPfooPPSQ81mF9yIifaYaMJFoyM2FO++Ep5/2fT6YrvKR6iHWqS/1YyIi4pMSMJFoufpqeOml/hW39zUpCqWHmIiIDDhtQYpES7SK20PtISYiIgNOCZhItIRax+VyweOPO41TH3/cf2f63gTTQ0xERMJKW5Ai0RRsHddAbhn2tYeYiIgMGCVgItHWWx1Xf7vm96TGqiIiUactSJFYN9BbhmqsKiISdUrARGLdQG8ZqrGqiEjUaQtSJNaFY8uwvz3ERESkX4y1Ntox9Gr27Nl23bp10Q5DJDpcLigu9v3UY25u6DVgIiIyYIwx6621s0O9T1uQIrFOW4YiIglHW5Ai8UBbhiIiCUUJmEi80CxGEZGEERc1YMaYWuBAtOMYBAqAumgHMcjoPY8svd+Rp/c8svR+R94ka21uqDfFxQqYtXZEtGMYDIwx6/pSSCh9p/c8svR+R57e88jS+x15xpg+PSWoInwRERGRCFMCJiIiIhJhSsCku8eiHcAgpPc8svR+R57e88jS+x15fXrP46IIX0RERCSRaAVMREREJMKUgA1ixphhxpiVxphK7+ehfq5zG2M2eT+WRTrOeGeMucEYs8sYs8cY85CP8+nGmCXe8+8ZY8ZHIcyEEsR7/hljTG233+vPRiPORGGMecIYc8wYs9XPeWOM+X/efx4fGGMujnSMiSSI93ueMeZ0t9/vb0U6xkRjjCkxxqwyxmw3xmwzxnzZxzUh/Z4rARvcHgJet9aWAa97v/el2Vo7w/txS+TCi3/GmGTg58CNwBTgE8aYKT0uuxc4aa0tBX4C/CiyUSaWIN9zgCXdfq8fj2iQiedJ4IYA528Eyrwf9wH/HYGYEtmTBH6/Ad7q9vv9nQjElOg6gK9Ya6cAlwP3+/j3Ski/50rABrdbgae8Xz8F3Ba9UBLWpcAea+1ea20b8CzO+95d938OzwPXGmNMBGNMNMG85zKArLV/A04EuORW4LfWsQbIN8YURSa6xBPE+y0DzFpbY63d4P3aBewAintcFtLvuRKwwW2ktbbG+/URYKSf6zKMMeuMMWuMMbdFJrSEUQwc6vb9Yc79S3vmGmttB3AaGB6R6BJTMO85wJ3ebYLnjTElkQlt0Ar2n4kMnCuMMZuNMX8xxkyNdjCJxFsmMhN4r8epkH7P46ITvvSdMeY1YJSPU/+n+zfWWmuM8fdI7DhrbZUx5jzgDWPMFmvthwMdq0gE/Rl4xlrbaoz5HM4K5DVRjklkoGzA+fd2gzFmIfAnnG0x6SdjTA7wAvCAtba+P6+lBCzBWWuv83fOGHPUGFNkra3xLpMe8/MaVd7Pe40xq3EyfyVgwakCuq+ujPEe83XNYWNMCjAEOB6Z8BJSr++5tbb7+/s48EgE4hrMgvl7IAOke2JgrV1ujPmFMabAWqsZkf1gjEnFSb7+YK1d6uOSkH7PtQU5uC0D7vZ+fTfwUs8LjDFDjTHp3q8LgDnA9ohFGP/WAmXGmAnGmDTg4zjve3fd/zncBbxh1aCvP3p9z3vUZdyCU88h4bMM+LT3KbHLgdPdyh9kgBljRnXWkRpjLsX5b73+p64fvO/nr4Ed1tr/9HNZSL/nWgEb3B4GnjPG3AscABYBGGNmA5+31n4WuAD4H2OMB+cv8cPWWiVgQbLWdhhj/gl4FUgGnrDWbjPGfAdYZ61dhvOX+nfGmD04hbUfj17E8S/I9/yfjTG34DzZdAL4TNQCTgDGmGeAeUCBMeYw8G0gFcBa+0tgObAQ2AM0AfdEJ9LEEMT7fRfwBWNMB9AMfFz/U9dvc4BPAVuMMZu8x74BjIW+/Z6rE76IiIhIhGkLUkRERCTClICJiIiIRJgSMBEREZEIUwImIiIiEmFKwEREREQiTAmYiIiISIQpARMRERGJMCVgIjIoGGMu8Q7fzjDGZBtjthljpkU7LhEZnNSIVUQGDWPM94AMIBM4bK39YZRDEpFBSgmYiAwa3tmQa4EW4EprrTvKIYnIIKUtSBEZTIYDOUAuzkqYiEhUaAVMRAYNY8wy4FlgAlBkrf2nKIckIoNUSrQDEBGJBGPMp4F2a+3Txphk4B1jzDXW2jeiHZuIDD5aARMRERGJMNWAiYiIiESYEjARERGRCFMCJiIiIhJhSsBEREREIkwJmIiIiEiEKQETERERiTAlYCIiIiIRpgRMREREJML+P7MtGShK4rAKAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "cost_fun_slices = []\n", "\n", "for n in range(1, 4):\n", " plot_and_mse(data_marks_train, data_marks_test, n)\n", " \n", " cost_data = cost_functions.get(n)\n", " cost_x = [line[1] for line in cost_data[:250]]\n", " cost_y = [line[0] for line in cost_data[:250]]\n", " cost_fun_slices.append((cost_x, cost_y))" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:35.487659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAFkCAYAAACUxcevAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAapElEQVR4nO3de7BlZX3m8e8joBBFUTnp6jRdacu0cdAKDTkiXmIRjBcoM40pgxhHiTK2Fxxx4jiCUxlNzUzFlBGiY2SqHQhNBiEUyNDjIIiIos4InmZarjJ2uBTdaeijKJchYQL+5o+9etw057L70Pvs9/T+fqp27bXeddm/4+tqH9da71qpKiRJktSOp426AEmSJD2RAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMfuOuoCn4uCDD65Vq1aNugxJkqQn2LRp04+ramKh2y/pgLZq1SqmpqZGXYYkSdITJLn7qWzvJU5JkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaszQAlqS/ZNcn+QHSW5J8idd+7lJ7kyyufus6dqT5HNJtiS5MckRw6pNkiSpZfsOcd+PAsdU1cNJ9gO+k+Sr3bKPVtXFu6x/LLC6+7wcOKv7liRJGitDO4NWPQ93s/t1n5pjk7XAed123wMOSrJ8WPVJkiS1aqj3oCXZJ8lmYAdwVVVd1y36D91lzDOTPKNrWwHc07f51q5NkiRprAw1oFXV41W1BjgEODLJS4HTgRcDLwOeB3xsd/aZZF2SqSRT09PTe7pkSZKkkVuUUZxV9TPgGuCNVbW9u4z5KPBXwJHdatuAlX2bHdK17bqv9VU1WVWTExMTQ65ckiRp8Q1zFOdEkoO66QOA1wE/3HlfWZIAxwM3d5tsBN7ZjeY8CnigqrYPqz5JkqRWDXMU53JgQ5J96AXBi6rqK0m+kWQCCLAZeF+3/uXAccAW4BHgXUOsTZIkqVlDC2hVdSNw+Aztx8yyfgGnDKseSZKkpcI3CUiSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjRlaQEuyf5Lrk/wgyS1J/qRrf0GS65JsSfI3SZ7etT+jm9/SLV81rNokSZJaNswzaI8Cx1TVYcAa4I1JjgL+DDizqn4N+Clwcrf+ycBPu/Yzu/UkSZLGztACWvU83M3u130KOAa4uGvfABzfTa/t5umWvzZJhlWfJElSq4Z6D1qSfZJsBnYAVwF/C/ysqh7rVtkKrOimVwD3AHTLHwCeP8M+1yWZSjI1PT09zPIlSZJGYqgBraoer6o1wCHAkcCL98A+11fVZFVNTkxMPNXdSZIkNWdRRnFW1c+Aa4BXAAcl2bdbdAiwrZveBqwE6JY/B/jJYtQnSZLUkmGO4pxIclA3fQDwOuA2ekHtLd1qJwGXddMbu3m65d+oqhpWfZIkSa3ad/5VFmw5sCHJPvSC4EVV9ZUktwIXJvn3wP8Czu7WPxv46yRbgPuBE4dYmyRJUrOGFtCq6kbg8Bna76B3P9qu7f8A/P6w6pEkSVoqfJOAJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwYOaEl+aZiFSJIkqWfegJbklUluBX7YzR+W5AtDr0ySJGlMDXIG7UzgDcBPAKrqB8BrhlmUJEnSOBvoEmdV3bNL0+NDqEWSJEnAvgOsc0+SVwKVZD/gVOC24ZYlSZI0vgY5g/Y+4BRgBbANWNPNS5IkaQjmPYNWVT8G3r4ItUiSJIkBAlqSvwJq1/aqevc8260EzgOWdduvr6rPJvkk8B5gulv141V1ebfN6cDJ9O5x+1BVXTn4nyJJkrR3GOQetK/0Te8PvBn4uwG2ewz4SFXdkORAYFOSq7plZ1bVn/evnORQ4ETgJcCvAF9P8qKqckCCJEkaK4Nc4rykfz7JBcB3BthuO7C9m34oyW307mObzVrgwqp6FLgzyRbgSOB/zvdbkiRJe5OFvOppNfDLu7NBklXA4cB1XdMHk9yY5Jwkz+3aVgD9j/PYygyBLsm6JFNJpqanp3ddLEmStOQN8iaBh5I8uPMb+G/Axwb9gSTPAi4BPlxVDwJnAS+kNxp0O/CZ3Sm4qtZX1WRVTU5MTOzOppIkSUvCIJc4D1zozrvnpl0CnF9VX+72d1/f8i/yi3vctgEr+zY/pGuTJEkaK7MGtCRHzLVhVd0w1/IkAc4GbquqM/ral3f3p0FvwMHN3fRG4EtJzqA3SGA1cP28f4EkSdJeZq4zaHNdeizgmHn2/SrgHcBNSTZ3bR8H3pZkTbePu4D3AlTVLUkuAm6lNwL0FEdwSpKkcZSqJz3ibMmYnJysqampUZchSZL0BEk2VdXkQrcf5DloJHkpcCi956ABUFXnLfRHJUmSNLtB3iTwCeBoegHtcuBYes9BM6BJkiQNwSDPQXsL8Frg3qp6F3AY8JyhViVJkjTGBglof19VPwceS/JsYAdPfByGJEmS9qBB7kGbSnIQ8EVgE/Awvn5JkiRpaAZ5UO0Husn/lOQK4NlVdeNwy5IkSRpfg7zqaWOSP0jyzKq6y3AmSZI0XIPcg/YZ4NXArUkuTvKWJPvPt5EkSZIWZpBLnN8CvpVkH3pvD3gPcA7w7CHXJkmSNJYGfVDtAcDvAm8FjgA2DLMoSZKkcTbIg2ovAo4ErgA+D3yre+yGJEmShmCQM2hnA2/zxeWSJEmLY5B70K5cjEIkSZLUM8goTkmSJC0iA5okSVJjBh3FuQL41f71q+raYRUlSZI0zgYZxfln9B6vcSuwc6BAAQY0SZKkIRjkDNrxwK9X1aNDrkWSJEkMdg/aHcB+wy5EkiRJPYOcQXsE2JzkauD/n0Wrqg8NrSpJkqQxNkhA29h9JEmStAgGeVDthiRPB17UNd1eVf843LIkSZLG1yCjOI+m93L0u4AAK5Oc5GM2JEmShmOQS5yfAV5fVbcDJHkRcAHwm8MsTJIkaVwNMopzv53hDKCq/jeO6pQkSRqaQc6gTSX5z8B/6ebfDkwNryRJkqTxNkhAez9wCrDzsRrfBr4wtIokSZLG3CCjOB8Fzug+kiRJGrJZA1qSi6rqhCQ30Xv35hNU1W8MtTJJkqQxNdcZtFO77zctRiGSJEnqmXUUZ1Vt7yY/UFV393+ADyxOeZIkSeNnkMdsvG6GtmPn2yjJyiTXJLk1yS1JTu3an5fkqiQ/6r6f27UnyeeSbElyY5Ijdu9PkSRJ2jvMGtCSvL+7/+zFXWDa+bkTuGmAfT8GfKSqDgWOAk5JcihwGnB1Va0Gru7moRf6VnefdcBZC/6rJEmSlrC57kH7EvBV4E/5RYgCeKiq7p9vx90l0u3d9ENJbgNWAGuBo7vVNgDfBD7WtZ9XVQV8L8lBSZb3XWqVJEkaC3Pdg/ZAVd0FfBa4v+/+s8eSvHx3fiTJKuBw4DpgWV/ouhdY1k2vAO7p22xr1yZJkjRWBrkH7Szg4b75h9mNy49JngVcAny4qh7sX9adLXvSIzzm2d+6JFNJpqanp3dnU0mSpCVhkICWLkgBUFU/Z7A3EJBkP3rh7Pyq+nLXfF+S5d3y5cCOrn0bsLJv80O6tieoqvVVNVlVkxMTE4OUIUmStKQMEtDuSPKhJPt1n1OBO+bbKEmAs4Hbqqr/LQQbgZO66ZOAy/ra39mN5jwKeMD7zyRJ0jgaJKC9D3glvbNZW4GX0xtlOZ9XAe8AjkmyufscB3wKeF2SHwG/080DXE4v+G0BvojPWpMkSWNqkHdx7gBO3N0dV9V3gMyy+LUzrF/0XsouSZI01uYNaEkmgPcAq/rXr6p3D68sSZKk8TXIzf6XAd8Gvg48PtxyJEmSNEhA+6Wq+tjQK5EkSRIw2CCBr3Q390uSJGkRDBLQTqUX0v4+yYNJHkry4LxbSZIkaUEGGcV54GIUIkmSpJ5BRnG+Zqb2qrp2z5cjSZKkQQYJfLRven/gSGATcMxQKpIkSRpzg1zi/N3++SQrgb8YVkGSJEnjbpBBArvaCvyTPV2IJEmSega5B+0/AtXNPg1YA9wwxJokSZLG2iD3oE31TT8GXFBV3x1SPZIkSWNv1oCW5Oqqei1wqG8SkCRJWjxznUFbnuSVwD9NciGQ/oVV5WVOSZKkIZgroP1b4I+BQ4AzdllW+JgNSZKkoZg1oFXVxcDFSf64qv7dItYkSZI01uZ9zIbhTJIkaXEt5DlokiRJGiIDmiRJUmPmDWhJ/nqQNkmSJO0Zg5xBe0n/TJJ9gN8cTjmSJEmaNaAlOT3JQ8BvJHmw+zwE7AAuW7QKJUmSxsysAa2q/rSqDgQ+XVXP7j4HVtXzq+r0RaxRkiRprAxyifMrSZ4JkOSfJTkjya8OuS5JkqSxNUhAOwt4JMlhwEeAvwXOG2pVkiRJY2yQgPZYVRWwFvh8Vf0lcOBwy5IkSRpfc72Lc6eHkpwOvAP4rSRPA/YbblmSJEnja5AzaG8FHgXeXVX30nt5+qeHWpUkSdIYG+RdnPcC5wPPSfIm4B+qynvQJEmShmSQNwmcAFwP/D5wAnBdkrcMuzBJkqRxNcg9aP8GeFlV7QBIMgF8Hbh4mIVJkiSNq0HuQXvaznDW+cmA20mSJGkBBglaVyS5MskfJvlD4L8DX51voyTnJNmR5Oa+tk8m2ZZkc/c5rm/Z6Um2JLk9yRsW8sdIkiTtDea9xFlVH03ye8Cru6b1VXXpAPs+F/g8T36o7ZlV9ef9DUkOBU6k92L2XwG+nuRFVfX4AL8jSZK0V5nrZem/luRVAFX15ar6o6r6I2A6yQvn23FVXQvcP2Ada4ELq+rRqroT2AIcOeC2kiRJe5W5LnH+BfDgDO0PdMsW6oNJbuwugT63a1sB3NO3ztauTZIkaezMFdCWVdVNuzZ2basW+HtnAS8E1gDbgc/s7g6SrEsylWRqenp6gWVIkiS1a66AdtAcyw5YyI9V1X1V9XhV/Rz4Ir+4jLkNWNm36iFd20z7WF9Vk1U1OTExsZAyJEmSmjZXQJtK8p5dG5P8c2DTQn4syfK+2TcDO0d4bgROTPKMJC8AVtN7OK4kSdLYmWsU54eBS5O8nV8Eskng6fTC1ZySXAAcDRycZCvwCeDoJGuAAu4C3gtQVbckuQi4FXgMOMURnJIkaVylquZeIflt4KXd7C1V9Y2hVzWgycnJmpqaGnUZkiRJT5BkU1VNLnT7QZ6Ddg1wzUJ/QJIkSbvHVzZJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmOGFtCSnJNkR5Kb+9qel+SqJD/qvp/btSfJ55JsSXJjkiOGVZckSVLrhnkG7Vzgjbu0nQZcXVWrgau7eYBjgdXdZx1w1hDrkiRJatrQAlpVXQvcv0vzWmBDN70BOL6v/bzq+R5wUJLlw6pNkiSpZYt9D9qyqtreTd8LLOumVwD39K23tWt7kiTrkkwlmZqenh5epZIkSSMyskECVVVALWC79VU1WVWTExMTQ6hMkiRptBY7oN2389Jl972ja98GrOxb75CuTZIkaewsdkDbCJzUTZ8EXNbX/s5uNOdRwAN9l0IlSZLGyr7D2nGSC4CjgYOTbAU+AXwKuCjJycDdwAnd6pcDxwFbgEeAdw2rLkmSpNYNLaBV1dtmWfTaGdYt4JRh1SJJkrSU+CYBSZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkx+47iR5PcBTwEPA48VlWTSZ4H/A2wCrgLOKGqfjqK+iRJkkZplGfQfruq1lTVZDd/GnB1Va0Gru7mJUmSxk5LlzjXAhu66Q3A8aMrRZIkaXRGFdAK+FqSTUnWdW3Lqmp7N30vsGymDZOsSzKVZGp6enoxapUkSVpUI7kHDXh1VW1L8svAVUl+2L+wqipJzbRhVa0H1gNMTk7OuI4kSdJSNpIzaFW1rfveAVwKHAncl2Q5QPe9YxS1SZIkjdqiB7Qkz0xy4M5p4PXAzcBG4KRutZOAyxa7NkmSpBaM4hLnMuDSJDt//0tVdUWS7wMXJTkZuBs4YQS1SZIkjdyiB7SqugM4bIb2nwCvXex6JEmSWtPSYzYkSZKEAU2SJKk5BjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhqTqhp1DQuWZBq4GzgY+PGIy9HC2HdLk/22NNlvS5P9tjT9elUduNCN992TlSy2qpoASDJVVZOjrke7z75bmuy3pcl+W5rst6UpydRT2d5LnJIkSY0xoEmSJDVmbwlo60ddgBbMvlua7LelyX5bmuy3pekp9duSHiQgSZK0N9pbzqBJkiTtNZZ8QEvyxiS3J9mS5LRR16PZJbkryU1JNu8c3ZLkeUmuSvKj7vu5o65z3CU5J8mOJDf3tc3YT+n5XHf83ZjkiNFVPt5m6bdPJtnWHXObkxzXt+z0rt9uT/KG0VStJCuTXJPk1iS3JDm1a/eYa9gc/bbHjrklHdCS7AP8JXAscCjwtiSHjrYqzeO3q2pN35Dx04Crq2o1cHU3r9E6F3jjLm2z9dOxwOrusw44a5Fq1JOdy5P7DeDM7phbU1WXA3T/Tp4IvKTb5gvdv6dafI8BH6mqQ4GjgFO6/vGYa9ts/QZ76Jhb0gENOBLYUlV3VNX/BS4E1o64Ju2etcCGbnoDcPzoShFAVV0L3L9L82z9tBY4r3q+BxyUZPmiFKonmKXfZrMWuLCqHq2qO4Et9P491SKrqu1VdUM3/RBwG7ACj7mmzdFvs9ntY26pB7QVwD1981uZ+z8gjVYBX0uyKcm6rm1ZVW3vpu8Flo2mNM1jtn7yGGzfB7tLYef03UJgvzUoySrgcOA6POaWjF36DfbQMbfUA5qWlldX1RH0TtGfkuQ1/QurN6TYYcWNs5+WlLOAFwJrgO3AZ0ZajWaV5FnAJcCHq+rB/mUec+2aod/22DG31APaNmBl3/whXZsaVFXbuu8dwKX0Tu/et/P0fPe9Y3QVag6z9ZPHYMOq6r6qeryqfg58kV9cUrHfGpJkP3r/I39+VX25a/aYa9xM/bYnj7mlHtC+D6xO8oIkT6d3A97GEdekGSR5ZpIDd04DrwduptdfJ3WrnQRcNpoKNY/Z+mkj8M5uZNlRwAN9l2U0Yrvcm/Rmescc9PrtxCTPSPICejecX7/Y9ak3KhM4G7itqs7oW+Qx17DZ+m1PHnNL/WXpjyX5IHAlsA9wTlXdMuKyNLNlwKW9/06zL/ClqroiyfeBi5KcDNwNnDDCGgUkuQA4Gjg4yVbgE8CnmLmfLgeOo3fD6yPAuxa9YAGz9tvRSdbQuzx2F/BegKq6JclFwK30RqOdUlWPj6BswauAdwA3JdnctX0cj7nWzdZvb9tTx5xvEpAkSWrMUr/EKUmStNcxoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJWrKSPNx9r0ryB3t43x/fZf5/7Mn9S9JcDGiS9gargN0KaEnmew7kEwJaVb1yN2uSpAUzoEnaG3wK+K0km5P8yyT7JPl0ku93Ly1+L0CSo5N8O8lGeg+MJMl/TbIpyS1J1nVtnwIO6PZ3fte282xdun3fnOSmJG/t2/c3k1yc5IdJzu+eNi5Ju21Jv0lAkjqnAf+qqt4E0AWtB6rqZUmeAXw3yde6dY8AXlpVd3bz766q+5McAHw/ySVVdVqSD1bVmhl+6/fovQj5MODgbptru2WHAy8B/g74Lr2njX9nT/+xkvZ+nkGTtDd6Pb33FW4GrgOeT+/ddwDX94UzgA8l+QHwPXovM17N3F4NXNC9EPk+4FvAy/r2vbV7UfJmepdeJWm3eQZN0t4owL+oqiuf0JgcDfyfXeZ/B3hFVT2S5JvA/k/hdx/tm34c/42VtECeQZO0N3gIOLBv/krg/Un2A0jyoiTPnGG75wA/7cLZi4Gj+pb9487td/Ft4K3dfW4TwGuA6/fIXyFJHf/fnaS9wY3A492lynOBz9K7vHhDd6P+NHD8DNtdAbwvyW3A7fQuc+60HrgxyQ1V9fa+9kuBVwA/AAr411V1bxfwJGmPSFWNugZJkiT18RKnJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktSY/wehPTQGl0yUdAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:35.794658\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAFkCAYAAACUxcevAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaqklEQVR4nO3dfZBldX3n8fdHGIHoKCodahamMpYZ46K1DGQkiMZCiAqU7mDKIMRVfFjHB1xxY1zBraymdq2QMkp0E9kaF8KQRQiFskwhoohE1BWwYUceZZ3wUMzswLSiPCwJG8bv/nHPbC5td8+dZm7fX899v6pu3XN+5+F+259n/HjO+Z2TqkKSJEnteMaoC5AkSdJTGdAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGrP3qAt4Og444IBasWLFqMuQJEl6iptuuuknVTUx3+0XdUBbsWIFk5OToy5DkiTpKZLc93S29xKnJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0ZWkBLsm+SG5P8MMntSf64az8/yT1JNnafVV17knw+yaYktyQ5fFi1SZIktWzvIe77CeCYqnosyRLgu0m+1i37aFVdOm3944GV3ee3gHO6b0mSpLEytDNo1fNYN7uk+9Qcm6wBLui2ux7YP8myYdUnSZLUqqHeg5ZkryQbgW3A1VV1Q7foU91lzLOT7NO1HQTc37f55q5NkiRprAw1oFXV9qpaBRwMHJHkZcCZwEuAlwPPBz62K/tMsjbJZJLJqamp3V2yJEnSyC3IKM6q+jlwLXBcVW3tLmM+AfwVcES32hZged9mB3dt0/e1rqpWV9XqiYmJIVcuSZK08IY5inMiyf7d9H7Aa4Ef7bivLEmAE4Hbuk02AG/vRnMeCTxcVVuHVZ8kSVKrhjmKcxmwPsle9ILgJVV1RZJvJZkAAmwE3tetfyVwArAJeBx45xBrkyRJatbQAlpV3QIcNkP7MbOsX8Bpw6pHkiRpsfBNApIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUmKEFtCT7JrkxyQ+T3J7kj7v2Fya5IcmmJH+T5Jld+z7d/KZu+Yph1SZJktSyYZ5BewI4pqoOBVYBxyU5EvhT4Oyq+nXgZ8C7u/XfDfysaz+7W0+SJGnsDC2gVc9j3eyS7lPAMcClXft64MRuek03T7f82CQZVn2SJEmtGuo9aEn2SrIR2AZcDfwd8POqerJbZTNwUDd9EHA/QLf8YeAFw6xPkiSpRUMNaFW1vapWAQcDRwAvebr7TLI2yWSSyampqae7O0mSpOYsyCjOqvo5cC3wCmD/JHt3iw4GtnTTW4DlAN3y5wI/nWFf66pqdVWtnpiYGHbpkiRJC26YozgnkuzfTe8HvBa4k15Qe3O32qnA5d30hm6ebvm3qqqGVZ8kSVKr9t75KvO2DFifZC96QfCSqroiyR3AxUn+E/A/gXO79c8F/jrJJuAh4OQh1iZJktSsoQW0qroFOGyG9rvp3Y82vf0fgN8bVj2SJEmLhW8SkCRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYMHNCS/MowC5EkSVLPTgNakqOS3AH8qJs/NMkXhl6ZJEnSmBrkDNrZwOuBnwJU1Q+BVw+zKEmSpHE20CXOqrp/WtP2IdQiSZIkBgto9yc5CqgkS5L8IXDnzjZKsjzJtUnuSHJ7ktO79k8m2ZJkY/c5oW+bM5NsSnJXktfP+6+SJElaxPYeYJ33AZ8DDgK2AN8AThtguyeBj1TVzUmWAjclubpbdnZV/Vn/ykkOAU4GXgr8M+CbSV5cVZ6tkyRJY2WnAa2qfgK8dVd3XFVbga3d9KNJ7qQX8mazBri4qp4A7kmyCTgC+P6u/rYkSdJittOAluSvgJreXlXvGvRHkqwADgNuAF4JfDDJ24FJemfZfkYvvF3ft9lm5g50kiRJe6RB7kG7Avhq97kGeA7w2KA/kOTZwJeBD1fVI8A5wIuAVfTOsH1mVwpOsjbJZJLJqampXdlUkiRpURjkEueX++eTXAR8d5CdJ1lCL5xdWFVf6fb3YN/yL9ILgNC7v2153+YHd23T61kHrANYvXr1L53ZkyRJWuzm86qnlcCv7mylJAHOBe6sqs/2tS/rW+1NwG3d9Abg5CT7JHlh9zs3zqM+SZKkRW2Qe9AepXcPWrrvB4CPDbDvVwJvA25NsrFr+zhwSpJV3b7uBd4LUFW3J7kEuIPeCNDTHMEpSZLG0SCXOJfOZ8dV9V16oW66K+fY5lPAp+bze5IkSXuKWQNaksPn2rCqbt795UiSJGmuM2hzja4s4JjdXIskSZKYI6BV1WsWshBJkiT1DPKqJ5K8DDgE2HdHW1VdMKyiJEmSxtkgozg/ARxNL6BdCRxP7zloBjRJkqQhGOQ5aG8GjgUeqKp3AocCzx1qVZIkSWNskID291X1C+DJJM8BtvHUJ/5LkiRpNxrkHrTJJPsDXwRuovcezu8PsyhJkqRxNsiDaj/QTf6XJFcBz6mqW4ZbliRJ0vja6SXOJBuS/H6SZ1XVvYYzSZKk4RrkHrTPAK8C7khyaZI3J9l3ZxtJkiRpfga5xPlt4NtJ9qL39oD3AOcBzxlybZIkSWNp0AfV7ge8EXgLcDiwfphFSZIkjbNBHlR7CXAEcBXwF8C3u8duSJIkaQgGOYN2LnBKVW0fdjGSJEka7B60ry9EIZIkSeoZZBSnJEmSFpABTZIkqTGDjuI8CPi1/vWr6rphFSVJkjTOBhnF+af0Hq9xB7BjoEABBjRJkqQhGOQM2onAb1TVE0OuRZIkSQx2D9rdwJJhFyJJkqSeQc6gPQ5sTHIN8P/PolXVh4ZWlSRJ0hgbJKBt6D6SJElaAIM8qHZ9kmcCL+6a7qqqfxxuWZIkSeNrkFGcR9N7Ofq9QIDlSU71MRuSJEnDMcglzs8Ar6uquwCSvBi4CPjNYRYmSZI0rgYZxblkRzgDqKr/haM6JUmShmaQM2iTSf4r8N+6+bcCk8MrSZIkabwNEtDeD5wG7HisxneALwytIkmSpDE3yCjOJ4DPdh9JkiQN2az3oCW5pPu+Nckt0z8723GS5UmuTXJHktuTnN61Pz/J1Ul+3H0/r2tPks8n2dT9xuG764+UJElaTOY6g3Z69/2Gee77SeAjVXVzkqXATUmuBt4BXFNVZyU5AzgD+BhwPLCy+/wWcE73LUmSNFZmPYNWVVu7yQ9U1X39H+ADO9txVW2tqpu76UeBO4GDgDX0nqtG931iN70GuKB6rgf2T7JsPn+UJEnSYjbIYzZeO0Pb8bvyI0lWAIcBNwAH9oW/B4ADu+mDgPv7NtvctU3f19okk0kmp6amdqUMSZKkRWGue9Den+RW4CXT7j+7B7h10B9I8mzgy8CHq+qR/mVVVUDtSsFVta6qVlfV6omJiV3ZVJIkaVGY6x60LwFfA/6E3n1iOzxaVQ8NsvMkS+iFswur6itd84NJllXV1u4S5raufQuwvG/zg7s2SZKksTLXPWgPV9W9wOeAh/ruP3syyU5v3k8S4Fzgzqrqf0THBuDUbvpU4PK+9rd3ozmPBB7uuxQqSZI0Nga5B+0c4LG++ce6tp15JfA24JgkG7vPCcBZwGuT/Bj4nW4e4ErgbmAT8EUGGIggSZK0JxrkTQLp7hUDoKp+kWSQB9x+F8gsi4+dYf2i98YCSZKksTbIGbS7k3woyZLuczq9M12SJEkagkEC2vuAo+jdsL+Z3sNj1w6zKEmSpHE2yKXKbcDJC1CLJEmSGCCgJZkA3gOs6F+/qt41vLIkSZLG1yCDBC4HvgN8E9g+3HIkSZI0SED7lar62NArkSRJEjDYIIEruueXSZIkaQEMEtBOpxfS/j7JI0keTfLITreSJEnSvAwyinPpQhQiSZKknkFGcb56pvaqum73lyNJkqRBBgl8tG96X+AI4CbgmKFUJEmSNOYGucT5xv75JMuBPx9WQZIkSeNukEEC020G/vnuLkSSJEk9g9yD9p+B6mafAawCbh5iTZIkSWNtkHvQJvumnwQuqqrvDakeSZKksTdrQEtyTVUdCxzimwQkSZIWzlxn0JYlOQr4l0kuBtK/sKq8zClJkjQEcwW0/wD8EXAw8NlpywofsyFJkjQUswa0qroUuDTJH1XVf1zAmiRJksbaTh+zYTiTJElaWPN5DpokSZKGyIAmSZLUmJ0GtCR/PUibJEmSdo9BzqC9tH8myV7Abw6nHEmSJM0a0JKcmeRR4F8keaT7PApsAy5fsAolSZLGzKwBrar+pKqWAp+uqud0n6VV9YKqOnMBa5QkSRorg1zivCLJswCS/Kskn03ya0OuS5IkaWwNEtDOAR5PcijwEeDvgAuGWpUkSdIYGySgPVlVBawB/qKq/hJYOtyyJEmSxtdc7+Lc4dEkZwJvA347yTOAJcMtS5IkaXwNcgbtLcATwLuq6gF6L0//9FCrkiRJGmODvIvzAeBC4LlJ3gD8Q1Xt9B60JOcl2Zbktr62TybZkmRj9zmhb9mZSTYluSvJ6+f590iSJC16g7xJ4CTgRuD3gJOAG5K8eYB9nw8cN0P72VW1qvtc2f3GIcDJ9B6Kexzwhe6BuJIkSWNnkHvQ/j3w8qraBpBkAvgmcOlcG1XVdUlWDFjHGuDiqnoCuCfJJuAI4PsDbi9JkrTHGOQetGfsCGednw643Ww+mOSW7hLo87q2g4D7+9bZ3LX9kiRrk0wmmZyamnoaZUiSJLVpkKB1VZKvJ3lHkncAXwW+Ns/fOwd4EbAK2Ap8Zld3UFXrqmp1Va2emJiYZxmSJEnt2uklzqr6aJLfBV7VNa2rqsvm82NV9eCO6SRfBK7oZrcAy/tWPbhrkyRJGjtzvSz915O8EqCqvlJVf1BVfwBMJXnRfH4sybK+2TcBO0Z4bgBOTrJPkhcCK+kNTJAkSRo7c51B+3NgppeiP9wte+NcO05yEXA0cECSzcAngKOTrAIKuBd4L0BV3Z7kEuAO4EngtKraPvifIUmStOeYK6AdWFW3Tm+sqlsHGZ1ZVafM0HzuHOt/CvjUzvYrSZK0p5trkMD+cyzbbzfXIUmSpM5cAW0yyXumNyb518BNwytJkiRpvM11ifPDwGVJ3so/BbLVwDPp3eAvSZKkIZg1oHWPxDgqyWuAl3XNX62qby1IZZIkSWNqkOegXQtcuwC1SJIkiaf3yiZJkiQNgQFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMUMLaEnOS7ItyW19bc9PcnWSH3ffz+vak+TzSTYluSXJ4cOqS5IkqXXDPIN2PnDctLYzgGuqaiVwTTcPcDywsvusBc4ZYl2SJElNG1pAq6rrgIemNa8B1nfT64ET+9ovqJ7rgf2TLBtWbZIkSS1b6HvQDqyqrd30A8CB3fRBwP19623u2n5JkrVJJpNMTk1NDa9SSZKkERnZIIGqKqDmsd26qlpdVasnJiaGUJkkSdJoLXRAe3DHpcvue1vXvgVY3rfewV2bJEnS2FnogLYBOLWbPhW4vK/97d1oziOBh/suhUqSJI2VvYe14yQXAUcDByTZDHwCOAu4JMm7gfuAk7rVrwROADYBjwPvHFZdkiRJrRtaQKuqU2ZZdOwM6xZw2rBqkSRJWkx8k4AkSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNWbvUfxoknuBR4HtwJNVtTrJ84G/AVYA9wInVdXPRlGfJEnSKI3yDNprqmpVVa3u5s8ArqmqlcA13bwkSdLYaekS5xpgfTe9HjhxdKVIkiSNzqgCWgHfSHJTkrVd24FVtbWbfgA4cKYNk6xNMplkcmpqaiFqlSRJWlAjuQcNeFVVbUnyq8DVSX7Uv7CqKknNtGFVrQPWAaxevXrGdSRJkhazkZxBq6ot3fc24DLgCODBJMsAuu9to6hNkiRp1BY8oCV5VpKlO6aB1wG3ARuAU7vVTgUuX+jaJEmSWjCKS5wHApcl2fH7X6qqq5L8ALgkybuB+4CTRlCbJEnSyC14QKuqu4FDZ2j/KXDsQtcjSZLUmpYesyFJkiQMaJIkSc0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNSVWNuoZ5SzIF3AccAPxkxOVofuy7xcl+W5zst8XJflucfqOqls534713ZyULraomAJJMVtXqUdejXWffLU722+Jkvy1O9tvilGTy6WzvJU5JkqTGGNAkSZIas6cEtHWjLkDzZt8tTvbb4mS/LU722+L0tPptUQ8SkCRJ2hPtKWfQJEmS9hiLPqAlOS7JXUk2JTlj1PVodknuTXJrko07RrckeX6Sq5P8uPt+3qjrHHdJzkuyLcltfW0z9lN6Pt8df7ckOXx0lY+3Wfrtk0m2dMfcxiQn9C07s+u3u5K8fjRVK8nyJNcmuSPJ7UlO79o95ho2R7/ttmNuUQe0JHsBfwkcDxwCnJLkkNFWpZ14TVWt6hsyfgZwTVWtBK7p5jVa5wPHTWubrZ+OB1Z2n7XAOQtUo37Z+fxyvwGc3R1zq6rqSoDu38mTgZd223yh+/dUC+9J4CNVdQhwJHBa1z8ec22brd9gNx1zizqgAUcAm6rq7qr6v8DFwJoR16RdswZY302vB04cXSkCqKrrgIemNc/WT2uAC6rnemD/JMsWpFA9xSz9Nps1wMVV9URV3QNsovfvqRZYVW2tqpu76UeBO4GD8Jhr2hz9NptdPuYWe0A7CLi/b34zc/8HpNEq4BtJbkqytms7sKq2dtMPAAeOpjTtxGz95DHYvg92l8LO67uFwH5rUJIVwGHADXjMLRrT+g120zG32AOaFpdXVdXh9E7Rn5bk1f0Lqzek2GHFjbOfFpVzgBcBq4CtwGdGWo1mleTZwJeBD1fVI/3LPObaNUO/7bZjbrEHtC3A8r75g7s2NaiqtnTf24DL6J3efXDH6fnue9voKtQcZusnj8GGVdWDVbW9qn4BfJF/uqRivzUkyRJ6/yN/YVV9pWv2mGvcTP22O4+5xR7QfgCsTPLCJM+kdwPehhHXpBkkeVaSpTumgdcBt9Hrr1O71U4FLh9NhdqJ2fppA/D2bmTZkcDDfZdlNGLT7k16E71jDnr9dnKSfZK8kN4N5zcudH3qjcoEzgXurKrP9i3ymGvYbP22O4+5xf6y9CeTfBD4OrAXcF5V3T7isjSzA4HLev+dZm/gS1V1VZIfAJckeTdwH3DSCGsUkOQi4GjggCSbgU8AZzFzP10JnEDvhtfHgXcueMECZu23o5Osond57F7gvQBVdXuSS4A76I1GO62qto+gbMErgbcBtybZ2LV9HI+51s3Wb6fsrmPONwlIkiQ1ZrFf4pQkSdrjGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJC1aSR7rvlck+f3dvO+PT5v/H7tz/5I0FwOapD3BCmCXAlqSnT0H8ikBraqO2sWaJGneDGiS9gRnAb+dZGOSf5tkrySfTvKD7qXF7wVIcnSS7yTZQO+BkST570luSnJ7krVd21nAft3+LuzadpytS7fv25LcmuQtffv+2ySXJvlRkgu7p41L0i5b1G8SkKTOGcAfVtUbALqg9XBVvTzJPsD3knyjW/dw4GVVdU83/66qeijJfsAPkny5qs5I8sGqWjXDb/0uvRchHwoc0G1zXbfsMOClwP8GvkfvaePf3d1/rKQ9n2fQJO2JXkfvfYUbgRuAF9B79x3AjX3hDOBDSX4IXE/vZcYrmdurgIu6FyI/CHwbeHnfvjd3L0reSO/SqyTtMs+gSdoTBfg3VfX1pzQmRwP/Z9r87wCvqKrHk/wtsO/T+N0n+qa347+xkubJM2iS9gSPAkv75r8OvD/JEoAkL07yrBm2ey7wsy6cvQQ4sm/ZP+7YfprvAG/p7nObAF4N3Lhb/gpJ6vj/7iTtCW4BtneXKs8HPkfv8uLN3Y36U8CJM2x3FfC+JHcCd9G7zLnDOuCWJDdX1Vv72i8DXgH8ECjg31XVA13Ak6TdIlU16hokSZLUx0uckiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJj/h/jbSSPVptvAQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:03:36.103659\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAFkCAYAAACUxcevAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAawUlEQVR4nO3df/BddX3n8edLiEIVReVrJhtC49hYF50SMCKidRBWBUY32LEItcooa/yBK+64VnCnq52us3ZcoHVb2Y0LJXQRmgFZMixFEVHUXcDARn7KGvkxJA0kikJYWrbge/+4J9tL+P64Cd/7vZ9v7vMxc+ee8zk/7vvrxxNfnnM+56SqkCRJUjueM+oCJEmS9HQGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTG7D3qAp6NAw44oJYuXTrqMiRJkp7m5ptv/llVTezu9vM6oC1dupT169ePugxJkqSnSXL/s9neS5ySJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNWZoAS3JPkluSvKjJHck+aOu/YIk9ybZ0H2Wd+1J8uUkG5PcmuSwYdUmSZLUsr2HuO8ngKOr6rEkC4DvJ/mbbtmnq+rSndY/DljWfV4PnNt9S5IkjZWhnUGrnse62QXdp6bZZCVwYbfdDcD+SRYNqz5JkqRWDfUetCR7JdkAbAWuqaobu0Vf6C5jnpPkeV3bYuCBvs03dW2SJEljZagBraqeqqrlwIHA4UleA5wJvAp4HfAS4DO7ss8kq5KsT7J+27Zts12yJEnSyM3JKM6q+iVwHXBsVW3pLmM+AfwlcHi32mZgSd9mB3ZtO+9rdVWtqKoVExMTQ65ckiRp7g1zFOdEkv276X2BtwI/3nFfWZIAJwC3d5usA97fjeY8AnikqrYMqz5JkqRWDXMU5yJgTZK96AXBtVV1ZZJvJ5kAAmwAPtKtfxVwPLAReBz4wBBrkyRJatbQAlpV3QocOkn70VOsX8Bpw6pHkiRpvvBNApIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUmKEFtCT7JLkpyY+S3JHkj7r2lye5McnGJH+d5Lld+/O6+Y3d8qXDqk2SJKllwzyD9gRwdFUdAiwHjk1yBPAnwDlV9RvAL4BTu/VPBX7RtZ/TrSdJkjR2hhbQquexbnZB9yngaODSrn0NcEI3vbKbp1t+TJIMqz5JkqRWDfUetCR7JdkAbAWuAX4K/LKqnuxW2QQs7qYXAw8AdMsfAV46yT5XJVmfZP22bduGWb4kSdJIDDWgVdVTVbUcOBA4HHjVLOxzdVWtqKoVExMTz3Z3kiRJzZmTUZxV9UvgOuANwP5J9u4WHQhs7qY3A0sAuuUvAn4+F/VJkiS1ZJijOCeS7N9N7wu8FbiLXlB7d7faKcAV3fS6bp5u+berqoZVnyRJUqv2nnmV3bYIWJNkL3pBcG1VXZnkTuCSJP8O+F/Aed365wF/lWQj8DBw0hBrkyRJatbQAlpV3QocOkn7PfTuR9u5/e+B3x1WPZIkSfOFbxKQJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxgwc0JL82jALkSRJUs+MAS3JkUnuBH7czR+S5CtDr0ySJGlMDXIG7Rzg7cDPAarqR8Cbh1mUJEnSOBvoEmdVPbBT01MzbZNkSZLrktyZ5I4kp3ftn0+yOcmG7nN83zZnJtmY5O4kb9+lv0SSJGkPsfcA6zyQ5EigkiwATgfuGmC7J4FPVdUtSfYDbk5yTbfsnKr6D/0rJzkYOAl4NfBPgG8leWVVzRgGJUmS9iSDnEH7CHAasBjYDCzv5qdVVVuq6pZueju9ULd4mk1WApdU1RNVdS+wETh8gPokSZL2KDMGtKr6WVW9t6oWVtXLqur3q+rnu/IjSZYChwI3dk0fT3JrkvOTvLhrWwz0X0rdxPSBTpIkaY804yXOJH8J1M7tVfXBQX4gyQuAy4BPVtWjSc4F/rjb5x8DZwED7avb3ypgFcBBBx006GaSJEnzxiD3oF3ZN70P8C7gbwfZeXfP2mXARVX1dYCqeqhv+Vf79r8ZWNK3+YFd29NU1WpgNcCKFSueERwlSZLmuxkDWlVd1j+f5GLg+zNtlyTAecBdVXV2X/uiqtrSzb4LuL2bXgd8LcnZ9AYJLANuGuSPkCRJ2pMMcgZtZ8uAlw2w3huB9wG3JdnQtX0WODnJcnqXOO8DPgxQVXckWQvcSW8E6GmO4JQkSeNokHvQttMLU+m+HwQ+M9N2VfX9bpudXTXNNl8AvjDTviVJkvZkg1zi3G8uCpEkSVLPlAEtyWHTbbjjGWeSJEmaXdOdQTtrmmUFHD3LtUiSJIlpAlpVvWUuC5EkSVLPQKM4k7wGOJjec9AAqKoLh1WUJEnSOBtkFOfngKPoBbSrgOPoPQfNgCZJkjQEg7ws/d3AMcCDVfUB4BDgRUOtSpIkaYwNEtD+rqp+BTyZ5IXAVp7+SiZJkiTNokHuQVufZH/gq8DNwGPA/xxmUZIkSeNskAfVfqyb/E9JrgZeWFW3DrcsSZKk8TXjJc4k65L8XpLnV9V9hjNJkqThGuQetLOANwF3Jrk0ybuT7DPTRpIkSdo9g1zi/C7w3SR70Xt7wIeA84EXDrk2SZKksTTog2r3Bd4JvAc4DFgzzKIkSZLG2SAPql0LHA5cDfw58N3usRuSJEkagkHOoJ0HnFxVTw27GEmSJA12D9o35qIQSZIk9QwyilOSJElzyIAmSZLUmEFHcS4Gfr1//aq6flhFSZIkjbNBRnH+Cb3Ha9wJ7BgoUIABTZIkaQgGOYN2AvCbVfXEkGuRJEkSg92Ddg+wYNiFSJIkqWeQM2iPAxuSXAv8/7NoVfWJoVUlSZI0xgYJaOu6jyRJkubAIA+qXZPkucAru6a7q+ofhluWJEnS+BpkFOdR9F6Ofh8QYEmSU3zMhiRJ0nAMconzLOBtVXU3QJJXAhcDrx1mYZIkSeNqkFGcC3aEM4Cq+t84qlOSJGloBjmDtj7JfwH+azf/XmD98EqSJEkab4MEtI8CpwE7HqvxPeArQ6tIkiRpzM14ibOqnqiqs6vqd7rPOYO8VSDJkiTXJbkzyR1JTu/aX5LkmiQ/6b5f3LUnyZeTbExya5LDnv2fJ0mSNP9MGdCSrO2+b+sC09M+A+z7SeBTVXUwcARwWpKDgTOAa6tqGXBtNw9wHLCs+6wCzt3tv0qSJGkem+4S5+nd9zt2Z8dVtQXY0k1vT3IXsBhYCRzVrbYG+A7wma79wqoq4IYk+ydZ1O1HkiRpbEx5Bq0vGH2squ7v/wAf25UfSbIUOBS4EVjYt+8HgYXd9GLggb7NNnVtkiRJY2WQx2y8dZK24wb9gSQvAC4DPllVj/Yv686W1aD76va3Ksn6JOu3bdu2K5tKkiTNC9Pdg/bRJLcBr9rp/rN7gdsG2XmSBfTC2UVV9fWu+aEki7rli4CtXftmYEnf5gd2bU9TVaurakVVrZiYmBikDEmSpHllujNoXwPeCVzRfe/4vLaq3jvTjpMEOA+4q6rO7lu0Djilmz6l2/+O9vd3ozmPAB7x/jNJkjSOphwkUFWPAI8k+TPg4araDpDkhUleX1U3zrDvNwLvA25LsqFr+yzwRWBtklOB+4ETu2VXAccDG4HHgQ/s3p8kSZI0vw3yoNpzgf5nkj02SdszVNX36b1cfTLHTLJ+0XsgriRJ0lgbZJBAuvAEQFX9isGCnSRJknbDIAHtniSfSLKg+5wO3DPswiRJksbVIAHtI8CR9EZUbgJeT+9J/5IkSRqCGS9VVtVW4KQ5qEWSJEkMENCSTAAfApb2r19VHxxeWZIkSeNrkJv9rwC+B3wLeGq45UiSJGmQgPZrVfWZoVciSZIkYLBBAlcmOX7olUiSJAkYLKCdTi+k/V2SR5NsT/LojFtJkiRptwwyinO/uShEkiRJPYOM4nzzZO1Vdf3slyNJkqRBBgl8um96H+Bw4Gbg6KFUJEmSNOYGucT5zv75JEuAPx1WQZIkSeNukEECO9sE/NPZLkSSJEk9g9yD9h+B6mafAywHbhliTZIkSWNtkHvQ1vdNPwlcXFU/GFI9kiRJY2/KgJbk2qo6BjjYNwlIkiTNnenOoC1KciTwz5NcAqR/YVV5mVOSJGkIpgto/xb4Q+BA4OydlhU+ZkOSJGkopgxoVXUpcGmSP6yqP57DmiRJksbajI/ZMJxJkiTNrd15DpokSZKGyIAmSZLUmBkDWpK/GqRNkiRJs2OQM2iv7p9Jshfw2uGUI0mSpCkDWpIzk2wHfivJo91nO7AVuGLOKpQkSRozUwa0qvr3VbUf8KWqemH32a+qXlpVZ85hjZIkSWNlkEucVyZ5PkCS309ydpJfH3JdkiRJY2uQgHYu8HiSQ4BPAT8FLhxqVZIkSWNskID2ZFUVsBL486r6C2C/4ZYlSZI0vqZ7F+cO25OcCbwP+O0kzwEWDLcsSZKk8TXIGbT3AE8AH6yqB+m9PP1LM22U5PwkW5Pc3tf2+SSbk2zoPsf3LTszycYkdyd5+278LZIkSXuEQd7F+SBwEfCiJO8A/r6qBrkH7QLg2Enaz6mq5d3nKoAkBwMn0Xvm2rHAV7rnrUmSJI2dQd4kcCJwE/C7wInAjUnePdN2VXU98PCAdawELqmqJ6rqXmAjcPiA20qSJO1RBrkH7d8Ar6uqrQBJJoBvAZfu5m9+PMn7gfXAp6rqF8Bi4Ia+dTZ1bc+QZBWwCuCggw7azRIkSZLaNcg9aM/ZEc46Px9wu8mcC7wCWA5sAc7a1R1U1eqqWlFVKyYmJnazDEmSpHYNcgbt6iTfAC7u5t8D/M3u/FhVPbRjOslXgSu72c3Akr5VD+zaJEmSxs4ggwQ+Dfxn4Le6z+qq+oPd+bEki/pm3wXsGOG5DjgpyfOSvBxYRu++N0mSpLEz5Rm0JL8BLKyqH1TV14Gvd+1vSvKKqvrpdDtOcjFwFHBAkk3A54CjkiwHCrgP+DBAVd2RZC1wJ/AkcFpVPfUs/zZJkqR5abpLnH8KTPZS9Ee6Ze+cbsdVdfIkzedNs/4XgC9Mt09JkqRxMN0lzoVVddvOjV3b0qFVJEmSNOamC2j7T7Ns31muQ5IkSZ3pAtr6JB/auTHJvwBuHl5JkiRJ4226e9A+CVye5L38YyBbATyX3ghMSZIkDcGUAa17ZtmRSd4CvKZr/u9V9e05qUySJGlMzfig2qq6DrhuDmqRJEkSu//KJkmSJA2JAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhoztICW5PwkW5Pc3tf2kiTXJPlJ9/3irj1JvpxkY5Jbkxw2rLokSZJaN8wzaBcAx+7UdgZwbVUtA67t5gGOA5Z1n1XAuUOsS5IkqWlDC2hVdT3w8E7NK4E13fQa4IS+9gur5wZg/ySLhlWbJElSy+b6HrSFVbWlm34QWNhNLwYe6FtvU9cmSZI0dkY2SKCqCqhd3S7JqiTrk6zftm3bECqTJEkarbkOaA/tuHTZfW/t2jcDS/rWO7Bre4aqWl1VK6pqxcTExFCLlSRJGoW5DmjrgFO66VOAK/ra39+N5jwCeKTvUqgkSdJY2XtYO05yMXAUcECSTcDngC8Ca5OcCtwPnNitfhVwPLAReBz4wLDqkiRJat3QAlpVnTzFomMmWbeA04ZViyRJ0nzimwQkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU2SJKkxBjRJkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTF7j+JHk9wHbAeeAp6sqhVJXgL8NbAUuA84sap+MYr6JEmSRmmUZ9DeUlXLq2pFN38GcG1VLQOu7eYlSZLGTkuXOFcCa7rpNcAJoytFkiRpdEYV0Ar4ZpKbk6zq2hZW1ZZu+kFg4WhKkyRJGq2R3IMGvKmqNid5GXBNkh/3L6yqSlKTbdgFulUABx100PArlSRJmmMjOYNWVZu7763A5cDhwENJFgF031un2HZ1Va2oqhUTExNzVbIkSdKcmfOAluT5SfbbMQ28DbgdWAec0q12CnDFXNcmSZLUglFc4lwIXJ5kx+9/raquTvJDYG2SU4H7gRNHUJskSdLIzXlAq6p7gEMmaf85cMxc1yNJktSalh6zIUmSJAxokiRJzTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktQYA5okSVJjDGiSJEmNMaBJkiQ1xoAmSZLUGAOaJElSYwxokiRJjTGgSZIkNcaAJkmS1BgDmiRJUmMMaJIkSY0xoEmSJDXGgCZJktSYVNWoa9htSbYB9wMHAD8bcTnaPfbd/GS/zU/22/xkv81Pv1lV++3uxnvPZiVzraomAJKsr6oVo65Hu86+m5/st/nJfpuf7Lf5Kcn6Z7O9lzglSZIaY0CTJElqzJ4S0FaPugDtNvtufrLf5if7bX6y3+anZ9Vv83qQgCRJ0p5oTzmDJkmStMeY9wEtybFJ7k6yMckZo65HU0tyX5LbkmzYMbolyUuSXJPkJ933i0dd57hLcn6SrUlu72ubtJ/S8+Xu+Ls1yWGjq3y8TdFvn0+yuTvmNiQ5vm/ZmV2/3Z3k7aOpWkmWJLkuyZ1J7khyetfuMdewafpt1o65eR3QkuwF/AVwHHAwcHKSg0dblWbwlqpa3jdk/Azg2qpaBlzbzWu0LgCO3altqn46DljWfVYB585RjXqmC3hmvwGc0x1zy6vqKoDu38mTgFd323yl+/dUc+9J4FNVdTBwBHBa1z8ec22bqt9glo65eR3QgMOBjVV1T1X9X+ASYOWIa9KuWQms6abXACeMrhQBVNX1wMM7NU/VTyuBC6vnBmD/JIvmpFA9zRT9NpWVwCVV9URV3QtspPfvqeZYVW2pqlu66e3AXcBiPOaaNk2/TWWXj7n5HtAWAw/0zW9i+v+ANFoFfDPJzUlWdW0Lq2pLN/0gsHA0pWkGU/WTx2D7Pt5dCju/7xYC+61BSZYChwI34jE3b+zUbzBLx9x8D2iaX95UVYfRO0V/WpI39y+s3pBihxU3zn6aV84FXgEsB7YAZ420Gk0pyQuAy4BPVtWj/cs85to1Sb/N2jE33wPaZmBJ3/yBXZsaVFWbu++twOX0Tu8+tOP0fPe9dXQVahpT9ZPHYMOq6qGqeqqqfgV8lX+8pGK/NSTJAnr/I39RVX29a/aYa9xk/Tabx9x8D2g/BJYleXmS59K7AW/diGvSJJI8P8l+O6aBtwG30+uvU7rVTgGuGE2FmsFU/bQOeH83suwI4JG+yzIasZ3uTXoXvWMOev12UpLnJXk5vRvOb5rr+tQblQmcB9xVVWf3LfKYa9hU/Tabx9x8f1n6k0k+DnwD2As4v6ruGHFZmtxC4PLef6fZG/haVV2d5IfA2iSnAvcDJ46wRgFJLgaOAg5Isgn4HPBFJu+nq4Dj6d3w+jjwgTkvWMCU/XZUkuX0Lo/dB3wYoKruSLIWuJPeaLTTquqpEZQteCPwPuC2JBu6ts/iMde6qfrt5Nk65nyTgCRJUmPm+yVOSZKkPY4BTZIkqTEGNEmSpMYY0CRJkhpjQJMkSWqMAU3SvJXkse57aZLfm+V9f3an+f8xm/uXpOkY0CTtCZYCuxTQksz0HMinBbSqOnIXa5Kk3WZAk7Qn+CLw20k2JPlXSfZK8qUkP+xeWvxhgCRHJfleknX0HhhJkv+W5OYkdyRZ1bV9Edi3299FXduOs3Xp9n17ktuSvKdv399JcmmSHye5qHvauCTtsnn9JgFJ6pwB/OuqegdAF7QeqarXJXke8IMk3+zWPQx4TVXd281/sKoeTrIv8MMkl1XVGUk+XlXLJ/mt36H3IuRDgAO6ba7vlh0KvBr4W+AH9J42/v3Z/mMl7fk8gyZpT/Q2eu8r3ADcCLyU3rvvAG7qC2cAn0jyI+AGei8zXsb03gRc3L0Q+SHgu8Dr+va9qXtR8gZ6l14laZd5Bk3SnijAv6yqbzytMTkK+D87zf8z4A1V9XiS7wD7PIvffaJv+in8N1bSbvIMmqQ9wXZgv775bwAfTbIAIMkrkzx/ku1eBPyiC2evAo7oW/YPO7bfyfeA93T3uU0AbwZumpW/QpI6/r87SXuCW4GnukuVFwB/Ru/y4i3djfrbgBMm2e5q4CNJ7gLupneZc4fVwK1Jbqmq9/a1Xw68AfgRUMAfVNWDXcCTpFmRqhp1DZIkSerjJU5JkqTGGNAkSZIaY0CTJElqjAFNkiSpMQY0SZKkxhjQJEmSGmNAkyRJaowBTZIkqTH/DyzPPZCGxmWSAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "#WYKRESY FUNKCJI KOSZTU\n", "for fig in cost_fun_slices:\n", " cost_x, cost_y = fig\n", " fig = plot_data_cost(cost_x, cost_y, \"Iteration\", \"Cost function value\")" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " age sex bmi children smoker region charges\n", "319 32 male 37.335 1 no northeast 4667.60765\n", "832 28 female 23.845 2 no northwest 4719.73655\n", "79 41 female 32.965 0 no northwest 6571.02435\n", "74 44 male 27.400 2 no southwest 7726.85400\n", "603 64 female 39.050 3 no southeast 16085.12750\n", ".. ... ... ... ... ... ... ...\n", "328 64 female 33.800 1 yes southwest 47928.03000\n", "447 56 female 25.650 0 no northwest 11454.02150\n", "320 34 male 25.270 1 no northwest 4894.75330\n", "575 58 female 27.170 0 no northwest 12222.89830\n", "756 39 female 22.800 3 no northeast 7985.81500\n", "\n", "[1338 rows x 7 columns]" ], "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
agesexbmichildrensmokerregioncharges
31932male37.3351nonortheast4667.60765
83228female23.8452nonorthwest4719.73655
7941female32.9650nonorthwest6571.02435
7444male27.4002nosouthwest7726.85400
60364female39.0503nosoutheast16085.12750
........................
32864female33.8001yessouthwest47928.03000
44756female25.6500nonorthwest11454.02150
32034male25.2701nonorthwest4894.75330
57558female27.1700nonorthwest12222.89830
75639female22.8003nonortheast7985.81500
\n

1338 rows × 7 columns

\n
" }, "metadata": {}, "execution_count": 60 } ], "source": [ "data_ins = pandas.read_csv('insurance.csv')\n", "data_ins = data_ins.sample(frac=1)\n", "data_ins" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "data_ins = data_ins[['age', 'charges']]\n", "data_ins_train = data_ins[0:1200]\n", "data_ins_test = data_ins[1200:]\n", "data_ins_train = np.matrix(data_ins_train).astype(float)\n", "data_ins_test = np.matrix(data_ins_test).astype(float)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Wielomian 1 stopnia, MSE = 164742254.38173005\n", "Wielomian 2 stopnia, MSE = 165462756.34970585\n", "Wielomian 3 stopnia, MSE = 165419346.88711548\n" ] }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:56.575016\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAFkCAYAAABLi72wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABhY0lEQVR4nO3deZyU1Z3v8c/pfQVk37rbDSVoXBGaxGzquBBNjAu4NDK53vFO1EzESUbM3HtnXpNMJJmJGTNqEl/M3CAoi4iKiiEaNQkzNAgqiopCjEU3u6zN0vu5f5wquuh+quqp6lq7v+/Xq1/d/dTz1HOqCvDnOef3+xlrLSIiIiKSm/IyPQARERERSZyCOREREZEcpmBOREREJIcpmBMRERHJYQrmRERERHKYgjkRERGRHFaQ6QGk29ChQ+3JJ5+c6WGIiKRGYyPs2hX58ZEjYcyY9I1HRHxbv379p9baYfFe1++CuZNPPpl169ZlehgiIqkxdy7ccw8cOdLzsfJy+OEP4fbb0z4sEYnNGBNI5Dots4qIpENTkwu07rvPfW9qSs19pk+HvAj/tOflucdFpE/pdzNzIiJpt2oVTJ0KnZ1uxqy8HO69F1asgIsvTu69Kivd83a/X16eO15Rkdz7iUjGKZgTEUmlpiYXWIXPxIWWQKdOhe3bkx9gXXyxe97Fi2HLFjj9dDcjp0BOpE9SMCcikkqLF7sZMi+dne7xVOxhq6jQ3jiRfkJ75kREUmnzZu9kBHDHt2xJ73hEpM9RMCcikkrjxrk9a17Ky90SqIhILyiYExFJJWWXikiKKZgTEUmlUHZpZWXXDF15eddxJSWISC8pAUJEJNWUXSoiKaRgTkQkHZRdKiIpomVWERERkRymYE5EREQkh2mZVUQklzU1ub14mze7MijTp7vkChHpN1I6M2eMGWSMWWqM2WSM+cAYM8UYM9gY87IxZnPw+0nBc40x5ufGmC3GmHeMMReEPc/M4PmbjTEzw45faIx5N3jNz40xJpWvR0Qkq6xaBWPGwD33wE9+4r6PGeOOi0i/kepl1oeA31hrxwPnAh8As4HfWWvHAb8L/g5wFTAu+HUH8AsAY8xg4B+AycAk4B9CAWDwnL8Ku+7KFL8eEZHsEN7zNdRh4siRruOHD2d2fCKSNikL5owxA4EvAv8BYK1ttdYeAL4OzAueNg+4Nvjz14HHrVMPDDLGjAKuAF621u6z1u4HXgauDD42wFpbb621wONhzyUi0rf56fkqIv1CKmfmTgH2AP/PGPOWMWauMaYcGGGt3RE8ZycwIvjzGKAh7PrG4LFoxxs9jvdgjLnDGLPOGLNuz549vXxZIiJZQD1fRSQolcFcAXAB8Atr7fnAEbqWVAEIzqjZFI4hdJ/HrLUTrbUThw0blurbiYiknnq+ikhQKoO5RqDRWrsm+PtSXHC3K7hESvD77uDj24CqsOvHBo9FOz7W47iISN+nnq8iEpSyYM5auxNoMMacGTx0KfA+sBwIZaTOBJ4L/rwcuC2Y1VoLHAwux64ELjfGnBRMfLgcWBl87JAxpjaYxXpb2HOJiPRt6vkqIkGprjP3beAJY0wR8DHwTVwAucQYczsQAKYFz10BTAW2AEeD52Kt3WeM+QHwRvC8f7LW7gv+fCfwa6AUeCn4JSJ9nWqrOer5KiKAcdvW+o+JEyfadevWZXoYIpKoVatc6Y3OTrfRv7zcLSuuWOGCGxGRHGWMWW+tnRjvdWrnJSK5Q7XVRER6UDAnIrlDtdVERHpQMCciuUO11UREelAwJyK5Q7XVRER6UDAnIrlDtdVERHpQMCciuUO11UREekh1nTkRkeRSbTURkRMomBOR3FNRAbffnulRiIhkBS2zioiIiOQwBXMiIiIiOUzBnIiIiEgOUzAnIiIiksMUzImIiIjkMAVzIiIiIjlMwZyIiIhIDlMwJyIiIpLDFMyJiIiI5DAFcyIiIiI5TMGciIiISA5TMCciIiKSwxTMiYiIiOQwBXMiIiIiOUzBnIiIiEgOUzAnIiIiksMUzImIiIjkMAVzIiIiIjlMwZyIiIhIDivI9ABERCTLNTXB4sWweTOMGwfTp0NlZaZHJSJBCuZERCSyVatg6lTo7IQjR6C8HO69F1asgIsvzvToRAQts4qISCRNTS6Qa2pygRy476Hjhw9ndnwiAiiYExGRSBYvdjNyXjo73eMiknEK5kRExNvmzV0zct0dOQJbtqR3PCLiScGciIh4GzfO7ZHzUl4Op5+e3vGIiCcFcyIi4m36dMiL8J+JvDz3uIhknLJZRSS7qAxG9qisdFmr3bNZ8/Lc8YqKTI9QRFAwJyLZRGUwss/FF8P27S7A3rLFLa1On65ATiSLGGttpseQVhMnTrTr1q3L9DBEpLumJhgzxn3vrrLSBRQKIESkDzPGrLfWToz3Ou2ZE5HsoDIYIiIJUTAnItlBZTBERBKiYE5EsoPKYIiIJETBnIhkB5XBEBFJSEqDOWPMJ8aYd40xbxtj1gWPDTbGvGyM2Rz8flLwuDHG/NwYs8UY844x5oKw55kZPH+zMWZm2PELg8+/JXitSeXrEZEUCpXBqKzsmqErL+86ruQHERFP6ShN8hVr7adhv88GfmetnWOMmR38/T7gKmBc8Gsy8AtgsjFmMPAPwETAAuuNMcuttfuD5/wVsAZYAVwJvJSG1yQiqaAyGH2H6gWKpE0m6sx9Hfhy8Od5wOu4YO7rwOPW1UqpN8YMMsaMCp77srV2H4Ax5mXgSmPM68AAa2198PjjwLUomBPJbRUVcPvtmR6F9IbqBYqkVar3zFngt8aY9caYO4LHRlhrdwR/3gmMCP48BmgIu7YxeCza8UaP4z0YY+4wxqwzxqzbs2dPb16PiIhE09TkArmmpq7s5CNHuo4fPpzZ8Yn0QakO5i621l6AW0K9yxjzxfAHg7NwKa9abK19zFo70Vo7cdiwYam+nYhI7mtqgrlz4b773HevYs5eVC9QJO1Susxqrd0W/L7bGPMMMAnYZYwZZa3dEVxG3R08fRtQFXb52OCxbXQty4aOvx48PtbjfBER6Y1El0mbmmDpUtULFEmzlAVzxphyIM9a2xT8+XLgn4DlwExgTvD7c8FLlgN3G2MW4RIgDgYDvpXAj0JZr8Hnud9au88Yc8gYU4tLgLgN+PdUvR4RkZziNwGh+3lTp3Ytk4aEgrNLLoEHH4TrrnOBXfhzb9jgrmttjTwm1QsUSYmU9WY1xpwKPBP8tQB40lr7z8aYIcASoBoIANOCgZkBHsZlpB4FvmmtDZUz+R/A94PP9c/W2v8XPD4R+DVQikt8+LaN8YLUm1VE+jyvmbW8vJ4za17ndXS4x5qbvZ+7sBDa2qCkxJ1TXg7GuOuOHYs+LvXYFYkq0d6sKQvmspWCORHp05qaYMwY7z1u4cFUtPOSragIiouVzSoSQ6LBnDpAiIj0JX4TEKKdl2yXXuqCSAVyIimhYE5EpC/ZvNlfAkK085KpvByuv15LqyIppGBORKQvGTeuqx1ad+EJCNHOKypK3njUV1ck5RTMiYjkmmg14KZPdwGUl/DAKtp50TJSIykrc7Nv6qsrknaZaOclIiKJilUDLhRARcpmDQVWXuf5kZ/flfEa7l/+Bb7xDZg9Gz78EE49FS64AJ5/HjZtUm9WkRRSNquISK7wm6kKrm3W4sVuj9zpp7tgymuG7PBhmDfPBYR+ZuTy8rwTJ0pLXaDX1gYtLSc+Fqk0ioicINFsVs3MiYjkCj+Zqrff7n6vqOj6OZqKClc2pLAwdjBXXAzWep8XrcZcaNZv6lTVmRNJAe2ZExHJFbEyVd9/P7F+qn4zWyMFcn61tak3q0gKaGZORCRXhDJQvQKvkhJ45BEoKIivn2qs54Wuor/f+hb8/OeRu0PE0tzsAk4RSSoFcyLSv/ntYZrM5070ntOnuwDNSyjACu1Xi2dpM9rzFhXBAw+47x98kHggF7J3b++uF5EeFMyJSP8VKzM0Fc89Z47L+EzknpWV7vq77ur5WFGR9xJo9710kZ43UgZs9/H21pAhvX8OETmBgjkR6Z+amlzwEr6vrLcb9UMzbhs3wq9+deIsVui5uwdi4ff88EN48cXIM3ZNTS6w8hJpL1t414doLr7YvebwDNipU+HMM5PXv7WkBCZMSM5zichxCuZEpH+KJzPUj+4zcfFqa3O12fLzI8/YJdJPNbzrQyzdM2Dnzk1u/9bCQnWDEEkBBXMi0j/57WHqh9csX7y670XzmiVMpJ9qb9ppJdq/NS/PBW7hyRjdixaLSNIomBOR/ilaBmc8s1mQ2IyZX+GzhLGyWa1NbgAVK8s1ktJS+PGP3ZhiFS0WkV5TMCci/VO0DM54Z7MSncHyI3yWMNqYCwvho4/cnrtkBVDR7heprVdozI2NLgtWRFJORYNFpH8KZXBWVva+OXxoBiua0HM/8kjPexYXu1msSNeFZgljjXnkSDeD98AD7ntvZ8JC2bNepk+P/JrjndkUkV5Rb1YR6d/89jCNJlrP1OJil8E6YULXc3e/Z7Ss0e49VwF27OhqaH/mmS7gGjUqvjH39nWF94D1M2YRiUm9WUVEEuG3h2k00eq0edWP87pntOvDg6JVq+Cqq7oa2r/9NixbBi+9FL1OXSKFiqPtBbQW7r4bHn009phFJKUUzImIJINXnTY/s3zhQdaPfgTGuP1mXtc3NcEVV8DRo13HWlrc1xVXwK5d3vdLtDhyrIxfYxJ7zSKSVArmRKTvSmWrrmTcwyvIijSbBzBv3omBXLijR93j3YsSRyuOfOml8NOfwsyZ3mP2k/GbjJlNEekV7ZkTkb4pWqB07rnJCfLiDcbCRduPFmnP2ZVXwsqVkZ/zqqvcvcPNnQv33BN5hq2oyO3r8xpzImMUkYQlumdO2awi0veEz0aFgpgjR7qWKUePdgHOT37ivo8Z4wKzZN1j6lTvxIBwfjpQJEOssimtrW7Ml1wCDz98YuCWzIxfEUkZBXMi0vdEC5SOHnWBViIBmN97+AnGEulAcfXV0Z/zq1/tecxP2RRwCRXf/W7PwDa0F/Chh1wG7UMPud9jzTyKSNoomBORvieRIr7xzob1th1YtCArUp22mTNddwUvpaVw3XVuWfW++9z3pia3hJzn85/6lhbvwDa0Ly5Z9etEJKkUzIlI3+N3NipcvP1Y/QRjTU09g6uQaEFWpA4UlZXw29+6YKqoyB0rKnK//+u/uppz3ZePN2zoWiotLvb32pK5zCsiKadsVhHpe6K1oYok3q4FsdqBVVW5YCqUHFFW5uqyXX89fOUr7vo5c3pmn4I73n32Kzxr9oEHTixh4lV0ODRrOHWqWxbdvt1lu86a5ZZUo4k3sBWRjFI2q4j0TV6Zpsa4fqLHjvU8P5HszO73KCtzP19zDSxf7pYtvYTG0tnpXWqk+1hiZc1Gy1gtL3f73ELlQ0LP1dLikh8ijS/8GhFJC3WAEBEJF6mI79tv++u0EO89XnsNli51Deifeir6dbH284WWOW+/PXqduNCsm5/9e92LE7e0wPe/7x3QRVrmFZGspGBORNIjHQV8u/MqaJtop4Zo95g2zS1fRpqJi1f4MqefrNlYxX2tPXHJNxTA/uxnLkNV7bhEcpqCORFJvUTbSaVKtK4FifYwjbUPLR4lJV379/zMun3/+5H377W2uqAtfAYu9HyzZ8NHH8GLL6odl0gOUzAnIqnlZ5kwW4KHRIPOjRuhuTl542hu7qoZN26cC+68nj8U9IWK+IaPPSRakNnZ6QI57Y0TyWkqTSIiqZWuTge91ZuODvv3J3csRUUuyAJ370iBYnjQF1o+/vGPobDQ332UtSrSJyiYE5HU6m1x3XTpTdA5eHD05x4/3s2i+Q2yWlvh/ffdzytWuGu9lJR0BX3gZjiLi7tq0MUSbzkWEclKCuZEJLUS6XSQCb0JOs86K3rA9d3vwp49cPPNUOBzd8vevV3jijYz131c8XS/UNaqSJ+gYE5Ekqt714OpU+PvdODnecP34CVDb4LO6dMjz7oVFnYlFTz8cOR2XN1t3+5eY2jPnJfwRIkQP90vysu79tlly35FEUmYigaLSPJEKm47Z07kEhh+slljFc1NhqYmV77DK0j0U1D43ntd1mh3s2bBgw92/b5qFVx1lStc3NER+fmKityS6eOPwze+Efm8HTtg5Eh/r6OkBO68EyZMUNaqSBZKtGiwgjkRSY5YwVCiJTB6G2TFI9Ggcft2N8ZIwgOuUDDX2hq5A0O44mLXLSJSNuvDD/fMRk1H8CsiSacOECKSWbESCBItgeEnMaE3pTW615X78EMX9EQLOrtf8+qr0e8xezb8+tf+MmO76+iA9nbvx7z2zEHyCyOLSFZTMCciyZGqrNVUZsOGZsna2lz3huJityz60ktdrbQWLTqxgPCGDT1nvbz6q4b78EP3PVpgGkl7u9t351UvLtpevmiFkUWkT0l5MGeMyQfWAdustVcbY04BFgFDgPXADGttqzGmGHgcuBDYC0y31n4SfI77gduBDuBvrLUrg8evBB4C8oG51to5qX49IhJBrJZSiWatJut5u8+mTZ0KV1xxYiDW0uK+rrgCnnkGbrihK2grK4O77+45U+Ync/TMM933eDJNQ8rK3Bi8gjllo4oIadgzZ4y5F5gIDAgGc0uAZdbaRcaYXwIbrLW/MMbcCZxjrf1rY8xNwDestdONMROAhcAkYDTwCnBG8Ok/Av4CaATeAG621r4fbTzaMycSh3haW6Vqb1syntdrD1l7e/ReqsXFyeu1umOHu+fdd8PChfG1/ioshLvuchm81moPnEgflpUJEMaYscA84J+Be4FrgD3ASGttuzFmCvCP1torjDErgz+vNsYUADuBYcBsAGvtA8HnXAn8Y/AW/2itvSJ4/P7w8yJRMCfiUyKb6BPdeB8raOzNhv5owWA0eXnxL4l6ueUW9/3pp91zHjvmfV5ZmXs8FLCFKy93SRB33eW+aw+cSJ+UrQkQ/wb8HRD6V3kIcMBaG1qjaARCKWBjgAaAYKB3MHj+GKA+7DnDr2nodnxykscv0j8l2k81kY33fvqh9mZDfyL71CD+a8rL4Z/+Cd55x+2RGzQI/vhHePbZ6HvqwgPT886DefPc6w/PdA29948+ml29bEUkK6QsmDPGXA3sttauN8Z8OVX38TmWO4A7AKqrqzM5FJHc0JsM0ng23scTNFrrvjo7u372I5F9aonIy4M77nDjDc0GxrpvQYHbl/fww12vs7jYLa16lS1JRvauiPQ5qZyZ+zzwNWPMVKAEGIBLVhhkjCkIzs6NBbYFz98GVAGNwWXWgbhEiNDxkPBrIh0/gbX2MeAxcMusvX9pIn1cuvqp+g0a/czeRRItgSIav8usoeK+4d0U/M4GtrfDqFEnzrTlSi9bEckaKWvnZa2931o71lp7MnAT8Kq19lbgNeCG4GkzgeeCPy8P/k7w8Vet29C3HLjJGFMczIQdB6zFJTyMM8acYowpCt5jeapej0i/0dQEO3dG7iGazH6qfgKX8Nm70LlHjrjfv/Qltydt+/bI95g+PXI7sWi+8x23by9W+60HHnD3Dw8q/c4Ger2XudLLVkSyRiZ6s94H3GuM2YLbE/cfweP/AQwJHr+XrsSH94AlwPvAb4C7rLUdwZm9u4GVwAfAkuC5IpKoVavc8uDSpZEL1cYqhxFPD1U/gUus2buFC92YH33U+5xQD9LKytg9S0PKytz+t+3b4cYbIT/f+7ySEhg4sOcetqoq7/O783ovowWfKkUiIh7UzktEnFhZn6Wlbp/addfBV77iXaYk3qxTP2VHfvAD+MlP/L2GUAkQr8zYw4ddcsGsWZFLgxQVua+XXuoa7333Rb//rFmu12n4/ebNg29/O/I14UuzXu+L2nGJ9EvZms0qIrki2gxYQYELgIqK4Mkn4bnneu5Zi5bMcMklrtn8zJknBoChWbNIgUtFRXx73r75Tfiv/4q8t6642M2yeQVz+flw880nJiNA9PuXlMAvfuGuDb/fNddEH+ell8KSJZGzUtWOS0TioJk5EXFizUB5CS/aO3cu3HNP5KCruNgFg16zS4cPRw5c4qkTFylpITTO//N/4N/+LfL1994LP/3piccSqVNXXOwC4EhdKx56SBmpItJDojNzmdgzJyLZKNr+tUhCGacQe9N/S0vkRvOhciYPPOC+h89Ahe95i5SUERJpr1lzsyu4u2tX9Ov37u15zGvPXXm5C9hKSryfp6MjcvcI7XsTkSRTMCciTiJZn+EZp9EyYMOFB4B+hZYd58RovxwpaaOtzS0PP/VU9OuHDIl+/4cegtmz3fc773RBYqRxhFY9QgFfeXlXYKjlUhFJIu2ZExEn0v61jg73u1cR25ISF7SMGdOzAX0kidZKq6iAv/1bl4hx113xX+9nbDt3usDUq/9s92LIc+dG38vX0eG+W+uWbydM0L43EUkJzcyJSBevGah33vEO5MDNTD3yiAuAorWsCudVKy2eciZ33umyVm+5JbH6cdEsXeoC01WrYp/rdyazoMAFct2Xj0VEkkQzcyJyovAZqKYmuPtul60ZmmkKV1AQeW9YJN33jPnt7rB9O9x/P2zaBOPHw/nnu6zaZLbqam11X9H6z4aEz2Q2N0cud5KrXRuamrxLvIhI1lEwJyLeQkFWc7N3IAexly4LC10Gq1fJEfDfm/XRR09cWl27Nvb4jfHfv7U7vz1QQzOZd93l9uR5vR+52LWhN+3TRCTtFMyJSE9eQZaXgoLoAd2NN7oac5FqpfnpzXrVVfHvkSsri55RGks8s2kVFa423TPPeL9fuZa96ifAtlazdiJZRMGciJwotLR67Fjsc42J/vjIkdFnt/z0Zr3//tjj6C4/3wVXN9zQsxjxnDluP2BLS+S9gPHOpvkpfpwrYgXYP/yhmynVrJ1I1lAwJyJdVq1yM2HHjkVeWgU3I1daCt/6Fvz8594lOvLz4dNPvbNDQ/uxNmxwy7BeQVV5OYwdC4sWRR9zXp4bi1fbq0hdFG67zbXcuvde73snMpvWV7o2xAqwH3zwxP2BXsviIpJW6gAhIk5Tk5tJi5WVmp8PdXVuaTFUliTScqxXr9Pu+7EiKS1192pujr6Ue8st0Zdyo1EP1J6idfIoLnafeaTgW50tRHzp7LT8fvMeBpYWckH1ScePJ9oBQsGciDgPPxy9OXy4HTtc4AddAVFHR+RAsLQUdu+OHfyBCwqMcQGWn3In4WNJRLRWYv1RtPZlkWZRQ2bPdl08RMTTviOtPLWugSfWbGXrvqN88YxhPP4/Jh1/PNFgTsusIuK88IK/80pK4MUXu2ZgLr4Y1q+Hyy+HTz7xvubYMbesWVwceT9WcbGbYbv+enf+7Nmxx/LII9EDOT/lNboXA+7vou3/+9a33HseqedsrmXtiqSBtZa3Gg6wYHWAF97dQWu7+zdw7EmlfO60IVhrMbH2H8egYE5E4tPcfGKmZ/eyIZG8+CJ89rORl1ZbWuDcc11gdd990Zdgzz4bXn45eiCn8hqJi7T/z1r4xS+8r8m1rF2RFDva2s5zb29nQX2A97YfAtyiw1fOHMaMKTV86Yzh5Of1LogLUTAnIs7VV8PKlbHPC5+BCdVY86OhwQVXkVpghT/vuHHRz7vnntgzcn7q16VTpovwxnv/SDOWfSVrVyRFtuw+zIL6AE+/2UhTs9vvO7i8iGkTq7h1cjVVg8uSfk/tmRMRp6kJRoyIXZKksrIrGJo5Ex5/3N/zh5IhIu2FC3/eaPu2ws+LJNom/kxs1M90okWy7699hiInaOvo5OX3dzF/dYDVH+89fvzCmpOoq63mqrNHUVKYH/N5tGdORHqnshJ++1u48kq35Bkpg3TOnK7/cG/a5P/5Q62ySkvd9dZ2BRbGuP1YP/gBVFW586+5BpYtc0HH0aPxzQD5qV+XLpmeJUzF/bXPUASAnQebWbh2KwvXbmV3kytSXlqYz7Xnj6GutpqzRg9MyzgUzInIiYyJXgz4e99zddoqKlyPVD+ttcKFCveWlLigylq3qd5rY32ok8Ott8JXvuJ/BijWMm06N+r76XKRysAo0/cX6WOstfz3n/Yyf3WAlz/YRUenW+E8fXgFdZOrue7CsQwoKUzrmBTMiYgTmsE5fDj6eUePuszUu+5yZSj8LrOGHDkCjY3u2tByaqR7hpZjly+HX/7S/wzS9Oku2cFLujfqZ3qWMNP3F+kjDh5r4+n1jSxYE+DjPe7vVEGe4aufHUVdbQ21pw7udVZqohTMiYizePGJlf2jee45F8yNHu1m1OLtnTp2bNc9I80ahYt3Bimb2mtlepYw0/cXyXEbtx1k/uoAz23YRnOb+/dq5IASbplczU0XVTF8QEmGR6hgTkRCNm70bsvlZceOrp/vvNPVmLvtNvjoI9i/3wVN0bo2/P737vxos0bhEplBypb2WpmeJcz0/UVyUHNbBy+8s4MF9QHebjhw/PjFpw+lrraGyz4znIL8vMwNsBsFcyLi7N/v/9xRo7p+9uoAEWu2bdky+M1vXNJDpFmjcInOIGXDRv1MzxJm+v4iOSSw9whPrNnKknUNHDjqVioGlBRwY7CsyKnDsvPvi4I5EXEGD/Z/7rBhXdmR3TMl/ejocNc8+mj0ZIuQXJ9BSuUsoZ/6cdkySymShTo6La9u2s38+gB/+GjP8eOfHTOQGbU1XHPuaEqLYpcVySQFcyLinHaa/3OfeQaef97NrPnZ8xaJtXD33S6oC80ahetLM0ipmCWMp8tFNsxSimSRPU0tLFnXwJNrtrLtgKuvWVyQxzXnjmZGbQ3nVg3K7ADjoGBOROIXKiz8s5/5T5rwcuSIm5kLnzUKJUc0NmoGKZpM168TyUHWWt74ZD/z6wP8ZuMO2jpcWZGTh5RRV1vDDReOZVBZUYZHGT8FcyLiNDTEf40xUFzsigwnIrQXTrNG8VP9OBHfDre088xb21iwOsCHu9z/AOUZ+IsJI5hRW8PFpw8lL0l9UjNBwZyIONFKWETS2upadEUSKvrb0eGd3ZqMvXC51vM0WVQ/TiSmTTsPsaA+wDNvbuNIawcAQyuKuXlSFTdNqmbMoNIMjzA5FMyJiBOthEUk5eU997yFArgbbujq2vD226nJpoxnz1gqZPL+qh8n4qm1vZPfvLeTBasDrP1k3/Hjk08ZTF1tDVecNZKiguwpK5IMxlqb6TGk1cSJE+26desyPQyR7BQKTlpa3KxbLKGm9xA7UzLZzdlD3SO8MmlD40p1z9P+fH+RLLPtwDGeXBNg8RsNfHrY/ftVUVzAdReMoa62hjNGpHHGPkHGmPXW2onxXqeZORHpEiph8atfwXe/G/m80lIoKDhxZi3W/qxk74vL9J4xP/efNi11S7CqHydCZ6flD5v3sKB+K69u2kWwTSrjR1ZSV1vDteePoaK474c6MV+hMebbwAJrbRwVRUUkZ1VUwMCBUFLi3REiP98FKQ8/nNmAIdN7xmLd/7XXYNas1C7Bqn6c9FP7j7Ty1PoGnlizlcBeV6y8MN9wzWdHMaO2hgtrTspYn9RM8BOujgDeMMa8CfwnsNL2t7VZkf5m8+bIrb06OlwHiEwHDJneMxbt/mVl8PTTJ76HqSobkulM4EwnoEi/Ya3l7YYDzK8P8MI7O2htdzPjYwaVcmttNdMmVjG0ojjDo8wMX3vmjAtvLwe+CUwElgD/Ya39U2qHl3zaMyfiw9y5cM89kQOlhx7KfNmLTO8Zi3b/4mK3DJ3N718yeCWAhJZ505GAIv3CsdYOlm/Yxvz6ABu3HQJcVaQvnTGMGbU1fPnM4eTncFmRcCndM2ettcaYncBOoB04CVhqjHnZWvt38d5URLJcLjRnz/SesWj3v+YaePJJ7+v6StkQFS2WFPvTnsMsqA+wdH0jTc2utNFJZYVMu6iKWyfVUD2kLMMjzB5+9sx9B7gN+BSYC3zPWttmjMkDNgMK5kT6mkwHSn5les9YpPsvWgTPPde3y4ZkOgFF+qS2jk5eeX8X8+sD/Pef9h4/fkH1IOpqa5j62VGUFGZ3n9RM8DMzNxi4zlobCD9ore00xlydmmGJSMZlOlDyK9N7xrzunwszm73R1ARLl6posSTNrkPNLFy7lYVrt7LrkOsoU1qYz7Xnj+bWyTWcPWZghkeY3WIGc9baf4jy2AfJHY6IZJVMB0q5KldmNhMRXoswkr4y+ygpZa1l9Z/2Mr8+wG/f30VHsK7IacPKmVFbwzcuGMvA0sIMjzI39P3iKyIimZArM5vx8Non56UvzD5Kyhw81sayNxtZUB/gT3vc7G5+nuGqs0cyY0oNU04d0q/KiiSDgjkRkVRJ5sxmJkuAhO69dGn0GbniYterN9dnHyUlNm47yIL6AM+9vZ1jba5P6ogBxdwyqYabJlUxYkBJhkeYuxTMiYhku2T0gI03GAyd/9prsGyZm207ejT6PS65BJYsUSAnxzW3dfDiOztYsCbAW1sPHD/++dOHMKO2hks/M4LC/L7VJzUTUhbMGWNKgD8AxcH7LLXW/oMx5hRgETAEWA/MsNa2GmOKgceBC4G9wHRr7SfB57ofuB3oAP7GWrsyePxK4CEgH5hrrZ2TqtcjIpIRySgBEm8wGDq/oyN2ABdSXg7XX69ATgAI7D3Ck2u2smRdA/uPtgFQWVLAjRdWcWttNacN05+TZErlzFwLcIm19rAxphBYZYx5CbgX+Jm1dpEx5pe4IO0Xwe/7rbWnG2NuAn4MTDfGTABuAs4CRgOvGGPOCN7jEeAvgEZcl4rl1tr3U/iaRETSq7clQOINBv3ui+tO++T6vY5Oy2ubdjO/PsAfNu8h1JPgrNEDuG1KDdecO5qyIi0IpkLK3tVgy6/DwV8Lg18WuAS4JXh8HvCPuGDu68GfAZYCDwc7T3wdWGStbQH+bIzZAkwKnrfFWvsxgDFmUfBcBXMi0nf0tgdtvMFgtPO99JUsXUnYp4dbWPxGA0+u2cq2A8cAKCrI45pzRlNXW815VYOU0JBiKQ2RjTH5uKXU03GzaH8CDlhr24OnNAJjgj+PARoArLXtxpiDuKXYMUB92NOGX9PQ7fjkCOO4A7gDoLq6uncvSkQkneLpQeu1Ly7eYDDa+eGKi90eueuv987SVc/WPs1ay7rAfuavDvDSxh20dbhpuOrBZdTVVnPjhVWcVF6U4VH2HykN5qy1HcB5xphBwDPA+FTeL8o4HgMeA9ebNRNjEBFJiN8CxJH2xX3rW/6DQYgePHY3fjxYC917fCcjYUOy0uGWdp55axtP1AfYtNMtxecZuOwzw6mrreGL44aR10f6pOaStCxeW2sPGGNeA6YAg4wxBcHZubHAtuBp24AqoNEYUwAMxCVChI6HhF8T6biISN/gpwBxtH1xjz7qupJ78drnFi14BCgogPZ2N5af/czN0M2aBS+9BOeeC/Pmuevb2nqORT1bc9aHO5tYUB9g2ZuNHGl1ZUWGlBdx06Qqbp5UzdiT1Cc1k1KZzToMaAsGcqW4RIUfA68BN+AyWmcCzwUvWR78fXXw8VettdYYsxx40hjzIC4BYhywFjDAuGB27DZckkRoL56ISN8RqwBxtH1u1sLdd7ugzk83Cq/gMVx7cJdMKFhraXFfl10GhYXueHggF049W3NKa3snK9/byfz6AGv/vO/48YtOPom62hquPHskxQXqk5oNUjkzNwqYF9w3lwcssda+YIx5H1hkjPkh8BbwH8Hz/wOYH0xw2IcLzrDWvmeMWYJLbGgH7gou32KMuRtYiStN8p/W2vdS+HpEpD9Lxx6waPeIVoA41r44Y+LrRhEKHufNc7NukYKzcKGgLhr1bM0J2w4cY+GarSx6o4FPD7vPtLwon29cMIa62hrGjxyQ4RFKd6nMZn0HON/j+Md0ZaOGH28GbozwXP8M/LPH8RXAil4PVkQkmnQU7e3NPfwkScTbjcJaWLu253643lDP1qzV2WlZteVT5tcH+N0Huwi2SeWMERXMqK3h2vPHUFmiPqnZythk/kXNARMnTrTr1q3L9DBEJFc0NcGYMd511yorEy/aG1rmvPji3t8jGWP0Gm9zs79ZOb8SGYuk1P4jrSxd38iCNQECe12B6MJ8w5Vnj2JGbQ0XnXySyoqkkTFmvbV2YrzXqXqfiEg06Sja29t7+EmS8CvRosHRFBW5RAnVossaGxoOML8+wPMbttPS7v7sjR5Ywq21NUybWMWwyuIMj1DioWBORPzpr3XD0lG0t7f3gNhJEn7FWzQ4lqIiePBBmDlTgVyGHWvt4PkN25lfH+DdbQePH//iGcOYUVvDJeOHk6+yIjlJwZyIxJardcOSEYDGU7TXi59Arbf3CIl3Xxz0fI/ee89fjblYiotdIJftf0b6gY/3HOaJNVt5al0Dh5pdNvKgskKmTazilknVnDy0PMMjlN7SnjkRiS7Z+7HSJdY+Nb96+/rnzoV77okcqD30EEyblpz3ODwwqwqW4WxoiBzIrloFV10Fra3uqyhYsT8vz+2X6y4/WIaioyP2WK66CpYsyc4/G/1Ae0cnr3ywmwX1AVZt+fT48fOqBlFXW8PV54yipFBlRbJNonvmFMyJSHR+gpFsqxuWqoSARAJDv2NJ9B6hAO6112DZMnfN0aMnnuP1XE1NMGIEHDvm/30oKnJBXyzl5fDjH7vZuf62LJ9huw81syjYJ3XnIReQlxTm8bVzRzOj9mQ+O3Zghkco0SgBQkRSIxn7udKttwkF3fVmP5rf5IRE7hEKADs6egZw4bw6MMybFz2QKy523R7Cx/utb8Ejj8Rehm1vh/vuc5mwoRm/UJcILbkmnbWW+o/3saA+wMr3dtIerCty6tBybq2t4YYLxjKwTGVF+jIFcyISXbL2c6VTKgLQRPajhfgN1OK5RyJZp+GB7AsvRD/3i190Ywwfr7Xwi1/Evk/3AsKhZdzLL4fdu7X0miSHmttYtr6RBWu2smX3YQDy8wxXnjWSGVNq+NxpQ1RWpJ9QMCci0flt9J5NsjEA9ROoxZOwkUjWaTyBbEGB93hDs4wtLf6WXMMdO+ZmBO+6K77r5ATvbT/IgvqtPPf2No4G+6QOryzm5knV3DypmpEDSzI8Qkk3BXMiEl0ya5ilSy4FoJH2vMXKGI42+xhJeCB79dWwcmXkc7/6Ve/joVnGG2+E3/wmvvsDvPiigrkENLd18NLGHSyo38r6wP7jx6ecOoQZU2r4iwkjKMzPy+AIJZMUzIlIbBdfDB9+CLNnu++nngoXXADPPw+bNmXf5vZcCUCj7XkLBWqXXgo//amr0xb+HoeyVeMRCmRDS7MFBW5/W3dlZe5+kVRUwPXXwx//mJwyJhJRw76jPLFmK0vWNbDviJsJrSwu4PoLx1JXW83pw7Po751kjLJZRSS27pmW4RIt+ZEOhw/3vohuqkTLcu0uvINC6D1++GH49rf93Sv8M4LIn2VxMRQW+ktUiGf84R5+WDNzMXR0Wn7/0W7mrw7w+kd7jrfHnTBqALdNqeFr542mrEhzMX2RsllFJDVibbT3ypTMFr1JWki1ePa8hRII/uIv4K//Gs46Cz74IPo1l1wC110HjY0nJjBECsCKirpmACsqYu/fizT7aYzLYg1PgAiJNePXz+093MKSdY08sSZA436XaVyUn8fV54yibkoN51cNUkKDeFIwJyLR+Q06Ein50Z8lsuetuRn+7d9c0OQVLIUbMgTWrnXL4Nu3uyK+K1ZE/iwLC6GkJHLNO6/9e5GydN9+290vFNSFz/hlU7CfBay1vLl1P/NXB1jx7k5aO9znUzW4lLrJNdw4sYrB5UUZHqVkOwVzIhKd36AjW2vOZatoGbex+Lnmqae6fl67Fh5/HC67LHbJFq+Z2Gizr16znxdfDDt2ZO8SdxY40tLOs29vY0H9Vj7YcQhwk5qXjh9O3ZQavjRuGHnqkyo+KZgTkej8Bh1eJT+S0Ru1r5o+Hf7mb9J7z1decUudXgWGQ59fsgouZ/MSdwZt3tXEgvoAT7+5jcMtLvlkSHkR0y+q4uZJ1VQNLsvwCCUXKZgTkeiilfkI173kh9+lunTJxsAyE/ufItWGC31+P/hB7nX8yHKt7Z389v2dLKgPUP/xvuPHLzr5JOpqa7jy7JEUF6hPqiROwZyIROe10T2cV8mPWEt1H37o6o2lK7DKxsDy7rsj73srKnKBXqidVjKdcQY0NEQu2ZKNBZdz1I6Dx1i4ZisL32hgT5P7rMuL8rn2/DHU1dbwmVEDMjxC6StUmkRE/Akv8zF2rDsWnikZvh9q7ly45x7vgKCkxGVVdu/7marAym+j+3QJBZZHj7r6cpHcfTecdx788peQzH+zZs505UEi7Wfz835Zm32znFmis9PyX3/6lPmrA7zywS6CbVI5Y0QFM2pruPb8MVSWqE+qeFNpEhFJrXj2QEVLmmhudt9Ds1KpLm2SrD1gyRBPP9X16+FHP3KB0zvvxN86K5I5cyJ/lqGl6Guu6dmNIhRwv/12ds1yZomDR9t4an0DT6zZyp8/dX+mC/IMXz1nFHWTq5l0ymCVFZGUUTAnIpElus8skUzNVAVW0QLLdO8Bi6e23Nq1MGyYC5ySFcg98giMHOn9WPel6LIyN3N4663wla9ErlOXzXUG0+CdxgPMXx1g+YbttLS7z3b0wBJumVzNtIuqGF6pPqmSegrmRMRbb/aZ+U2aCJeqwCqb9oDFU1uuo8N9PfNM7+5pDEyZAk8/HTmQ85oxDGW8Ll/ulnorKtzyebbMcmbQsdYOnn9nOwvqA7zTePD48S+eMYy6ydVcMn44BeqTKmmkYE5Eeoq31lh3kboDhPaIhZZaw6UqsIoWWHbPwO0u2Rmwvaktl6iKCli5Mvrn5XcpOptmOTPgz58e4Yn6AE+tb+TgsTYABpYWcuOFY6mrreHkoeUZHqH0VwrmRKSnZOwz8+oOMHUqnHmmdzAXK7BKVKTAsnsGbnepyIBNZMYyUeH9XGMtffoN0rJpljNN2js6+d2m3SyoD/DHzZ8eP35u1SBm1NZw9TmjKClUWRHJLAVzItJTsmZgwjfah2+uf/ppyM/vubneT0/QRERqOxUpyOntzGQk4YFlR4d38d5kOe88ePZZGDUq9rl+g7TezHLmmN2Hmln0RgML125lx0H3Px8lhXl87dzR1NXWcM7YQZkdoEgYBXMi0lOyZ2C8Zrm6b66PpydoIuLJxk1lBmx4YPnaa7B0KbS3Ry9Tkoi33nKzoL3d4xgepCU6y5kjrLWs+fM+5tcHWLlxJ+3BuiKnDC2nrraGGy4Yy8AylRWR7KM6cyLSU1MTjBgBx471fKy0FHbv9v8fbr913rKpHtx998FPfhL58dmz4YEHen+fVatcQ/qjR/1nuebl+T8X/L93XoF0pPp/4TUH+0Df1UPNbTzz5jYW1AfYvPswAPl5hr/4zAjqamv43GlD1CdV0kJ15kQkuSLVxIq3VpbfWa5sqgeXjr1hoaXcw4fju+4733FZpX6XaXuzxzFSkNZH+q6+v/0QC9YEePatbRxtdTOjwyqLuXlSNTdPqmLUwNIMj1DEHwVzItLT4sXRg7lowUH3PW/vvedv/102ZUpGW3ZsbXUzlk1NPffyxbPfL56ac+GKi3su03Z0uKVaL17vXaRx9pEgLZqW9g5eencn8+sDrA/sP358yqlDqKut4fKzRlCosiKSYxTMiUhPiQZWXkt17e2uhVesciTZlClZWek6Jdx1V8/H2trcMuv3v++WIM89tyuw6p7YEW2/Xzw150JC74O1XQV8//VfYfVqeOopN7ZI14R4FQf+9rfhuuu69i/2wdZcDfuO8uTarSx5o4G9R1wR5sriAq6/cCy3Tq5m3Ii+95ql/1AwJyI9VVVFfzzUmzVctAzQSMI31ycrUzIZ2bBNTS5giyT0ui6/3AVvnZ09lzxjZb8mUnMuL899NmPGnBgwGwOFhd7BXPh7F6048JNPuuzXPtSaq6PT8oeP9jC/PsBrH+4mtEX8M6MGMKO2hq+fN5ryYv1nUHKf/hSLSHJEWzYsCbY0ys+PnAGZjEzJZGXD+l0C9UoQ6S7SnrXp093+Ny/FxS44s/bE92HpUrjhBu+AubTUvUfdrwl/72K9rlBgl+OtufYebmHJukaeXBugYZ/7jIry81yf1NoaLqgepD6p0qcomBORnhoaoj/e2NjzWLRlw+ZmF1RNmBB9c3289eDCJbM2XCJLoJFE2rM2bx60tHhfk5fnxvDiiye+D4sWRQ7G8vLc0nBJSeT3zu/rysHWXNZa3tx6gAX1AV58ZwetHe59GntSKXW1Ndx44ViGVBRneJQiqaFgTkRO1NQEO3dCQYH3pvpI+9fGjYu8N66kxAVyfoKDRDfhJzMbNtlttwYM6Po5NHvY2hq5tlxengvkuo831l7GxsboJVP8vq4cas11pKWd597ezvz6AB/sOAS4VedLxg9nRm0NXzxjGPkqKyJ9nII5EekSCjSiZUdG2r82dSr81V95X9PcDF/9avLG6SWZ2bDJbrv13HNw//3es4dejhyBn/3M1aAbPbrreKwkkbFjXdmSSPsF/b6uHGjNtWV3Ewvqt/L0+kaaWtyf1cHlRUy/qIpbJlVTNbgswyMUSR8FcyLixAo0ysrcnrdI+9dWrIg+M+c105RMvQ10woX27111lZtBa23t+Xzgf+auocG9r3ff7W+fHbiSLmPGwCOPwJ13umPRgjFrXdJG+J657vsF/bYTy9LWXG0dnfz2vV3Mr/+E+o/3HT8+seYkZkyp4cqzR1JcoD6p0v8omBMRJ9oyZWEh3HgjPPxw5H1nmzd7B3Lgjvd22S5Wlmo8gU5ZmQusrr8+djmO0Eb5oiL38w03uGv274fvfc/f2AcPdoFZc3PkGc9I7rrLlQ0ZOTJykogxLjgLL0Dcfb+gtV3v349+5K5ZvdolVUTqk5sldhw8xsI1W1n4RgN7mtw+w7KifK49fwx1k2uYMHpAjGcQ6dsUzImIE22Zsq3NNWyP9h/4VNaJ85OlGk+gE16O47nnej6XV3eG0Ozc8uXwy1+6oM6vP/+5d/vvZs+GX//a/eyVJHLsWORSKp2d8MMfuhm+0CxjUZH7eukl+Jd/cdd++KHr5TpnjvusM6yz0/Lff9rL/PpPeOWD3XQE+6SOG17BjCk1XHv+GAaUqE+qCCiYE5GQ3gZjyaoT1108WarxBjrhz3XJJfDggzBzpr9kCr8uu8zNgPXGhx+e+Hv3JJH77ou+X/CnPz1xRjAU1F122YklUDZuhGeeyWiduYNH23hqfQNPrNnKnz91r6kgz/DVc0Yxo7aGyacMVlkRkW4UzImI09tgLBl14uDE5dSqKvjv/468fOuVpRpPoBOurQ1mzXKJCl/7WuxkiquvhpUrIz/fKafAyy/DY4/BK69EPq8g+M9wtOXXM8+MPvZomcT5+ZGfu6XlxPIoiZZySYJ3Gw8yv/4Tlm/YTnObC6RHDSzhlknVTL+oiuEDStI2FpFco2BORJxkBGPR6sT56czQfTk1llhZqqEyK/n5kcuAhGtvd0urS5e6fXVeCQKhWcpp0+Dv/s47oaG0FN55x73uaDOehYVwyy3w938PZ5wReVxz5kQfd7RMYj+vu7s01Zlrbuvg+Q3bWVAfYEPjwePHvzBuKHW1NVw6fjgF6pMqEpOxof4myX5iY6qAx4ERgAUes9Y+ZIwZDCwGTgY+AaZZa/cbN2/+EDAVOAr8pbX2zeBzzQT+d/Cpf2itnRc8fiHwa6AUWAF8x8Z4QRMnTrTr1q1L4isV6WMOH06saG80XnveQkFi+D61MWNil+0IV14OP/6x65jQPUgM3bO93X8Gabiiop5ZrOCeOzRr9eij3v1bL7vMjSM0mxnpdfl5rlA2a7RgeO5c11/Va2bOGEjk3/nZs6PXrOuFTz49whNrAixZ18jBY64F2cDSQm68cCy31tZwytDylNxXJNsZY9ZbayfGfV0Kg7lRwChr7ZvGmEpgPXAt8JfAPmvtHGPMbOAka+19xpipwLdxwdxk4CFr7eRg8LcOmIgLCtcDFwYDwLXA3wBrcMHcz621L0Ubl4I5kTSLFqSFBzNz58I998SXKFBW5oJCP22v4jV5Mrz/fuQANFbwGRrbnXe6Yr7Llrnfu2eNhu9N27mzZzLCyJGxg+H77oOf/CTx19pdeTk89FBSZ+baOzp5ddNu5tcH+OPmT48fP3fsQOpqa7jm3NGUFKqsiPRviQZzKVtmtdbuAHYEf24yxnwAjAG+Dnw5eNo84HXgvuDxx4Mza/XGmEHBgPDLwMvW2n0AxpiXgSuNMa8DA6y19cHjj+OCxajBnIikmd/ODPG00CosdLNxkcpxfP3rLtjpjcGDT1wyHjvWBY3PPw+bNrlZMK/G9iGhJdpQkFVW5sZ7661d5VC6z3iOHNmVtRriJwEk2lJuWZmbnfSaZYwkiXXmdjc1s+SNBp5cs5XtB93MYXFBHl87dzR1tTWcWzUoKfcR6c/SsmfOGHMycD5uBm1EMNAD2IlbhgUX6IU3hGwMHot2vNHjuNf97wDuAKiuru7FKxGRuPntzFBV5e/58vNdzTtr3Qycl46OyEkTfl12WVcyhdfMWGtr9GCuu1BwFypt4nfp2k8wHC15JT/fZahef70bb0uLC4QLC90S9ezZvUtY8WCtZe2f9zG/PsBvNu6kPVhW5JSh5dw6uZobLhzLoLKihJ9fRE6U8mDOGFMBPA3cY609FJ5Sbq21xpjUrPOGsdY+BjwGbpk11fcTkaBQAkJhoXfgk0j9uY4OF8R1dkbO0mxrS3yvWEhxsCl7tJmxRMSbXOAnGI6VvHLxxbBjh/deyNtuS9oeyabmNp59axvz6wN8tMvNmOYZuOKsEdTV1vD504aSpz6pIkmX0mDOGFOIC+SesNYuCx7eZYwZZa3dEVxG3R08vg0I/1/zscFj2+halg0dfz14fKzH+SKSLH4yUCMJ7/MaaQYrtJy3fbubrfLLz5Jhb/cDf/yx+x5tZiwR8faJ9Vv/L1omMfQs2RIS6XgcPthxiAX1AZ55axtHW1327LDKYm6+qIqbJlUzelBpr55fRKJLWTAXzE79D+ADa+2DYQ8tB2YCc4Lfnws7frcxZhEuAeJgMOBbCfzIGHNS8LzLgfuttfuMMYeMMbW45dvbgH9P1esR6Xf8dF2IJFaf1/BZo8cf987izLS9e933ePby+RHvbGQ89f+SEJj51dLewW827mT+6gDrAvuPH598ymBmTKnh8gkjKSpQWRGRdEjlzNzngRnAu8aYt4PHvo8L4pYYY24HAsC04GMrcJmsW3ClSb4JEAzafgC8ETzvn0LJEMCddJUmeQklP4gkRzxdF7yuvfvuyE3c8/NdpunDD8OhQ/CFLyR37MkyZIj7Hm1mLBHxJhckqxhzkjTsO8rCtVtZ/EYDe4+4GdKK4gKuv2AMdbU1jBvhc+ZWRJImldmsq4BImyMu9TjfAp7/e26t/U/gPz2OrwPO7sUwRaS7UDAWqTZbtD1fodm8Y8ciF6vt6Ohq/H7//ckbd2/3yIUrKYEJE9zP0WbGSku7mtTHWortTQAWawk1xTo7Lb/fvIcFqwO8+uHu42/z+JGV3DblZL5+3mjKi1WDXiRT9LdPRLqEgrHm5sjJBZH2fMVaWg332muuRlsyG7oXFbnWWMmYQSss7Jo9izUzdt55cPbZEAhEfr6RI+F//+8TS5vEs/8Q0rqEGrLvSCtL1jXwxJoADftccF+Un8fUz45kxpQaLqg+SX1SRbKAgjkRcfwGY5H2fC1e7L9UR3u7u0+yAq+Skq5Cwb1RUOBm27rPnsWaGfvSl9zev0jOO8/NQiay/zDNrLW81XCABasDvPDuDlrb3YzjmEGl1NXWMG3iWIZUFGd4lCISLmUdILKVOkCIROC3A0NpKeze3XOJb9Ys+Ld/i++eyVganTbN7btrCJajfPTRro4Q4crLXRBpjHcNulCf1Icfjn/5cvt2N9MYSUXFicWNQ8I7YGTY0dZ2nnt7O/NXB3h/xyHAvVVfPmMYM6bU8KUzhpOvsiIiKZV1HSBEJMf4zdqMtKy2b5/38WiS8T+Ty5bBs8+6ciVFRS4ou/tuN86xwepFjY1uNm3qVNcmyyuYKylJLJADGD3a9VD1ysq95RZ47rmexyFtDe2j2bL7MAvqAzy9vpGmFre0flJZIdMuquLWSTVUDynL2NhExB8FcyLi+M3abG/3DkBOOsn7/GgiNbOPR/jevtZW9/Xzn3vPHkLimaGxau7deSdcd13P3qo/+5m/Dhhp1NbRycvv72L+6gCrP957/PgF1YOYMaWGq84epT6pIjlEwZyIONOnw3e+E/u81lZ44gm3vBkezJx9tpvdiqeNlrVun1qkZItEHTsG8+Z5z5Qlkhnqt+aeV29Vv0V/02DnwWYWrt3KwrVb2d3UAkBpYT7Xnj+aWyfXcPaYgWkbi4gkj/bMiYjT1AQjRkQuSRLOGBf8hAczTU1u35ifbNZw8QaA4IKg5ubI5U8ATjkFvv/9+LNGu4v2uvzseevt9b1kreW//7SX+asDvPzBLjqCfVJPG1ZOXW0N110wloGlhSm7v4j4pz1zItI7ixe75UY/rHXBySWXwIMPwsyZJ5bwaG11Dd398BPIGQOTJrnZwD173GzWokXwyiuRr/nzn11CR2+zRv00uo+25y1DRX8PHmvj6fWNLFgT4OM9blawIM8w9bMjqautYcqpQ1RWRKSPUDAnIk4ibava2uC733UzYKGAaft2uPFG+M1vkjc2a2HjRnj//a77HDsWPZgD/10rovHT6D6WNBb93bjtIPNXB3huwzaa21wQOmJAMbdMquGmSVWMGFCS9Ht66k1fXxGJi4I5EXESbVvV0uK+wgOm66+HP/4xuT1NuwdmM2fCffdFbhsWrjdZo8na85bCor/NbR28+M4O5tcHeLvhwPHjnz99CDNqa7j0MyMozE9jn9Te9PUVkbipC7KIONOn+19m9RIKmJLxXNG0tbn7VFbCypUuSCqOUcS2N1mj0V5LvH1Wkyyw9wg/WvEBtQ/8jr99agNvNxygsqSA//H5U/jd336JJ/5nLVeePSq9gVx48elQAHzkSNdxr3p7ItIrmpkTESd8b9fhw/HXgAsPmLz2iZWVuYSFjo7eZa82N7vlVnCzPDt2uODu6afh1Ve99+rFM4PmtTy4YgVcdZULJFtaXPBYWJiRRvcdnZbXNu1mfn2A33+05/jxs8cM4Lbak7nm3NGUFmWwrMjixZH3S7a0ZLyunkhfpGBORLpcfLGrkXb22fEXAe4eMIXvE3vtNdduKz/ff2JENHu7aqMdX76cNs1ljXo9v98ZtEjLg3PmuMdDAW4GqgDsaWphyboGnlyzlW0Hgn1SC/K45pzRzJhSw7ljB2Y+oaGpyZWtiVQ7sLUV3n47rUMS6Q8UzIlIl1Aw46c8SXdeAVNFhQuyZs2KHGRFyhSNZsiQnsd6mzXq1Zs2tEzYvV5dqDhxbxIrfLDW8sYn+1lQH+CljTto63BBZM2QMuom13DDhWM5qbwoJfeOW+jPTqx9km++mZ7xiPQjCuZExPEKZuIxZ453UBOttEdJiVtyjacLREkJTJjg/VhvskajjTOSFLXjOtzSzjNvbWPB6gAf7nKfR56Byz4zgrraar44bhh52dIntanJFWi+9163DB2Ln3NEJC4K5kTESSSYCTd7Ntx2W8/AKVppj6NH4dZbXW/VlhYX2BUUuD1pnZ3eM4SFhdGXTBPNGk2kNEuS23F9uLOJBfUBlr3ZyJFWVxB5aEURN11Uzc2TqxkzqDRp90qKVavcXsLmZv/7ICMF4iKSMAVzIuL4CWaiLYtGmqWKVdpj7FhXFDg/3wUE+fnu93/9VxcgpqvQbiKlWZLQjqu1vZPfvLeTBasDrP2ka5/ipFMGU1dbw5VnjaSoIAsLDzQ1wRVX+CsNEy60/1BEkkbBnIg40YKZkhK36T/a7IvXLFVTk5u1ibSMagw88siJ5SpCdetmz4aPPoIXX0x5oV3APfe998Z3Tfd9gnEUyt124BgL12xl0Rtb+fSwe38qigv4xvljqKut4cyRGS6wG+u1zJsXfyAnIimhYE5EnGjBjJ+WW6FZqlAQ8NprsGyZC3i675MKlSmZMAE2bPB+vs5OF8ilq4xFtASKOXNizxL6KJTb2Wn545ZPmb86wKubdhFsk8r4kZXU1dZw7fljqChO8z/LXkHbhg1u+TSU6FFU5JJYXnqpq+jvCy8kdr+//VuX8SoiSaNgTkScykoXtHTP3AT3H/NYSQp5eVBV5cqDdHREnrUpKHCPFxTA2rWRny/J+9F8iZZAcdttkRMromXCTp3K/i0Bntq0jyfWbCWw170vhfmGaz47irraGibWnJSZsiJeAeisWV1BXEjo98svh9274dAhePfdxO5ZX5+csYvIcQrmRMRpaoLvfc/7sWiBXEEBlJa6OnI33BA7G7a93X3FqjeXhP1oCYmUQBEtscIjecQCG0adwfyLvsbzP/svWq0L1sYMKuWWydVMm1jFsMoYnStSKVoAGsmxY/CVr8C6dYnfNwM1+kT6OgVzIuIksgeqsBBuuQUefhgWLepdNmx3GW6VFVX3pcn33jseCB0rKGb5hC+y4LypvDtqHADGWr585jBm1Nbw5TOHk58NZUUSzV7uTSAHsGtX764XkR4UzImIk8geqJISF8hVVCRW2sNLqrNWe8trabK9nT+NPJUnJlzC0s9exqESN+5Bxw4x/YPXueUbU6j55tUZHng3yfq84uVn/6WIxEXBnIg48fRLLStzJUTCA65ESnuEKyqCSy+F669PbdZqb3Rbmmw3ebwy5hzmn/9V/uvk846fdv62Tcx460WmblpFSVkJLPtphgYcQVMT7NzpZlbTXcS3KEs6Voj0IQrmRMQZPtzfeYWFcOONXTNyIbFKe5SXu1IkHR3exYCLi2HJkuwM4kKCS5O7Kgaz8NwrWHTuFeysHApAaVsz1276I7e+9wpnB95zr7esJPtmGEMzix0dmenGkIl9kCJ9nII5EXFGjPB3XlsbjBrVM0CJlg17+eWuR+v06a7ReqL9UzPIWsvqzbtZcNm3WXnGFDry8gE4dW8DM95awXUbX2XgXf8LrpuVnrp48Yq37VaqlGZZFwuRPkDBnIg4Z53lrwRJpCzTpiZXi83L6tXw9NMusOlN/9QMOHisjWVvNrKgPsCfzLkwHvI7O5i6aRV1b73IlK3vYsC9LxMmnJjx2tQEc+f6KiKcUqHZuNbWzPdGVTsvkaQztp+liU+cONGu6202lkhftH27qxEXS2WlO7d78DV3Ltxzj/eeuYKCrqzXTAQzCdi47SBPrAnw7FvbOdbm+qSOqCji5lef5KY3nmfk4b0nXtD9ffFKlAjNQIYK7yZDpE4NH30Ef/mX8PHHsGdPcjONe2PHDhg5MtOjEMlKxpj11tqJ8V6nmTkRcZYti/54UZHb1xZpOTRadmR7OyxcCM88k/xgprs4Wmp119zWwYp3dzC/PsBbWw8cP/7504cwo7aGSz8zgsIvl8LUp7uSPbyWiWMUEfYMhhMRqevEVVe5/YfZ5pFHFMiJpICCORFxYpUmOeMMt1waKQiJlc3a1ua+khnMdOejpZaXrXuP8sTaAEveaGD/UbcMWVlSwI0XVnFrbTWnDQsbq59l4mg13Do73eO9bVMWLWDMtkDuG9+ARx9VICeSIgrmRMSfqqroAZjfRvXJCma6i3M2rKPT8vqHu5lfH+D3H+053pjgrNEDuG1KDdecO5qyogj/REbrBgHRZymT1aYs0aK/6TZrFjz4YKZHIdKnKZgTEefqq2HlysiPf/Wr0a8Pb1R/7FjkunWp6rkaLbg5dsxl2T78MJ+aIha/0cCTa7ay7YArkVJUkMc154ymrraa86oG9b5ParRZymS1KctU0V+/zjnHLd2fdlqmRyLS5ymYExHnuuvg29+O/Pj118d+jtAS5F13uT1yXpmTqeq5GiW4se3trP/9W8yf+SNWnHkxbcFZuOrBZdTVVnPjhVWcVJ7EYrbRZin9timLtvcvk0V//Zg2zY1dRNJCwZyIOCtWRC5NUlQEL77ob2m0osJlrT7zjHegkaqeqx6zYYeLSnl2wpdZcP5UNg0/xd2+o5PLxg9jxsWn8YXTh5KXij6p4bOUidTT89r7N2sW3HknNDa6Mi+dndkXyJ1yCjz7rJuVE5G0UTAnIs7GjZFrzLW2wvvv+3+u3gYziZg+Hf7mbwD4aGg1C86byrKzL+FwcRkAQ4/sZ/qG33Lz5j8w9of/B86oTf4YwiVaTy/a3r+f/CR1401UqkquiIhvCuZExNm/P/rje/dGf7y7NBcHbu3oZOUZn2P+hMtYW/3Z48cnNWyk7q0VXPnhf1PUGdzHl4o9e15iJUp0t3073HADHD6cujElS0mJmymcMCGriz6L9AcK5kTEGTw4+uNDhvh7nl7UeUvEtgPHWLhmK4v+8CGfXjkLgPKWo3zjvdeoe2sF4z8NnHhBqvbs9dajj3q3Qss24fUGNRMnkhUUzImIc9ZZbralubnnYyUl/towJVjnLV6dnZZVWz5lfn2A332wi04LkM+Zez6h7s0X+cb7r1PResz74lTt2euNUNJItisqcmVGZs7UTJxIFlE7LxFxmppcO6/wvVohkVp4JfN6H/YfaWXp+kYWrAkQ2HsUgMJ8w1Vnj6Lu03e46P67MJHKdRQXu2Ak22aUmprgsstg7dpMjySyvDwXmGfbeyfSx6idl4j0Tm+TFlLY9WBDwwHm1wd4fsN2WtrdPUYPLOGWydVMv6iaYZXF0HQ6/H2E0iqFhfDTn2bfjNKqVa71VrbvkfvhD13Zmmx670TkuJQFc8aY/wSuBnZba88OHhsMLAZOBj4Bpllr9xtXofMhYCpwFPhLa+2bwWtmAv87+LQ/tNbOCx6/EPg1UAqsAL5j+9s0o0iy9SZpIcldD461dvD8hu3Mrw/w7raDx49/6Yxh1NXWcMn44eSHlxWJFYxm24xSUxNccQUcPZrpkUQ3axbcf3+mRyEiUaRyZu7XwMPA42HHZgO/s9bOMcbMDv5+H3AVMC74NRn4BTA5GPz9AzARsMB6Y8xya+3+4Dl/BazBBXNXAi+l8PWI9A/xZmCGJKnrwcd7DrOgfitL1zdwqNllnw4qK2TaxCpumVTNyUPLI1+c5gzauGzf7oKiTZtg/HjX6zabA7mJE2HRInVwEMkBKd0zZ4w5GXghbGbuQ+DL1todxphRwOvW2jONMb8K/rww/LzQl7X2fwWP/wp4Pfj1mrV2fPD4zeHnRaM9cyIp0os9c+0dnbzywS4W1G9l1ZZPjx8/r2oQM2pr+Oo5oygpzE/VyFMvVzJVQx55xJUdEZG0ypU9cyOstTuCP+8ERgR/HgM0hJ3XGDwW7Xijx3ERyZQE9tztPtTMwrUNLFy7lZ2HXBZtSWEe1543hrraGs4eMzDdryL5ciVTFeCaa+Cxx2DkyEyPRETikLEECGutNcakZY+bMeYO4A6A6urqdNxSpH/yscxprWX1x3t5on4rK9/bSburK8KpQ8upq63h+gvGMrCsMFOvwJ94aunlyn4z9VMVyVnpDuZ2GWNGhS2z7g4e3wZUhZ03NnhsG26pNfz468HjYz3O92StfQx4DNwya+9egohEFWHP3aHmNpatb2TBmq1s2e2yN/PzDFedPZK62ho+d9oQXC5UFvEK2jZs8F9Lr6kJ/vCHzIzdr5oaWL5c/VRFcli6g7nlwExgTvD7c2HH7zbGLMIlQBwMBnwrgR8ZY04Knnc5cL+1dp8x5pAxphaXAHEb8O/pfCEi4s972w+yoH4rz761jWNtHQAMryzm5knV3DypmpEDSzI8wggiNbvv7DwxcSGU8DF16on7AkPXR8rwzQbaGyfSJ6SyNMlC3KzaUGNMIy4rdQ6wxBhzOxAApgVPX4ErS7IFV5rkmwDBoO0HwBvB8/7JWrsv+POddJUmeQllsopkjea2Dl7auIP5qwO8ufXA8eOfO20IM2pruGzCCArz8zI3wFiiNbuPpLMT5s1zxYk3boRf/cq7m0Ym5OVBaSl84Qtw4ACceSbMmaO9cSJ9hDpAiEjSNOw7yoI1AZa80cD+o20AVJYUcP0FY6mrreb04anr0ZpUc+e6pIXW1viuKywEY+K/LtV++lO4447sKNEiIhHlSjariPQxHZ2W33+0m/mrA7z+0R5C/384YdQAbptSw9fOG01ZUY79U/PWW4kFZG1tyR9Lb2kpVaTPy7F/YUUkW3x6uIUl6xp4on4r2w64pvZF+Xlcfc4o6qbUcH7VoOxLaPDrrbcyPYLemzYNHnpIS6ki/YCCORHxzVrLm1v3M391gBXv7qS1w/VJrRpcSt3kGm6cWMXg8qIMjzIJsm2ZNF6ajRPpVxTMiUhMR1raefbtbcxfHWDTTpcUYAxcOn44dVNq+NK4YeTl5egsXHdNTZCfo90mbrwRfv5zzcaJ9DMK5kTkRGG11TbXfIYFw8/l6Xd3c7jF9UkdUl7E9IuquHlSNVWDyzI82ASF14+rCpa4bAg2m3n0UWhpydzYEqXZOJF+S8GciHRZtYrWq6/htydfyPwJl7HGDIOt2wGYWHMSM6bUcOXZIykuyNGZK+hZPy6XjRwJV1yhMiMi/ZyCOREBYPu2PSz8x//Horqfs6diMABlrcf4xnuvUffR7/nMu/W5X9rCq35crhkxAk47DR5/3H0XkX5PwZxIP9bZafmvP33K/NUBXnl/J50TrwNg3KcB6t56ies2/o7K1mOu+8HixZ5turLO9u2uH+qmTS7YueAC2LPHteNqbnYzcrlKS6ki4kHBnEg/dOBoK0vXN/LEmq38+VO31FhgLVM3/ZEZb77IpMb3OCGd4cgR2LIlI2ONy6OPumK/IWvXwsKF7ufycpelmo214GJRmRERiULBnEg/sqHhAAvqAyzfsJ2WdjdDNWpgCbdMqmb65j8y/JFHvPeRlZfD6aenebQ+hZIZ3nrLBXOR5Or+OM3GiUgMCuZE+rhjrR08/852FtQHeKfx4PHjXxg3lBm1NVwyfjgF+XkwaST83T3eT5KXB9Onp2fAfoQCuNdeg6efBmtzvzZcSQn88z/DO+/Ahx+qf6qI+KZgTqSP+njPYZ5Ys5Wl6xs5eMwtLQ4sLWTaxLHcMrmGU4aWn3hBZSWsWHFipmd5uQvkVqzInuSHUDZqRwccPZrp0SRPYaH6p4pIQhTMifQh7R2d/G7TbhbUB/jj5k+PHz937EDqamu45tzRlBRGKSty8cUugWDxYrdH7vTT3YxcOgOMSDXgqqpcAsP3v5+b+94iycaAWURyioI5kT5g96FmFr3RwMK1W9lxsBmA4oI8vn7eaOpqazhn7CD/T1ZRkbms1b5UA667/Hz3deONMGWKO9bYmJmAWUT6FAVzIjnKWsuaP+9jfn2AlRt30t5pAThlaDm3Tq7mhgvHMqgsh/qk9oUacF6Ki+GSS+D66xW0iUhKKJgTyTGHmtt45s1tLKgPsHn3YQDyDFw+YQS3TTmZz502JDv7pIYvn44b5wKbysquxxcv7lvLpyFFRbBkiYI4EUkZBXMiOeL97YdYsCbAs29t42hrBwDDKou5eVI1N0+qYtTA0tQOILwY7/jx8MADMHq0v2tXrYKrrnIZp62tLsCZNQteeqlrn96DD7o9cX1FXp7bD6e9cCKSYsZam+kxpNXEiRPtunXrMj0MEV9a2jt46d2dzK8PsD6w//jx2lMHM6P2ZC4/awSF+XmpG0BoNm3JEnj55Z6Px6qB1tQE8+a5wK29vefj+flw3XXw1FPJG3O2+NGP4NvfViAnIr4ZY9ZbayfGfZ2COZHs07DvKE+u3cqSNxrYe8TVT6ssLuD6C8dy6+Rqxo2ojPEMvRBew23ZMjAGjh2LfP6OHd610ELJDM3NfXP5NJpZs9xMo4hIHBIN5rTMKpIlOjotf/hoD/PrA7z24W5C/5/1mVEDmFFbw9fPG015cYr/yiZSw232bPj3fz9xP9zUqX0zmSGaAQPg7LPh8cddT1gRkTRRMCeSYfuOtLJkXQNPrAnQsM/NgBXl5/HVc0ZRV1vDBdWDMCYNCQ2JZpO+8YbbO9fWBi0tLnsToD/M+p98MnzpS+rUICIZpWBOJAOstby51fVJffGdHbR2uD6pY08q5dbJNUybOJYhFcXpHdTixa6+W7w++ODEwK2lJXljyhazZsHf/Z2bhVSrLRHJMgrmRNLoaGs7z729nfmrA7y/4xDgtqRdMn44M2pr+OIZw8jPVFmRzZsTK9TbF2fgjHHLpmeddeKy6a9/ndFhiYh4UTAnkgZbdjexoH4rT69vpKnFZXUOLi9i2sQqbp1cTdXgsgyPELfXrby873VeSERFhevOoExUEckBCuZEUqSto5OX39/F/NUBVn+89/jxC2tOoq62mqmfHUVxQZQ+qek2fTp85zuRHy8tdUuoiSzF5oqCAvc6VRtORHKIgjmRJNtx8BgL1zawaO1Wdje5/WNlRflce/4Y6ibXMGH0gAyPMIqODu/jeXnwgx/ACy/A66+ndUhp9eMfwx13KJATkZyiYE4kCay1/NeWvSyoD/DyB7voCPZJPX14BTNqa/jGBWMYUFKY4VHGMG9e5OSFzk743vfcXrJcV1joXfcuVgFkEZEspWBOpBcOHm1j6ZuNPFEf4ONP3V6zgjzjyopMrqH21MHpKSuSDC+8EP1xa/tGskNJicvA/cEPlJkqIn2CgjmRBLzbeJAF9QGe27CN5ja3h2zUwBJunlTNTRdVMXxASYZHmACvdlt9SXm5Wy5escJlpyozVUT6CAVzIj41t3Xwwjs7mF8fYEPDgePHvzBuKHW1NVw6fjgFqeyTmmrDh2d6BL03aBC0trrl4CNHoKzM7QO84Qb4yldckof2w4lIH6NgTiSGwN4jPLFmK0vWNXDgqNtrNaCkwJUVqa3hlKHlGR5hkowYkekR9E5lJTQ0uJ8XL4YtW+D00xXAiUifp2BOxENHp+XVTbuZXx/gDx/tOX78nLEDqaut4ZpzRlNalEVlRZLho48yPQL/8vJcCZEjR05cPg0FbbffntnxiYikkYI5kTB7mlpY/MZWnlyzle0HmwEoLsjjmnNHM6O2hnOrBmV2gKm0YkWmR+DfRx+5EimafRMRUTAnYq1l7Z/3sWDNVn6zcQdtHS5j8+QhZdTV1nDDhWMZVFaU4VHKcY884hIYQi22RET6OQVz0m81Nbfx7FvbmF8f4KNdhwHIM3D5hBHMmFLD508bSl6m+qSKU1zsEhjOOAMuukglREREPCiYk35n085DzF8d4Nm3tnGk1XU8GFpRzM2Tqrh5UjWjB5VmeIQCwPjx8N3vaglVRCQGBXPSL7S0d/CbjTtZUB/gjU/2Hz8++ZTBzJhSw+UTRlJUkMNlRfqCIUOgudnNvC1bBueck+kRiYjkBAVz0qc17j/Kk2u2sviNBvYeaQWgoriA6y8Yw621NZwxojLDI+ynCgtdNwktn4qI9JqCOelzOjstv9+8hyfqA/xu0+7jHajGj6xkxpQarj1vDOXF+qOfMdXV8H//r5ZPRUSSxNi+0GsxDsaYPUAg0+OIw1Dg00wPQnroc5/LhXBhMp/Pgm2HtjxXBS6/Ezq2wObDcDSZ9wnT5z6TPkKfS3bS55KdzrTWxr1k1O+mJ6y1wzI9hngYY9ZZaydmehxyIn0u2UefSXbS55Kd9LlkJ2PMukSu045vERERkRymYE5EREQkhymYy36PZXoA4kmfS/bRZ5Kd9LlkJ30u2Smhz6XfJUCIiIiI9CWamRMRERHJYQrmsowxZrAx5mVjzObg95MinNdhjHk7+LU83ePsL4wxVxpjPjTGbDHGzPZ4vNgYszj4+BpjzMkZGGa/4uMz+UtjzJ6wvx//MxPj7E+MMf9pjNltjNkY4XFjjPl58DN7xxhzQbrH2B/5+Fy+bIw5GPZ35f+me4z9jTGmyhjzmjHmfWPMe8aY73icE/ffFwVz2Wc28Dtr7Tjgd8HfvRyz1p4X/Ppa+obXfxhj8oFHgKuACcDNxpgJ3U67HdhvrT0d+Bnw4/SOsn/x+ZkALA77+zE3rYPsn34NXBnl8auAccGvO4BfpGFMEvtzAfhj2N+Vf0rDmPq7duBvrbUTgFrgLo9/w+L++6JgLvt8HZgX/HkecG3mhtLvTQK2WGs/tta2Aotwn0+48M9rKXCpMcakcYz9jZ/PRNLMWvsHYF+UU74OPG6demCQMWZUekbXf/n4XCTNrLU7rLVvBn9uAj4AxnQ7Le6/Lwrmss8Ia+2O4M87gRERzisxxqwzxtQbY65Nz9D6nTFAQ9jvjfT8S3f8HGttO3AQGJKW0fVPfj4TgOuDyxNLjTFV6RmaROH3c5P0m2KM2WCMeckYc1amB9OfBLflnA+s6fZQ3H9f+l0HiGxgjHkF8Ooq/vfhv1hrrTEmUrpxjbV2mzHmVOBVY8y71to/JXusIjnoeWChtbbFGPO/cDOnl2R4TCLZ6E3cf0sOG2OmAs/ilvYkxYwxFcDTwD3W2kO9fT4Fcxlgrb0s0mPGmF3GmFHW2h3BadXdEZ5jW/D7x8aY13HRvYK55NoGhM/qjA0e8zqn0RhTAAwE9qZneP1SzM/EWhv+/s8FfpKGcUl0fv4uSZqFBxHW2hXGmEeNMUOtterZmkLGmEJcIPeEtXaZxylx/33RMmv2WQ7MDP48E3iu+wnGmJOMMcXBn4cCnwfeT9sI+483gHHGmFOMMUXATbjPJ1z453UD8KpV8cZUivmZdNtb8jXcnhTJrOXAbcEsvVrgYNh2EskQY8zI0B5fY8wkXEyg/xlNoeD7/R/AB9baByOcFvffF83MZZ85wBJjzO1AAJgGYIyZCPy1tfZ/Ap8BfmWM6cT95ZtjrVUwl2TW2nZjzN3ASiAf+E9r7XvGmH8C1llrl+P+Us43xmzBbTS+KXMj7vt8fiZ/Y4z5Gi5rbB/wlxkbcD9hjFkIfBkYaoxpBP4BKASw1v4SWAFMBbYAR4FvZmak/YuPz+UG4FvGmHbgGHCT/mc05T4PzADeNca8HTz2faAaEv/7og4QIiIiIjlMy6wiIiIiOUzBnIiIiEgOUzAnIiIiksMUzImIiIjkMAVzIiIiIjlMwZyIiIhIDlMwJyIiIpLDFMyJiMTBGHORMeYdY0yJMabcGPOeMebsTI9LRPovFQ0WEYmTMeaHQAlQCjRaax/I8JBEpB9TMCciEqdgX9g3gGbgc9bajgwPSUT6MS2ziojEbwhQAVTiZuhERDJGM3MiInEyxiwHFgGnAKOstXdneEgi0o8VZHoAIiK5xBhzG9BmrX3SGJMP/Lcx5hJr7auZHpuI9E+amRMRERHJYdozJyIiIpLDFMyJiIiI5DAFcyIiIiI5TMGciIiISA5TMCciIiKSwxTMiYiIiOQwBXMiIiIiOUzBnIiIiEgO+/8PBN6V23C5+QAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:56.752013\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAFkCAYAAABLi72wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABneklEQVR4nO3dd5iU1d3/8ffZXgHpsICCooioiNgSY48FNcaKJQETn5iomIgxij4pzy8xiiYWjGI0aMQkKoioRDFEIxpJVAQVBZUiglSpwrB9d87vjzPjDss9dafufl7XNdfM3nPP3Gd2BD6e8j3GWouIiIiI5Ka8TDdARERERBKnMCciIiKSwxTmRERERHKYwpyIiIhIDlOYExEREclhCnMiIiIiOawg0w1It+7du9t99tkn080QEUmNtWvhiy/CP9+7N1RVpa89IhKzhQsXbrHW9oj3dR0uzO2zzz4sWLAg080QEUmNKVPguuugunrP58rL4dZb4Yor0t4sEYnOGLM6kddpmFVEJB18Phe0brrJ3ft8qbnO6NGQF+av9rw897yItCsdrmdORCTt5s2DUaPA73c9ZuXlcP31MHs2HHtscq9VWenet/X18vLc8YqK5F5PRDJOYU5EJJV8PhesQnvigkOgo0bB+vXJD1jHHuved9o0WLEC9tvP9cgpyIm0SwpzIiKpNG2a6yHz4ve751Mxh62iQnPjRDoIzZkTEUml5cu9FyOAO75iRXrbIyLtjsKciEgqDR7s5qx5KS93Q6AiIm2gMCcikkpaXSoiKaYwJyKSSsHVpZWVLT105eUtx7UoQUTaSAsgRERSTatLRSSFFOZERNJBq0tFJEU0zCoiIiKSwxTmRERERHKYhllFRHKZz+fm4i1f7sqgjB7tFleISIeR0p45Y0wXY8wMY8wnxpiPjTHHGGO6GmNeNsYsD9zvFTjXGGPuM8asMMZ8YIwZEfI+YwPnLzfGjA05frgx5sPAa+4zxphUfh4Rkawybx5UVcF118Gdd7r7qip3XEQ6jFQPs04C/mGtHQIcCnwMTAD+Za0dDPwr8DPAGcDgwO1K4EEAY0xX4FfAUcCRwK+CATBwzg9CXnd6ij+PiEh2CN3zNbjDRHV1y/FduzLbPhFJm5SFOWNMZ+A44BEAa22DtfZL4BxgauC0qcC3A4/PAR63zltAF2NMH+A04GVr7TZr7XbgZeD0wHOdrLVvWWst8HjIe4mItG+x7PkqIh1CKnvmBgKbgT8bY94zxkwxxpQDvay1GwLnbAR6BR5XAWtCXr82cCzS8bUex/dgjLnSGLPAGLNg8+bNbfxYIiJZQHu+ikhAKsNcATACeNBaexhQTcuQKgCBHjWbwjYEr/OwtXaktXZkjx49Un05EZHU056vIhKQyjC3FlhrrX078PMMXLj7IjBESuB+U+D5dUD/kNf3CxyLdLyfx3ERkfZPe76KSEDKwpy1diOwxhhzQODQycBHwCwguCJ1LPB84PEsYExgVevRwI7AcOwc4FRjzF6BhQ+nAnMCz+00xhwdWMU6JuS9RETaN+35KiIBqa4zdy3wN2NMEbAS+B4uQE43xlwBrAYuCpw7GxgFrABqAudird1mjPkN8E7gvF9ba7cFHl8NPAaUAi8FbiLS3qm2mqM9X0UEMG7aWscxcuRIu2DBgkw3Q0QSNW+eK73h97uJ/uXlblhx9mwXbkREcpQxZqG1dmS8r9N2XiKSO1RbTURkDwpzIpI7VFtNRGQPCnMikjtUW01EZA8KcyKSO1RbTURkDwpzIpI7VFtNRGQPCnMikjtUW01EZA+prjMnIpJcqq0mIrIbhTkRyT0VFXDFFZluhYhIVtAwq4iIiEgOU5gTERERyWEKcyIiIiI5TGFOREREJIcpzImIiIjkMIU5ERERkRymMCciIiKSwxTmRERERHKYwpyIiIhIDlOYExEREclhCnMiIiIiOUxhTkRERCSHKcyJiIiI5DCFOREREZEcpjAnIiIiksMU5kRERERymMKciIiISA5TmBMRERHJYQpzIiIiIjmsINMNEBGRLOfzwbRpsHw5DB4Mo0dDZWWmWyUiAQpzIiIS3rx5MGoU+P1QXQ3l5XD99TB7Nhx7bKZbJyJomFVERMLx+VyQ8/lckAN3Hzy+a1dm2yeSw/761mo2+eqS8l4KcyIi4m3aNNcj58Xvd8+LSNzufWUZP39uMd+dMp/G5jB/xuKgYVYREfG2fHlLj1xr1dWwYkV62yOS46y13PPKcu7713LyDPzohEEU5re9X009cyIi4m3wYDdHzkt5Oey3X3rbI5LDrLXc8/Kyr4LcPaOHc+5h/ZLy3gpzIiLibfRoyAvzz0RennteRKKy1vL7fy7lvldXkGfg3osP45zhVUl7fw2zikh2URmM7FFZ6Vattl7NmpfnjldUZLqFIlnPWsudc5by4Gufkp9nmHTxcM46pG9Sr6EwJyLZQ2Uwss+xx8L69S5gr1jhhlZHj1aQE4mBtZaJ//iEh15fSX6e4Q+XHMaog/sk/TrGWpv0N81mI0eOtAsWLMh0M0SkNZ8PqqrcfWuVlS5QKECISI6w1nLb7I/50xufUZBnuP/Swzh9WOQgZ4xZaK0dGe+1NGdORLKDymCISDthreXWF1uC3AOXjYga5NpCw6wikh1UBkNE2gFrLb9+4SP+/J9VFOYbHrh0BKce1Dul11TPnIhkB5XBEJEcZ63l//3dBbmi/DwevOzwlAc5UJgTkWyhMhgiksOstfzy+SU89l8X5P743RGcMrRXWq6d0jBnjFlljPnQGPO+MWZB4FhXY8zLxpjlgfu9AseNMeY+Y8wKY8wHxpgRIe8zNnD+cmPM2JDjhwfef0XgtSaVn0dEUihYBqOysqWHrry85bgWP4hIlvL7Lb94fjF/eWs1RQV5PDTmcE4akp4gB+mZM3eitXZLyM8TgH9ZaycaYyYEfr4JOAMYHLgdBTwIHGWM6Qr8ChgJWGChMWaWtXZ74JwfAG8Ds4HTgZfS8JlEJBVUBqP9UL1A6SD8fsv/PreYJ+d/TlFBHn8aM5Lj9++R1jZkYgHEOcAJgcdTgddwYe4c4HHraqW8ZYzpYozpEzj3ZWvtNgBjzMvA6caY14BO1tq3AscfB76NwpxIbquogCuuyHQrpC1UL1A6CL/fcsuzH/LUO2soDgS549Ic5CD1c+Ys8E9jzEJjzJWBY72stRsCjzcCwX7IKmBNyGvXBo5FOr7W4/gejDFXGmMWGGMWbN68uS2fR0REIvH5XJDz+VpWJ1dXtxzftSuz7RNJEr/fMmHmBzz1zhpKCvN4ZOwRGQlykPowd6y1dgRuCPUaY8xxoU8GeuFSXrXYWvuwtXaktXZkjx6Z+UWLiOQUnw+mTIGbbnL3XsWcvaheoHQAzX7Ljc98wPQFaykpzOPRsUdw7ODuGWtPSodZrbXrAvebjDHPAkcCXxhj+lhrNwSGUTcFTl8H9A95eb/AsXW0DMsGj78WON7P43wREWmLRIdJfT6YMUP1AqVda/ZbfjZjETPfXUdpYT6PXn4Ex+zbLaNtSlmYM8aUA3nWWl/g8anAr4FZwFhgYuD++cBLZgHjjDFP4RZA7AgEvjnAbcFVr4H3udlau80Ys9MYczRuAcQY4A+p+jwiIjkl1gUIrc8bNaplmDQoGM5OOgnuvhvOO88Fu9D3XrTIva6hIXybVC9Qclyz33LD04t49r11lBXl8+fLj+CoQZkNcpDCvVmNMYOAZwM/FgBPWGt/a4zpBkwHBgCrgYsCwcwA9+NWpNYA37PWBsuZfB+4JfBev7XW/jlwfCTwGFCKW/hwrY3ygbQ3q4i0e149a3l5e/aseZ3X3Oyeq6vzfu/CQmhshJISd055ORjjXldbG7ld2mNXclhTs5+fPr2I599fT1lRPo9970iOHNg1qddIdG/WlIW5bKUwJyLtms8HVVXec9xCw1Sk85KtqAiKi7WaVXJWU7Of8dMX8fdF6ykvymfq949k5D7JDXKQeJjTDhAiIu1JrAsQIp2XbCef7EKkgpzkoIYmPz9+6j3+vmg9FcUFPH5FaoJcW2SizpyIiKTK8uWxLUCIdF4ylZfD+edraFVyUm1DMz/660JeX7aZypICpn7/SEYM2Cv6C9NMPXMiIu3J4MEt26G1FroAIdJ5RUXJa4/21ZUc5atrZOyf5/P6ss10LS/iyR8cnZVBDhTmRERyT6QacKNHuwDlJTRYRTov0orUcMrKXO+b9tWVdmB7dQPfmfI28z/bRq9OxUz/4dEMq+qc6WaFpWFWEZFcEq0GXDBAhVvNGgxWXufFIj+/ZcVrqN/9Ds49FyZMgKVLYdAgGDEC/v53+OQT7c0qOWPTzjq++8h8ln7ho3/XUp74n6Pp37Us082KSKtZRURyRawrVcFtmzVtmpsjt99+Lkx59ZDt2gVTp7pAGEuPXF6e98KJ0lIX9Bobob5+9+fClUYRyTJrt9fwnSlvs2prDfv1rOCvVxxF784labt+oqtZ1TMnIpIrYlmpesUV7ueKipbHkVRUuLIhhYXRw1xxMVjrfV6kGnPBXr9Ro1RnTrLWys27+M6Ut1m/o46D+nbi8e8fSbeK4kw3KyaaMycikiuirVT96KPE9lONdWVruCAXq8ZG7c0qWenjDTu56KE3Wb+jjpF778WTVx6dM0EO1DMnIpI7gitQvYJXSQk88AAUFMS3n2q094WWor9XXQX33Rd+d4ho6upc4BTJIu99vp2xj85nZ10T3xjcnYe+ezhlRbkVj3KrtSIiyRbrHqbJfO9Erzl6tAtoXoIBKzhfLZ6hzUjvW1QEt9/u7j/+OPEgF7R1a9teL5JEb366lf+Z+g7VDc2cOrQXf7j0MIoL8jPdrLgpzIlIxxVtZWgq3nviRLfiM5FrVla6119zzZ7PFRV5D4G2nksX7n3DrYBt3d626pb5TclFAF795Auu+uu71Df5+fbwvvzuwkMpzM/N2WcKcyLSMfl8LryEzitr60T9YI/b4sXw0EO792IF37t1EAu95tKl8OKL4XvsfD4XrLyEm8sWuutDJMce6z5z6ArYUaPggAOSt39rSQkMHZqc9xJpgxc+WM91T71Pk99y6VEDuPWcYeTlmUw3K2EKcyLSMcWzMjQWrXvi4tXY6Gqz5eeH77FLZD/V0F0fomm9AnbKlOTu31pYqN0gJOOmv7OGCTM/wG/hyuMGcfMZQzAmd4McKMyJSEcV6x6msfDq5YtX67loXr2Eieyn2pbttBLdvzUvzwW30MUYrYsWi2TAo/M+49cvuEU4P/3m/ow7ab+cD3KgMCciHVWkFZzx9GZBYj1msQrtJYy2mtXa5AaoaKtcwykthTvucG2KVrRYJA2stdz/6gruenkZAL84ayhXHDsww61KHoU5EemYIq3gjLc3K9EerFiE9hJGanNhISxb5ubcJStARbpeuG29gm1eu9atghXJMGstE1/6hIf+vRJjYOJ5BzP6iAGZblZS5eayDRGRtgqu4KysbPvm8MEerEiC7/3AA3tes7jY9WKFe12wlzBam3v3dj14t9/u7tvaExZcPetl9Ojwnznenk2RFPH7LT9/bjEP/XslBXmG+y4+rN0FOdDerCLS0cW6h2kkkfZMLS52K1iHDm1579bXjLRqtPWeqwAbNrRsaH/AAS5w9ekTX5vb+rlC94CNpc0iadbU7OdnMz7g2ffWUVSQx4OXjeDkA3tlulkRaW9WEZFExLqHaSSR6rR51Y/zumak14eGonnz4IwzWja0f/99mDkTXnopcp26RAoVR5oLaC2MGweTJ0dvs0ia1Tc1c+0T7/HPj76grCifKWNH8rV9u2e6WSmjMCcikgxeddpi6eULDVm33QbGuPlmXq/3+eC006CmpuVYfb27nXYafPGF9/USLY4cbcWvMYl9ZpEU2lXfxFV/Xcgby7fQqaSAx75/JCMG7JXpZqWUwpyItF+p3KorGdfwClnhevMApk7dPciFqqlxz7cuShypOPLJJ8Ndd8HYsd5tjmXFbzJ6NkWSZMuuer7/2Dt8sHYH3SuKePz7RzG0b6dMNyvlNGdORNqnSEHp0EOTE/LiDWOhIs1HCzfn7PTTYc6c8O95xhnu2qGmTIHrrgvfw1ZU5Ob1ebU5kTaKZMjnW2sY8+jbrNpaw4CuZTz+/SPZp3uUhUlZJtE5c1rNKiLtT2hvVDDEVFe3DFP27esCzp13uvuqKhfMknWNUaO8FwaEimUHimSIVjalocG1+aST4P77dw9uyVzxK5JCi9ft4LwH/8uqrTUc1LcTM646JueCXFsozIlI+xMpKNXUuKCVSACL9RqxhLFEdqA466zI73nmmXsei6VsCrgFFTfcsGewDc4FnDTJraCdNMn9HK3nUSRN/rtiCxc//BZbdtXz9f268dSVR9OzMkypn3ZKYU5E2p9EivjG2xvW1u3AIoWscHXaxo51uyt4KS2F885zw6o33eTufT43hJwX41/19fXewTY4Ly5Z9etEkuSFD9Yz9s/z2VXfxJmH9OHRy4+gsqQw081KO4U5EWl/Yu2NChXvfqyxhDGfb89wFRQpZIXbgaKyEv75TxemiorcsaIi9/Pvf+9qzrUePl60qGWotLg4ts+WzGFekRR57D+fce2T79HYbLn8a/vwh4sPo7ggP9PNygitZhWR9ifSNlThxLtrQbTtwPr3d2EquDiirMzVZTv/fDjxRPf6iRP3XH0K7njr3q/QVbO33757CROvosPBXsNRo9yw6Pr1brXr+PFuSDWSeIOtSBpZa/ndnKVMfu1TAG48/QCuOn5fjDEZblnmaDWriLRPXitNjXH7idbW7nl+IqszW1+jrMw9PvtsmDXLDVt6CbbF7/cuNdK6LdFWzUZasVpe7ua5BcuHBN+rvt4tfgjXvtDXiGSJpmY/N8/8kKcXriU/zzDxvIO5cGT/TDcrabQDhIhIqHBFfN9/P7adFuK9xty5MGOG24D+6acjvy7afL7gMOcVV0SuExfsdYtl/l7r4sT19XDLLd6BLtwwr0gG1TY0M+6Jd/nXJ5soKcxj8mUjOGlIdm/PlS4KcyKSHuko4NuaV0HbRHdqiHSNiy5yw5fheuLiFTrMGcuq2WjFfa3dfcg3GGDvucetUNV2XJLltlc3cMXUd3j38y/pUlbII2OP4PC92/euDvFQmBOR1Et0O6lUibRrQaJ7mEabhxaPkpKW+Xux9Lrdckv4+XsNDS60hfbABd9vwgRYtgxefFHbcUnWWvdlLWMeeZtPN1fTt3MJj19xJPv1TPH/COYYhTkRSa1YhgmzJTwkGjoXL4a6uuS1o66upWbc4MEu3Hm9fzD0BYv4hrY9KFLI9PtdkNPcOMlSSzf6GPvofDburOOAXpVM/f6R9O7csWrIxUKlSUQktdK100FbtWVHh+3bk9uWoiIXssBdO1xQDA19weHjO+6AwhjrbGnVqmSx+Z9t48I//peNO+s4cp+uTP/hMQpyYSjMiUhqtbW4brq0JXR27Rr5vYcMcb1osYashgb46CP3ePZs91ovJSUtoQ9cD2dxcUsNumjiLccikiZzlmzku4+8zc66Jk4d2ovHrziSzmUdrxhwrBTmRCS1EtnpIBPaEjoPOihy4LrhBti8GS65BApinN2ydWtLuyL1zLVuVzy7X2jVqmShJ97+nKv+upD6Jj+XHDmAB79zOCWFHbMYcKwU5kQkuVrvejBqVPw7HcTyvqFz8JKhLaFz9OjwvW6FhS2LCu6/P/x2XK2tX+8+Y3DOnJfQhRJBsex+UV7eMs8uW+YrSodnrWXSK8u55dkP8Vv4ycmDue3cYeTnddxiwLFS0WARSZ5wxW0nTgxfAiOW1azRiuYmg8/nynd4hcRYCgpff71bNdra+PFw990tP8+bB2ec4QoXNzeHf7+iIjdk+vjjcO654c/bsAF6947tc5SUwNVXw9ChWrUqWaXZb/nl84v529ufk2fg1+cM4ztH753pZqVdokWDFeZEJDmihaFES2C0NWTFI9HQuH69a2M4oYErGOYaGsLvwBCquNjtFhFuNev99++5GjUd4VckSeoam7nuqff5x5KNFBXkcd/Fwzl9WJ9MNysjtAOEiGRWtAUEiZbAiGVhQltKa7SuK7d0qQs9kUJn69e8+mrka0yYAI89FtvK2Naam6Gpyfs5rzlzkPzCyCIpsmVXPT94fAHvff4llSUFTBkzkqMGdct0s3KOwpyIJEeqVq2mcjVssJessdHt3lBc7IZFX3qpZSutp57avYDwokV79np57a8aaulSdx8pmIbT1OTm3XnVi4s0ly9SYWSRLLBik4/vPfYOa7bV0rdzCY9+7wiG9O6U6WblpJSHOWNMPrAAWGetPcsYMxB4CugGLAS+a61tMMYUA48DhwNbgdHW2lWB97gZuAJoBn5srZ0TOH46MAnIB6ZYayem+vOISBjRtpRKdNVqst63dW/aqFFw2mm7B7H6enc77TR49lm44IKW0FZWBuPG7dlTFsvK0QMOcPfxrDQNKitzbfAKc1qNKjnqv59u4Ud/WcjOuiYOrurMI2NH0rOTasglKuVz5owx1wMjgU6BMDcdmGmtfcoY80dgkbX2QWPM1cAh1tofGWMuBs611o42xgwFngSOBPoCrwD7B95+GfBNYC3wDnCJtfajSO3RnDmROMSztVWq5rYl43295pA1NUXeS7W4OHl7rW7Y4K45bhw8+WR8W38VFsI117gVvNZqDpzkvKcXrOHmmR/S5Ld8c2gvJl08nLIiDRRCli6AMMb0A6YCvwWuB84GNgO9rbVNxphjgP+z1p5mjJkTePymMaYA2Aj0ACYAWGtvD7znHOD/Apf4P2vtaYHjN4eeF47CnEiMEplEn+jE+2ihsS0T+iOFwUjy8uIfEvVy6aXu/pln3HvW1nqfV1bmng8GtlDl5W4RxDXXuHvNgZMcZK3l7peX8YdX3dSI/zl2IDePOlClR0Jk6wKIe4EbgeDfyt2AL621wTGKtUBwCVgVsAYgEPR2BM6vAt4Kec/Q16xpdfyoJLdfpGNKdD/VRCbex7Ifalsm9CcyTw3if015Ofz61/DBB26OXJcu8MYb8NxzkefUhQbT4cNh6lT3+UNXugZ/95MnZ9detiIxqmts5sYZHzBr0XryDPy/bx3Ed4/ZJ9PNajdSFuaMMWcBm6y1C40xJ6TqOjG25UrgSoABAwZksikiuaEtK0jjmXgfT2i01t38/pbHsUhknloi8vLgyitde4O9gdGuW1Dg5uXdf3/L5ywudkOrXmVLkrF6VyTNtlU3cOXjC1iwejvlRfncf+kIThzSM9PNaldS2TP3deBbxphRQAnQCbdYoYsxpiDQO9cPWBc4fx3QH1gbGGbtjFsIETweFPqacMd3Y619GHgY3DBr2z+aSDuXrv1UYw2NsfTehRNpAUUksQ6zBov7hu6mEGtvYFMT9Omze09bruxlKxKDlZt38b3H3mH11hp6dyrh0cuPYGhfrVhNtpRt52Wtvdla289auw9wMfCqtfYyYC5wQeC0scDzgcezAj8TeP5V6yb0zQIuNsYUB1bCDgbm4xY8DDbGDDTGFAWuMStVn0ekw/D5YOPG8HuIJnM/1ViCS2jvXfDc6mr38/HHuzlp69eHv8bo0eG3E4vkJz9x8/aibb91++3u+qGhMtbeQK/fZa7sZSsSxdsrt3Lu5P+yemsNB/XtxHPXfF1BLkUysTfrTcD1xpgVuDlxjwSOPwJ0Cxy/npaFD0uA6cBHwD+Aa6y1zYGevXHAHOBjYHrgXBFJ1Lx5bnhwxozwhWqjlcOIZw/VWIJLtN67J590bZ482fuc4B6klZXR9ywNKitz89/Wr4cLL4T8MJt8l5RA5857zmHr39/7/Na8fpeRwqdKkUiOmPnuWr7zyNvsqG3k5CE9mf7DY+jdWaVHUkXbeYmIE23VZ2mpm6d23nlw4oneZUriXXUaS9mR3/wG7rwzts8QLAHitTJ21y63uGD8+PClQYqK3O2ll1rae9NNka8/frzb6zT0elOnwrXXhn9N6NCs1+9F23FJjrLWcu8ry5n0r+UAXP61ffjFWUO1YjVG2bqaVURyRaQesIICF4CKiuCJJ+D55/ecsxZpMcNJJ7nN5seO3T0ABnvNwgWXior45rx973vwn/+En1tXXOx62bzCXH4+XHLJ7osRIPL1S0rgwQfda0Ovd/bZkdt58skwfXr4VanajktyUH1TMxOe+ZBn31tHnoFfnjWUy78+MNPN6hDUMyciTrQeKC+hRXunTIHrrgsfuoqLXRj06l3atSt8cImnTly4RQvBdv7iF3DvveFff/31cNddux9LpE5dcbELwOF2rZg0SStSpV3ZXt3AD/+ykPmrtlFWlM8fLjmMkw/slelm5Rz1zIlI2ySy6jN0xWm0Sf/BrbK86tRFKmcS2ntXWxt+Lh+ED3N1da7gbrSdF7ZujXz91jtIGOPeu7XmZncL10bNe5N2ZNWWar732Dt8tqWaXp2KeWTsEQyr6pzpZnUomVgAISLZKJFVn6ErTiOtgA0VDIDxCA47Toyy/XK4oNfY6IaHn3468uu7dYt8/UmTYMIEd3/11d5BLtiO4KhHSWDSd3l5SzDUcKm0E++s2sa5k//DZ1uqObCPW7GqIJd+6pkTESdcD1Rzs/vZq4htSYkLLVVVe25AH06itdIqKuCnP3ULMa65Jv7Xx9K2jRtdMPXaf7Z17+GUKZF7MoM9c9a64duhQzXvTdqV599fx8+e/oCGZj8nHtCDP1w6gopixYpM0Jw5Edld6/lrxx0H++8f/vyKCveaWHnNGYu2N2trGze6YPfUU8nZPzUo2irTULHOpdMcOWlnrLXc/+oK7np5GQBjjtmbX541lIJ8Dfa1lebMiUhyhPZA+Xwwbpxbrek1B6ygwM2Di0frOWOx7u6wfj3cfDN88gkMGQKHHeZW1SZzq66GBneLtP9sUGhPZl1d+Pl4ubprQ7wBWzqEusZmbp7pVqwaA784cyjf+/o+GKPSI5mkMCci3oIhq64u/GT+aEOXhYWut8ur5AjEvjfr5Mm7D63Onx+9/cbEvn9ra7HugRqcS3fNNW5OntfvIxd3bWjL9mnSbm3cUccP/7KARWt3UFaUz72jh3PqQb0z3SxBYU5EvHiFLC8FBZED3YUXuhpz4WqlxbI36xlnxD9HrqzMBdB4ew2D4ulNq6hwtemefdb795Vrq1djCdjWqteug3n38+388C8L2eyrp99epfxpzEgO7KOtubKFwpyI7C44tFpbG/3caEMrvXtH7t2KZW/Wm2+O3o7W8vNduLrggj2LEU+c6Fak1td7L+qA+HvTYil+nCuiBexbb3U9peq16zCeXrCG/312MQ3Nfo4e1JXJlx1O1/KiTDdLQijMiUiLefNcT1htbfihVXA9cqWlcNVVcN993iU68vNhyxbv1aHB+ViLFrlhWK9QVV4O/fq5RQ6R5OW5tnhtexVuF4UxY9yWW9df733tRHrT2suuDdEC9t137z4/0GtYXNqFpmY/v539MX/+zyoAxh6zNz8/ayiFWuiQdbSaVUQcn8/1pNXURD4vPx++8x03tBgsSxJuONZrr9PW87HCKS1116qrizyUe+mlkYdyI9EeqHuKtJNHcbH7zsOFb63abTe2Vzcw7sl3+c+KrRTmG35zzjAuPnJAppvV7iW6mlVhTkSc+++PvDl8qA0bXPCDlkDU3Bw+CJaWwqZN0cMfuFBgjAtY0YJl67YkItJWYh1RpJIr4XpRgyZMgNtvT13bJC2WfeHjf6Yu4PNtNXSvKOKP3zmckft0zXSzOgSVJhGRtnnhhdjOKymBF19s6YE59lhYuBBOPRVWrfJ+TW2tG9YsLg4/H6u42PWwnX++O3/ChOhteeCByEEulvIakbYS64gizf+76ir3Ow+352yurdqVPfxzyUbGT3uf6oZmhlV14uHvjqRvl9JMN0uiUJgTkfjU1e2+0rN12ZBwXnwRDj44/NBqfT0ceqgLVjfdFHkIdtgwePnlyEFO5TUSF27+n7Xw4IPer8m1VbuyG2stf3h1BXcHCgF/69C+3HH+IZQW5We4ZRILhTkRcc46C+bMiX5eaA9MsMZaLNasceEq3BZYoe87eHDk8667LnqPXCz169Ip00V4471+uB7L9rJqV75S09DEDU8vYvaHGzEGbjxtCD86fpAKAecQzZkTEcfng169opckqaxsCUNjx8Ljj8f2/sHFEOHmwoW+b6R5W6HnhRNpEn8mJupneqFFsq+veYbtxpptNfzg8QV8stFHZXEBky4ZzklDemW6WR2W5syJSNtUVsI//wmnn+6GPMOtIJ04seUf7k8+if39g1tllZa611vbEiyMcfOxfvMb6N/fnX/22TBzpgsdNTXx9QDFUr8uXTLdS5iK62ueYbvw5qdbufpvC9le08ig7uU8PGYk+/VUKM9FCnMisjtjIhcD/tnPXJ22igq3R2osW2uFChbuLSlxocpaN6nea2J9cCeHyy6DE0+MvQco2jBtOifqx7LLRSqDUaavL1nHWstf31rN//v7RzT5Lcfv34P7LjmMzqWFmW6aJEiV/0TECfbg7NoVftN4cL1kU6e6x4mUoaiuhrVrXYC45Ra3gGLXLu/gVVPjeglnzYpvKG/0aBcavaR7on6mewkzfX3JKg1Nfm55djG/eH4JTX7LD48bxKOXH6Egl+MU5kTEmTYtcogL9fzz7r5vX9ejFq9+/VquGa7XKFSwBylWwfIalZWuJw7cffB4Oud3BXsJvaSjlzDT15essWVXPZdNeYsn539OcUEe944ezs2jDiQ/Twsdcp3CnIg4ixd7b8vlZcOGlsdXX+16f445Brp1cz1fBVFmcLz+uusJjNRrFCqRHqRgeY1Jk1zNukmT3M/pLkuS6V7CTF9fssLidTv41h/m8c6q7fTuVMLTPzqGbx9WlelmSZJozpyIONu3x35unz4tj712gIjW2zZzJvzjH27RQ7i5baES7UHKhon6kYrwpqOXMNPXl4ybtWg9N85YRF2jnxEDuvDH7xxOz04lmW6WJJHCnIg4XePYrqdHj5bVka1XSsaiudm9ZvLkyIstgnK9BylcEd5kBKlY6sel8vqStRqa/Nz+0sf8+T+rALhoZD9+8+1hFBeoEHB7ozAnIs6++8Z+7rPPwt//7nrWYpnzFo61MG6cC3XBXqNQ7akHKRW9hPHscpENvZSSNht21HLN397l3c+/pDDf8IuzhvLdo/dWIeB2SmFOROIXLCx8zz2xL5rwUl3teuZCe42CiyPWrlUPUiSZrl8nWes/K7bw4yffY2t1A306l/DAZSMYMWCvTDdLUkhhTkScNWvif40xUFzsyockIjgXTr1G8VP9OGnF77dMfs3tr+q38I3B3bl39HC6VRRnummSYgpzIuJEKrQbTkOD26IrnGDR3+Zm7x0lkjEXLtf2PE0W1Y+TEDtqGhk//X1e/WQTAD8+eTA/OXmwyo50EApzIuKMHu3mW8WjvHzPOW/BAHfBBS27Nrz/fmpWU8YzZywVMnn9bNrlQjLqw7U7uOpvC1m7vZYuZYXcM3o4Jx7QM9PNkjQy1tpMtyGtRo4caRcsWJDpZohkp2A4qa93vW7RBDe9h+grJZO9ObvPB1VV3itpg+1K9Z6nHfn6knHWWp56Zw2/mrWEhiY/h/TrzAOXjqB/17JMN00SZIxZaK0dGe/r1DMnIi2CJSweeghuuCH8eaWlrjBwaM9atPlZyZ4Xl+k5Y7Fc/6KLUjcEq/pxHVptQzM/f24xz7y7FoDLjhrAL88eqrIjHVTUMGeMuRb4q7U2joqiIpKzKiqgc2coKfHeESI/34WU++/PbGDI9JyxaNefOxfGj0/tEKzqx3VIq7ZU86O/LuSTjT5KCvO47dyDOW9Ev0w3SzIolp65XsA7xph3gUeBObajjc2KdDTLl4ff2qu52e0AkenAkOk5Y5GuX1YGzzyz++8wVWVDMr0SONMLUDqYOUs2csP0RfjqmxjYvZwHvzOCIb07ZbpZkmFR92a11v4cGAw8AlwOLDfG3GaMiaPCqIjklFzYnD3Te45Gun5zs+vB9BIcgm0P5s1z8/auuw7uvNPdV1W545JUTc1+bp/9MT/8y0J89U2cflBvZo37uoKcADGEOYBAT9zGwK0J2AuYYYy5M4VtE5FMyXRQikVwzlhlZUvwLC9vOZ6uPU+9rn/++e2/bEho0eLgZ62ubjm+a1dm29eObNpZx6VT3uahf68kP8/w8zMP5MHvjKCypDDTTZMsEcucuZ8AY4AtwBTgZ9baRmNMHrAcuDG1TRSRtMuVyfWZnjMW7vpPPQXPP9++y4ZkegFKB/HWyq2Me+I9tuyqp2dlMfdfOoIjB8axj7J0CLHMmesKnGetXR160FrrN8aclZpmiUjGZTooxSrTc8a8rh+pZl+29Gy2hc8HM2a0/97HDLLW8vC/V3LnnKU0+y1HD+rKfZccRs/Kkkw3TbJQ1DBnrf1VhOc+Tm5zRCSrZDoo5apc6dlMRGgtwnDaS+9jhuysa+SG6Yv450dfAPCj4/flhlP3pyA/pplR0gGpzpyISCrkSs9mPELnyUXSHnofM2Txuh2Me+JdVm2tobKkgLsvGs43h/bKdLMkyynMiYikSjJ7NjNZAiR47RkzIvfIFRe7vXpzvfcxA/x+y6P/+Yw7/vEJjc2WA/t04o/fGcHe3cKsKhcJoTAnIpLtkrEHbLxhMHj+3Lkwc6brbaupiXyNk06C6dMV5OK0ZVc9Nzy9iNeWbgZgzDF7c8uoAykp1G4OEpuUhTljTAnwb6A4cJ0Z1tpfGWMGAk8B3YCFwHettQ3GmGLgceBwYCsw2lq7KvBeNwNXAM3Aj621cwLHTwcmAfnAFGvtxFR9HhGRjPAa2oy3AHG8YTB4fnNz9AAXVF7uSrIoyMXljeWbGT9tEVt21dOlrJA7zz+EUw/qnelmSY5J5WzKeuAka+2hwHDgdGPM0cAdwD3W2v2A7biQRuB+e+D4PYHzMMYMBS4GDgJOByYbY/KNMfnAA8AZwFDgksC5IiLtRywlQCKJtx5c6PmxBjnQPLk4NTb7uf2lj/nuI/PZsqueowZ25aWffENBThKSsjBnneDfEoWBmwVOAmYEjk8Fvh14fE7gZwLPn2yMMYHjT1lr6621nwErgCMDtxXW2pXW2gZcb985qfo8IiIZ0dY9aOMNg5HO95LOQs3txOqt1Vzwxzd56PWV5Bm4/pv788QPjqZP59JMN01yVErnzAV6zxYC++F60T4FvrTWNgVOWQtUBR5XAWsArLVNxpgduKHYKuCtkLcNfc2aVsePCtOOK4ErAQYMGNC2DyUikk7x7EHrNS8u3jAY6fxQxcVujtz553uv0tWerZ6ef38d//vsYnbVN1HVpZRJFw9n5D4qAixtk9IwZ61tBoYbY7oAzwJDUnm9CO14GHgYYOTIkTYTbRARSUisBYjDzYu76qrYwyBEDo+tDRkC1rpbqGQs2GhndtU38avnl/DMu2sBOGNYbyaedwidy7Qll7RdWioQWmu/BOYCxwBdjDHBENkPWBd4vA7oDxB4vjNuIcRXx1u9JtxxEZH2I5Y9aCPNi5s8GYzxfm+veW6R9uUFKAj89e33wz33wLhx0LevC3A+H9x/v+ux056tX/lw7Q7O/sM8nnl3LSWFedx+3sFMvmyEgpwkTcrCnDGmR6BHDmNMKfBN4GNcqLsgcNpY4PnA41mBnwk8/6q11gaOX2yMKQ6shB0MzAfeAQYbYwYaY4pwiyRmperziIhkTLAA8aRJMGGCu1+/vqWXK9I8N2vhmmsih8FQXuExVFNglkxjo7uvr3cB7ZRTXKi74YaW51qLZcFGO+L3W6a8sZLzHvwPn22pZkjvSv4+7lguOXIAJlzAFklAKodZ+wBTA/Pm8oDp1toXjDEfAU8ZY24F3gMeCZz/CPAXY8wKYBsunGGtXWKMmQ58BDQB1wSGbzHGjAPm4EqTPGqtXZLCzyMiHVk65oBFukakAsTR5sUZE99uFMHwOHUqjB8fPpyFqq+PXFA42JYOsmfrZp+rHff6Mlc7buwxe3OzasdJiqQszFlrPwAO8zi+ErcStfXxOuDCMO/1W+C3HsdnA7Pb3FgRkUjSUbS3LdeIZZFEvLtRWAvz5+85H64tOsieraodJ+lmbDL/oOaAkSNH2gULFmS6GSKSK3w+qKry3o+0sjLxor15eS1Bra3XSEYbvdpbVxdbr1ysEmlLDmlo8nPXy0t56PWVABw1sCv3XjxcJUckZsaYhdbakfG+Li0LIEREclY6iva29RqxLJKIVWh7kxXkiorafS261VurufCP/+Wh11eSn2f4qWrHSRppb1YRiU1HrRuWjqK9bb0GtMxzi3VeXCLtTURREdx9N4wd226D3HPvrePnz6l2nGSOwpyIRJerdcOSEUDjKdrrJZag1tZrBMU7Lw72/B0tWRJbjbloiotdkMv2/0baYEdNI7+atZjn3l8PwKiDe3P7uaodJ+mnOXMiElmy52OlS7R5arFq6+efMgWuuy58UJs0CS66KDm/49Bg1j9QhnPNmvBBdt48OOMMaGhwt6Iidzwvz82Xay0/sBKzuTl6W844A6ZPz87/NpLg9WWbuXHGIr7YWU9JYR6/OvsgLj6iv0qOSJskOmdOYU5EIosljMTbG5RqqVoQkEgwjLUtiV4jGODmzoWZM91ramp2P8frvXw+6NULamtj/z0UFbnQF015Odxxh+uda2fD8tX1Tfx29sc88fbnAIwY0IW7LhrOwO4eNflE4pRomNMwq4hEloz5XOkWyzy1eAJoW+ajBSf+hwtqwfdI5BrBANjcvGeACxX8/kaNagmPU6dGDnLFxW63h9D2XnUVPPBA9GHYpia46Sa3gCLY4zd+PLz0Uk4Pub6zahs/nb6Iz7fVUJhvGP/N/fnhcfuSn6feOMkshTkRiSxZ87nSKRUBNJH5aEGxBrV4rhG66jRWoUH2hRcin3vcca6Noe21Fh58MPp1WhcQDg7jnnoqbNqUc0OvdY3N3P3yMv70xkqshQP7dOLuiw7lwD6dMt00EUBhTkSiiXWj92ySjQE0lqAWz4KNRFadxhNkCwq82xvsZayvj23INVRtresRvOaa+F6XQYvX7eD66e+z7Itd5Bm45sT9+PHJgykqUGUvyR76r1FEIktmDbN0ibRZfLYFUJ/PzUu87DLo2RN+8hO48043T7Gqyg2leonU+xhOaJA966zI5555pvfxYC/jSSfFd+2gF19M7HVp1tjsZ9Iry/n2A/9h2Re7GNS9nGeu+ho3nHaAgpxkHfXMiUh0xx4LS5e6Td6XLoVBg2DECPj73+GTT7Jvcnus89QyLdKct2BQO/lkuOsuV6ct9HccXK0aj2CQDQ7NFhS4+W2tlZW564VTUQHnnw9vvJGcMiZZZsUmH9dPX8QHa3cAcPnX9uGm04dQWqR9VSU7aTWriETXeqVlqERLfqRDcHeFthTRTZVIq1xbKypyCxJCf8f33w/XXhvbtUK/Iwj/XRYXQ2FhbAsV4ml/qPvvz9phVr/f8uh/PuPOOUtpaPJT1aWU311wCF/br3ummyYdhFazikhqRJto77VSMlu0ZdFCqsUz5y24gOCb34Qf/QgOOgg+/jjya046Cc47D9au3X0BQ7gAVlTU0gNYURF9/l643k9j3CrW0AUQQdF6/DJozbYafvr0IuZ/tg2ACw/vxy/OHkqnEhUAluynMCcikcUaOhIp+dGRJTLnra4O7r3XhSavsBSqWzeYP98Ng69f74r4zp4d/rssLISSkvA177x2/Ai3Svf99931gqEutMcvm8I+YK3lqXfWcOsLH1Hd0Ez3imImnncwpwztlemmicRMYU5EIos1dGRrzblsFWnFbTSxvObpp1sez58Pjz8Op5wSvWSLV09spN5Xr97PY4+FDRuyd4g74IuddUx45gPmLt0MuO24bv32wXQtL8pwy0TiozAnIpHFGjq8Sn4kY2/U9mr0aPjxj9N7zVdecUOdXgWGg99fsgouZ/MQNzBr0Xp+8dxidtQ20rm0kF+fcxDfOrSvtuOSnKQwJyKRRaozF6p1yY9Yh+rSJRuDZSaCQ7jacMHv7ze/yb0dP+KwvbqBnz+/mBc/2ADA8fv34M4LDqFXp5IMt0wkcQpzIhKZ10T3UF4lP6IN1S1d6uqNpStYZWOwHDcu/Ly3oiIX9ILbaSXT/vvDmjXhS7ZkY8HlJLDW8uKHG/i/WR+xZVc9ZUX5/PzMoVxyZH/1xknOU2kSEYlNaJmPfv3csdCVkqHzoaZMcUVvvQJBSYlbVdl6389UBatYN7pPl2CwrKlx9eXCGTcOhg+HP/4Rkvl31tixrjxIuPlssfy+rM2+Xs4I1n9Zyy+fX8wrH28C4MiBXfn9BYcyoFtZhlsmsjuVJhGR1IpnDlSkRRN1de4+2CuV6tImyZoDlgzx7Ke6cCHcdpsLTh98EP/WWeFMnBj+uwwORZ99Nsyc6UJ2Tc3ugfv997OrlzMCv9/y17dXc8dLn1Dd0ExlcQE3jzqQi4/oT16eeuOk/VCYE5HwEp1nlshKzVQFq0jBMt1zwOKpLTd/PvTo4YJTsoLcAw9A797ez7Ueii4rcz2Hl10GJ54Yvk5dltYZXP6FjwkzP2Th6u0AnH5Qb/7fOQdpbpy0SwpzIuKtLfPMYl00ESpVwSqb5oDFU1uuudndnn22bdc0Bo45Bp55JnyQ8+oxDK54nTXLDfVWVLjh82zp5QyjvqmZyXM/ZfJrK2hstvSsLObX5xzE6cP6ZLRdIqmk3YJFZE+h/7gHw0d1dcvxXbsivz64aKKy0gUmcPclJe7mJVXBavRoN0TopfUK3NZ8PhdgbrrJ3ce7dVVrwWCZThUVMGdO+CAHsQ1FQ3b1cnpYsGobZ943j0n/Wk5js+XSowbw8vXHK8hJu6eeORHZUzLmmXntDjBqFBxwQMu8uVDRglWiwm071XoFbmupWAGbSI9lokL3c4029BlrSMumXs4QvrpG7vjHJ/z1rc8BGNS9nNvPO5ijBnXLSHtE0k1hTkT2lKwemNCJ9qGT6595BvLz95xcH8ueoIkIt+1UuJAT7y4IsQoNls3N3sV7k2X4cHjuOegTQ69UrCEtUhhNVRiP4uWPvuAXzy1m4846CvIMV52wL9ecuB8lhflpb4tIpijMiciekt0D49XL1XpyfTx7giYintW4qVwBGxos586FGTOgqSlymZJEvPee6wVt6xzH0JCWaC9nCmzy1fF/s5Yw+8ONAAzv34WJ5x/MkN6d0tYGkWyhOnMisiefD3r1gtraPZ8rLYVNm2L/hzvWOm/ZVA/uppvgzjvDPz9hAtx+e9uvM2+e25C+pib2Va55ebGfC7H/7ryCdLj6f6E1B9O876q1lmnvrOG22R+zs66JsqJ8fnbaAYw5Zh/yVW5EcpzqzIlIcoWrih9vtfxYe7myqR5cOuaGxbqYpLWf/MQtxoh1mLYtcxzDhbQM7bv62ZZqbp75AW+t3AbACQf04NZvD6PfXir+Kx2bwpyI7GnatMhhLlI4aD3nbcmS2ObfZdNKyUjDjg0NrsfS59tzLl888/3iqTkXqrh4z2Ha5mY3VOvF63cXrp0ZCmnRNDb7efjfK5n0r+U0NPnpVl7EL88eyrcO7autuERQmBMRL4kGK6+huqYmV47EawVraC9XNq2UrKx0OyVcc82ezzU2umHWW25xQ5CHHtoSrFov7Ig03y+emnNBwd+DtS0FfH//e3jzTXj6ade2cK8J8ioOfO21cN55LfMXs2hrrkVrvuSmZz7gk41u+P38Ef34+ZkHsld5UYZbJpI9FOZEZE/9+0d+Prg3a6hIK0DDCZ1cn6yVkslYDevzucAWTvBznXqqC29+/55DntFWvyayS0Zenvtuqqp2D8zGQGGhd5gL/d1FKg78xBNu9WuWbM31ZU0Dd/1zGX97ezV+C/27lnLbuQfzjcE9MtoukWykMCciyRFp2DBYKDg/P/wKyGSslEzWathYh0C9Foi0Fm7O2ujRbv6bl+JiF86s3f33MGMGXHCBd2AuLXW/o9avCf3dRftcwWCXwa25/H7L9AVruHPOUrZVN5CfZ/jBsfsw/pv7U1akf7JEvOhPhojsac2ayM+vXbvnsUjDhnV1LlQNHRp5cn289eBCJbM2XCJDoOGEm7M2dSrU13u/Ji/PteHFF3f/PTz1VPgwlpfnhoZLSsL/7mL9XBnamuv9NV/yq+cXs2jtDgCOGtiVX58zjAN6Z8+wr0g2UpgTkd35fLBxIxQUeE+qDzd/bfDg8HPjSkpckIslHCQ6CT+Zq2ETGQKNpFNI7bNg72FDQ/jacnl5Lsi1bm+0uYxr10YumRLr50rzgpOtu+r53ZylTFuwBmuhV6di/vfMoZx9SB8tcBCJgfZmFZEW8+a5+VjBQrZews1fGzXKO8iBO37mmclrp5dkroaNtJ9rIp5/3t2H9h6G65UD19577nG9iaEi7e1aXu7mMkbaSzbWz5WmBSfNfsvjb67ixN+/xlPvrKEgz/Cj4/fl1Z+eoJWqInFQmBMRJzRoeNUvKytrmdfmNVw5e3bL3LjWSkpcT1MqtTXohAr9nEUeqybLy8Nfy8uaNe5648bFNs8OXEmXqiqYPLnlWKQwZq1btHHdda7g8XXXudfPm9dyTvBzVVa67zOcNGzNtWDVNs7+wzx++fwSdtY18Y3B3fnHdccx4YwhlBdr0EgkHvoTIyJOpGHKwkK48EK4//7w886WL4/cM9fWYbtoq1QjrYYNBp3g4oCyMheszj8/ejmOYO9QUZF7fMEF7jXbt8PPfhZb27t2dcGqri58j2c411zjyob07h1+kYgxbsg2tABx6/mC1rb8/m67zb3mzTddL2y4fXJTYJOvjokvfcLMd9cBUNWllF+cNZTTDuqlnjiRBCnMiYgTaZiysdFt2B7pH/hU1omLZZVqPEEntBzH88/v+V5euzM0NLj7WbPgj390oS5Wn33Wtvl3EybAY4+5x16LRGprw5dS8fvh1lvhgQfcZ2hocMG0qAheegl+9zv32qVL3V6uEye67zrJGpv9TP3vKu59ZTm76psoKsjjR8cN4qoT9qO0KD/p1xPpSBTmRMRpaxhLVp241uJZpRpv0Al9r5NOgrvvhrFjY1tMEatTTnE9YG2xdOnuP7deJHLTTZHnC9511+49gsFQd8opu5dAWbwYnn026XXm3vx0K7+atZhlX7hwfPKQnvzy7KHs3S2OoWoRCUtz5kTEiTQfK5YwFjofKzifrLw88jw7Lz5fy9y2+++HH/4w/PCtV7AKBp3bb3f3a9bE1ivW2Ajjx0Pfvm43h2iLKc46K/L7DRzozhsxIvL1CwrcLZIDDoj8fHAlsZf8/PBDu/X1rvcx2L7q6sT3jPWwYUct1z75Hpf86S2WfbGLAV3LeGTsSB65/AgFOZEkUs+ciDjJKNobqU5cLDsztB5OjSbaKtVgmZX8/PBlQEI1NbkQM2OGm1fntRAk2Et50UVw443eCxpKS+GDD9znjtTjWVgIl14K//u/sP/+4ds1cWLkdo8aBT/4gfdzsXzu1tpYZ66hyc8j8z7jD68up6ahmZLCPK45YT9+cNwgSgo1pCqSbMZam5o3NqY/8DjQC7DAw9baScaYrsA0YB9gFXCRtXa7cTNfJwGjgBrgcmvtu4H3Ggv8PPDWt1prpwaOHw48BpQCs4Gf2CgfaOTIkXbBggVJ/KQi7cyuXYkV7Y3Ea85bMCSGzlOrqoq8yrS18nK44w63Y0LrkBi8ZlNT7CtIQxUVtcyTC1VZ2TK0O3my9/6tp5zi2hHszQz3uWJ5rwcegKuvjhyGp0xx+6t69WAa44ZR4zVhQuSadWH8e9lm/m/WElZuceH1jGG9+d8zD6TfXhFWz4oIAMaYhdbakXG/0FqbkhvQBxgReFwJLAOGAncCEwLHJwB3BB6PAl4CDHA08HbgeFdgZeB+r8DjvQLPzQ+cawKvPSNauw4//HArImm0c6e1lZXBreF3v1VWWuvzufP+9Cdry8u9zwt3KyuztqKi5XXl5e4958wJf81Yb0cd5d6j9Xu/8Ub0zxXathtvtPbSS60tKXHHvN4raMMGa8eOtfboo939hg3u+BtvRG7LjTe27bO2vpWXWztlSlxf8/IvdtorHptv977pBbv3TS/YE38/176+dFPC/9mIdETAAptA5krZMKu1dgOwIfDYZ4z5GKgCzgFOCJw2FXgNuClw/PHAh3nLGNPFGNMncO7L1tptAMaYl4HTjTGvAZ2stW8Fjj8OfDsQ6kQkW8S6M0M8W2gVFrreuHDlOM45p+1Ff7t23X3IuF8/F3X+/nf45BPXC+a1sX1QcIj2zjvdfVmZa+9ll7WUQ2nd49m7d8uq1aBYFoBEGsotK3O9k169jOHEsWBls6+ee19ZxlPvrKHZbykryufHJw/m+18fSFGBpmWLpENa5swZY/YBDgPeBnoFgh7ARtwwLLigF7oh5NrAsUjH13oc97r+lcCVAAMGDGjDJxGRuMW6M0P//rG9X36+q3lnrZvb5qW5OfyiiVidckrLYgqvYeKGhshhrrVguAuWNol16DqWMBxpJXF+vluhev75rr319S4IFxa6IeoJExKaI1nT0MSUNz7jodc/pbqhmfw8w6VHDeC6UwbTszLMYgwRSYmUhzljTAXwDHCdtXZnaFFIa601xqRm0l4Ia+3DwMPg5syl+noiEhBcgFBY6B18Eqk/19zsQpzfH36VZmNj4nPFgoqL3X2knrFExLu4IJYwHG3xyrHHwoYN3nMhx4yJa45ks98yY+Ea7vrnMjb53JZkpxzYkwlnDGG/nmEKL4tISqU0zBljCnFB7m/W2pmBw18YY/pYazcEhlE3BY6vA0L/17xf4Ng6WoZlg8dfCxzv53G+iCRLLCtQwwn2ZjU3h+/BCg7nrV/veqtiFcuQYVsXd61c6e4j9YwlIt59YmOt/xdpJTHsWZsuKNzxVqy1vLZsMxNnf8LSL1ywPaRfZ24ZdSBHD+oW++cRkaRLWZgLrE59BPjYWnt3yFOzgLHAxMD98yHHxxljngKOAnYEAt8c4DZjzF6B804FbrbWbjPG7DTGHI0bvh0D/CFVn0ekw4ll14VwvHqzQoX2Gj3+uPcqzkzbutXdxzOXLxbx9kbGU4w5xmAWr8XrdnD7Sx/znxXud1LVpZQbTz+Asw/pS16etuASybRU9sx9Hfgu8KEx5v3AsVtwIW66MeYKYDVwUeC52bgVrStwpUm+BxAIbb8B3gmc9+vgYgjgalpKk7yEFj+IJEc8uy54vXbcOO8abeDmcF1wgSsIvHMnfOMbyW17snQL9DZF6hlLRLy7YSSj/l+C1n9Zy+//uZRn31uHtdCppIBxJ+3HmGP2Ub04kSySytWs83AlQ7yc7HG+BTz/99xa+yjwqMfxBcCwNjRTRFoLhrFwtdkizfkK9ubV1oYvVtvc3LLx+803J6/dbZ0jF6qkBIYOdY8j9YyVlrZsUh9tKLYtASzaEGqS7axr5MHXPuXReZ9R3+SnMN8w5ph9uPak/ehSVpSSa4pI4rQDhIi0CIaxurrwiwvCzfmKNrQaau5cV0g3mRu6FxW5bbGS0YNWWNjSexatZ2z4cBg2DFavDv9+vXvDz3++e2mTeOYfQsqGUEM1NPl54u3V3PfqCrZVu3mJZx3ShxtPG8KAbir6K5KtFOZExIk1jIWb8zVtWuylOpqa3HWSFbxKStwK1wsuaNt7FRS43rbWvWfResaOP97N/Qtn+HDXC5nI/MM0sNbyj8UbueMfn7BqqxseP3Kfrtw8agiHDdgryqtFJNNStp1XttJ2XiJhTJkC110XPWCVlsKmTXsO8Y0fD/feG981kzE0etFFbt7dmkA5ysmT3Xu2/hzl5S5EGuNdgy64T+r998c/fLl+vetpDKeiwnvj+tDtvDJk4ert3Db7Yxau3g7AoO7lTDhjCN8c2ovQUlIiknqJbuelnjkRcWJdtRnuH/ht27yPR5KM/5mcOROee86VKykqcqFs3DjXzn6B6kVr17retFGj4IADvMNcSUliQQ6gb1+3h6rXqtxLL4Xnn9/zOLR5Q/u2WLrRxz0vL+MfSzYC0K28iOtOGczFRw6gMF87N4jkEoU5EXFiXbXZ1OQdQPZKYDgu3Gb28Qid29fQ4G733efdewiJrwyNVnPv6qvhvPPcjgpLl7rQOHEi3HNPbDtgpMmKTT7ufWU5L364AWuhpDCP/zl2ED88fhCVJYVpbYuIJIfCnIg4o0fDT34S/byGBvjb39zwZmiYGTbM9W7Fs42WtW6eWrjFFomqrYWpU717yhJZGRprzT2vvVVjLfqbYis37+K+fy3n+UXrsRaK8vO45Mj+XHXCfvTurO23RHKZ5syJiOPzQa9e4UuShDLGhZ/QMOPzuXljsaxmDRVvAAQXgurqwpc/ARg4EG65Jf5Vo61F+lyxzHlr6+vbaPXWau771wqefW8tfguF+YaLRvbnmhP3o2+X0pRdV0Til+icOU2MEBFn2jQ33BgLa104OekkN8/M52sp4VFZ2bKvaSxiCXLGwFFHwV13uWHMSZPgxBMjv+azz9yCjqoq17OWqFg2uo8k9PdSXu6OlZe3HE9RkFuzrYabZnzASXe9zjPvrsUYw8VH9OfVn57Ab889WEFOpB3RMKuIOIlsW9XYCDfc4HrAgr1069fDhRfCP/6RvLZZC4sXw0cftVynthZeeSXy62LdtSKSWDa6jyaNRX/XfVnL/a+u4OkFa2jyW/LzDBce3o9rTxqc3lpxbdnXV0TiojAnIk6i21bV17tbaGA6/3x4443k7mnaOpiNHQs33RR+27BQbVk1mqw5byku+rthRy2T537KU+98TmOzJc/AeYdVce3JgxnYvTxl1/XUln19RSRuGmYVEWf06NiHWb2EDjm29b0iaWx016mshDlzXEiKNqzbllWjkT5LvPuspsCmnXX836wlHP+71/jLW6tp8lu+dWhf/jn+eO4ePTz9QS60+HQwAFdXtxz3qrcnIm2injkRcUK3rdq1K/4acKGByWsLrLIyt2Chubltq1fr6txwK7heng0bXLh75hl49VXXS9haPD1oXsODs2fDGWe4IFlf78JjYWHKN7qPZLOvnj++/il/fWs19U1uTt+Zh/ThJycPZv9eGRzOnDbN+zsAdzxDdfVE2jOFORFpceyxrkbasGHxFwFuHZhC54nNneu228rPD/8PfTy2bm15HBy+vOgit9jB6/1j7UELNzw4caJ7PhhwM1gFYOuueh7+90qmvrmKukYX4k4/qDc/OWUwB/bplLF2AS4I/+1v4WsHNjTA+++ntUkiHYHCnIi0CIaZWMqTtOYVmCoqXMgaPz58yAq3UjSSbt32PObVGxhrQWDw3ps2OEzYul5dsDhxWxZWxGnLrnoemfcZU/+7ipoGV5LllAN7cd0pgxlW1Tnl148q+N9OtHmS776bnvaIdCAKcyLieIWZeEyc6B1qIpX2KClxQ67x7AJRUgJDh3o/15ZVo5HaGU4atuNavbWaP72xkqcXrP1qOPXEA3ow/pv7c0i/Lim7bsx8Pleg+frr3TB0NLGcIyJxUZgTESeRMBNqwgQYM2bP4BSptEdNDVx2mdtbtb7eBbuCAjcnze/37iEsLIw8ZJroqtFESrOkcDuuD9fu4I///pSXPtyAPzCqe8qBPbn6xP0YMSCBrdNSYd48N5ewri72eZDhgriIJExhTkScWMJMpGHRcL1U0Up79OvnigLn57tAkJ/vfv79711ATGTINBGJlGZJ8nZc1lrmrdjCH1//lP+scPMCC/MN5w2v4ofHDWJwJhc2tObzwWmnxVYaJlRw/qGIJI3CnIg4kcJMSYmb9B+p98Wrl8rnc7024YZRjYEHHti9XEWwbt2ECbBsGbz4YsoL7QLuva+/Pr7XtJ4nmGCh3KZmP7MXb+Sh1z9lyfqdAJQX5XPpUQP4/rED6dM5A7s1RPssU6fGH+REJCUU5kTEiRRmYtlyK9hLFQwBc+fCzJku8LSeJxUsUzJ0KCxa5P1+fr8LcukqYxFpAcXEidF7CRMolFvb0MyMhWv40xuf8fk2F4y6VxTxva8P5DtH7U3nssLUf26v0LZokRs+DS70KCpyi1heeqnls7zwQmLX++lP3YpXEUkahTkRcSorXWhpvXIT3D/m0RYp5OVB//6uPEhzc/hem4IC93xBAcyfH/79UjgfLaxICyjGjAm/sCLSSliPFa9f1jTw+Jureey/q9hW7X6v+3Qr4wfHDeL8Ef0oKcxPz+f1CqDjx7eEuKDgz6eeCps2wc6d8OGHiV3zrbeS03YR+YrCnIg4Ph/87Gfez0UKcgUFUFrq6shdcEH01bBNTe4Wrd5ckuejxSzcAopICysiLR4JmUu47stapryxkmnvrPmqvMgh/Trzo+P35bSDepOfZ5L0IWIQKYCGU1sLJ54ICxYkft0M1ugTaa8U5kTESWQOVGEhXHop3H8/PPVU21bDtpYFW2WF1XpocsmS8EGouppPlq/n4WnvM2vRepoCS1OP278HPzp+EMcM6oYxaQxxQYmuXm5LkAP44ou2vV5E9qAwJyJOInOgSkpckKuoSKy0h5dUr1ptK6+hyaYm97sImVtogbf7D+Ohr13EXEbAe+vIzzOcM7wvVx43iIP6ZrjQb7K+r3jFMv9SROKiMCciTjz7pZaVuRIioYErkdIeoYqK4OST4fzzU7tqtS1iGJqsKyhi1oHH8ZfDzuTDPoMBKCnI4+IjB3DFsQPp37UsnS325vPBxo2uZzXdRXyLitJ7PZEOQGFORJyePWM7r7AQLrywpUcuKFppj/JyV4qkudm7GHBxMUyfnp0hLijC0OSangP468GnMm3YyXxZ4kp47FXrY8wh3Rl78XF0Lc+SEBPsWWxuzsxuDJmYBynSzinMiYjTq1ds5zU2Qp8+e4auSKthTz3V7dE6erTbaD3R/VMzrdXQpB/D64NG8JfDzmTuviOxJg+AQ/Hx3V7NnPW9synp0ilTrd1dvNtupUppBmrmibRzCnMi4hx0UGwlSMKtMvX5XC02L2++Cc8848JaW/ZPzbTAUPKOJnj6kG/y1+GjWNW1LwBFTQ2ctVczY8acwvD+Xdz5Ph9MmRJ3EeGkC/bGNTRkfm9UbeclknTGdrBl4iNHjrQL2roaS6Q9Wr/e1YiLprJyj7ppgAst113nPWeuoKBl1WsmwkySLFm+gb/89Pc8N/hr1BWWAFC1YxOXvTeb0Sv/S7eVSyMXEQ72QIYpIpyQcDs1LFsGl18OK1fC5s3JXWncFhs2QO/emW6FSFYyxiy01o6M93XqmRMRZ+bMyM8XFbl5beGGQyOtjmxqgiefhGefTX6YaS3BLbXCaWjy89LiDfzlzdUsWL0dhp4EwDc+X8R335nFyRuXkG/M7r+XOIsIJyzcrhNnnOHmH2abBx5QkBNJAYU5EXGilSbZf383XBouhERbzdrY6G7JDDOtJbClVjgbd9TxxNureWL+GrbscgWOK4sLOP/wfnz30B7s+8pG2PtE2O8Hew4Tx1hEuE0iBcZsC3LnnguTJyvIiaSIwpyIxKZ//8gBLNaN6pMVZlpLQm+YtZa3Vm7jL2+tYs6SL2gOFPg9oFclY762N98eXkV5ceCvzUjtj9RLmaxtyhIt+ptu48fD3XdnuhUi7ZrCnIg4Z50Fc+aEf/7MMyO/PnSj+tra8HXrUrXnaqRwU1vrVtmGmbP3ZU0Dsxat569vrWbZF7sAyM8znHlwH8YcszdHDuwa3y4NkXopk7VNWaaK/sbqkEPc0P2++2a6JSLtnsKciDjnnQfXXhv++fPPj/4ewZWq11zj5sh5rZxM1Z6rcc7Za2r288byLcxYuJaXP/qChmYXBHtUFnPpkQO49KgB9OpUklhbIvVSxrpNWaS5f5ks+huLiy5ybReRtFCYExFn9uzwpUmKiuDFF2MbGq2ocD1gzz7rHTRStedqjHP2ll/2A2bc9xQzF29ms8/NhTMGvjG4OxeN7M9pB/WmqCCvbW0J7aVMpJ6e19y/8ePh6qth7VpX5sXvz74gN3AgPPec65UTkbRRmBMRZ/Hi8DXmGhrgo49if6+2hplEjB4NP/6x51M7isuZdeBxzDj4FBb1PQDeXAvAoO7lnH94P84bUUWfzkkuZptoPb1Ic//uvDO5bUyGVJVcEZGYKcyJiLN9e+Tnt26N7/0yURw4ZF5bk8njjYGHMWPYybw8+BgaCgoBqKyv5qzinVxw1fmMGNAlvrlw8aqoiG+hx/r1cMEFsGtX6tqULCUlrqdw6NDcKfos0k4pzImI07Vr5Oe7dYvtfZJc5y1m06aBMazo1o+nh53CswedyKZK12Zj/Xzjs3e54MN/cer6Dyi963ew916pb1M8Jk/23got24TWG1RPnEhWUJgTEeegg1xvS13dns+VlMS2DVMS67zFY0dNI7OW72LGeb92w6gBA7et44IPX+HcJXPp69viDlZWpmbOXlsEF41ku6IiV2Zk7Fj1xIlkEW3nJSKOz+e28wqdqxUUbguvZL4+Ts1+yxvLNzNj4Vr++dEXNDS51agV9TWc/fG/uWDxK4xY9wlfDaIWF7swkm09Sj4fnHIKzJ+f6ZaEl5fngnm2/e5E2hlt5yUibdPWRQtp2PXA77csWL2d2R9uYPaHG9gUuhp1YBcuePg3nPrBa5Q21e/+wsJCuOuu7OtRmjfPbb2V7XPkbr3Vla3Jpt+diHwlZWHOGPMocBawyVo7LHCsKzAN2AdYBVxkrd1u3AzkScAooAa43Fr7buA1Y4GfB972Vmvt1MDxw4HHgFJgNvAT29G6GUWSrS2LFlK060Gz37Jg1TZmf7iBlxZv/CrAAezTrYwLDu/HuSP6UdWlFA76OYz6L/gLUru5fTL4fHDaaVBTk+mWRDZ+PNx8c6ZbISIRpLJn7jHgfuDxkGMTgH9ZaycaYyYEfr4JOAMYHLgdBTwIHBUIf78CRgIWWGiMmWWt3R445wfA27gwdzrwUgo/j0jHEO8KzKAk7nrQ7Le8ExLgNocEuH57lTLq4D6MOrgPh/brvPtq1EysoI3V+vUuFH3yCQwZ4va6zeYgN3IkPPWUdnAQyQEpnTNnjNkHeCGkZ24pcIK1doMxpg/wmrX2AGPMQ4HHT4aeF7xZa38YOP4Q8FrgNtdaOyRw/JLQ8yLRnDmRFGnjnLlmv+Xtz7Yy+8MN/GPxF19tbg/Qv6sLcGce3IeDqzqntpxIKuTKStWgBx5wZUdEJK1yZc5cL2vthsDjjUCvwOMqYE3IeWsDxyIdX+txXEQyJYE5d03NfuZ/to0XP9zAnCUb2bKrpWjxgK5lXwW4YVWdci/ABeXKSlWAs8+Ghx+G3r0z3RIRiUPGFkBYa60xJi1z3IwxVwJXAgwYMCAdlxTpmGIY5mxq9vPWShfg/rlkI1urWwLc3t1aAtxBfbM4wMVTSy9X5ptpP1WRnJXuMPeFMaZPyDDrpsDxdUD/kPP6BY6tww21hh5/LXC8n8f5nqy1DwMPgxtmbdtHEJGIPObcNTb7eWulG0Kds+QLtoUEuIHdyxl1cG9GHdyHoX2yLMB5hbZFi2Kvpefzwb//nZm2x2rvvWHWLO2nKpLD0h3mZgFjgYmB++dDjo8zxjyFWwCxIxD45gC3GWOCpdpPBW621m4zxuw0xhyNWwAxBvhDOj+IiET2xc46Xl+6mblLNzFv+RZ89U1fPTeoe/lXixgO7FOZXQEuKNxm937/7gsXggs+Ro3afV5g8PXhVvhmA82NE2kXUlma5Elcr1p3Y8xa3KrUicB0Y8wVwGrgosDps3FlSVbgSpN8DyAQ2n4DvBM479fW2m2Bx1fTUprkJbSSVSSjmpr9vLfmS+Z+sonXlm7mow07d3t+cM8KzhjWm1GH9OGAXlka4IIibXYfjt8PU6e64sSLF8NDD3nvppEJeXlQWgrf+AZ8+SUccABMnKi5cSLthHaAEJGEbfbV8/oy1/v2xrLN7Kxr6X0rLczna/t244QhPTlh/x7071qWwZbGacoUt2ihoSH6uaEKC10F43hfl2p33QVXXpkdJVpEJKxcWc0qIjms2W95f82XvL50E3OXbubDdTt2e35Q93JOOKAnJxzQgyMHdqWkMD9DLW2j995LLJA1Nia/LW2loVSRdk9hTkQi2rqrnn8v38zcTzbz7+Wb+bKmJbAUF+RxzL7dODEQ4PbuVp7BlibRe+9lugVtd9FFMGmShlJFOgCFORHZTWOznw/W7uCN5ZuZu3QzH6z9ktDZGAO6lnHiAT04YUhPjhnULXd73yLJtmHSeKk3TqRDUZgT6eDqGpt5f82XzP9sG/M/28bC1dupbWz+6vmi/DyOGtT1q963gd3Ls3vxQlv5fJCfowH1wgvhvvvUGyfSwSjMiXQw1fVNvPv5duZ/to23V27j/TVf0tDs3+2cfQubOKZhEyf2LeGY75xNWbcumWlsqoTWj+sfKHG5JrDZzOTJUF8f/rXZSr1xIh2WwpxIO7ejtpGFq11we/uzbSxet4Mmf8u4qTEwpHclRw3sylH1mzni2jH0qN7eUlvtF9d4F8TNVa3rx+Wy3r3htNNUZkSkg1OYE2lntu6q551VLri9vXIbH2/cuduct/w8w6H9OnPkwK4cObAbR+yzF13KilxvVdXXvGurtS6Im6u86sflml69YN994fHH3b2IdHgKcyI5zO+3rN5WwwdrW+a8Ld+0a7dzCvMNh/brwlGDXHg7fO+9qCj2+KM/bZrrrfK+kHu+1TZdWWn9ercf6iefuLAzYgRs3uy246qrC/8Zc4GGUkXEg8KcSI4IBrcP1+1g8bodfLD2S5as34kvpFAvQElhHiMG7MWRA7ty1MBuHDagS2wrTpcvDz/sWF0NK1Yk4VOk2OTJrthv0Pz58OST7nF5uVulmo214KJRmRERiUBhTiQL+f2WVVurvwpuH67bwZJ1O3fb3zSoZ2UxB1d15vB99uKogV05uKoLRQV58V908GAXeLwCXXk57LdfAp8kDYKLGd57z4W5cHJ1fpx640QkCoU5kQwLDW4frnXB7aP1kYPbwf06u/uqzvTsVJKchoweDddf7/1cXp57PlsEA9zcufDMM2Bt7teGKymB3/4WPvgAli7V/qkiEjOFOZE0qmtsZtXWapZu9H0V3Jas38kuj+DWq5MLbsOqUhDcvFRWulWroSs9y8tdkJs9O3sWPwRXozY3Q01NpluTPIWF2j9VRBLS4cLc0o0+vvfn+QzqUcGgHuUM6l7Bvj3K6VFZ3L4LoUraWGvZWt3Ap5t28enmaj7dvOur29rttbutLA0KBreDq7pwcL9ODKvqTM/KFAa3cI491i0gmDbNzZHbbz/XI5fOgBGuBlz//m4Bwy235Oa8t3CyMTCLSE4x1utflnasuM9g22fsvXscryguCIS7cgZ2DwS9QNgrLcrRavCSUo3Nfj7fVrNnaNu0i511e/a0gSsLsnfXMvbtWcGwvp0zG9yyUXuqAddafr67XXghHHOMO7Z2bWYCs4hkJWPMQmvtyLhf19HC3MGHjrC/+9tsVm7ZxcrN1azcvIuVW6p32zy8tb6dS0J68soZ2KOCQd3LqepSSl6eevPaM2st22saWbW1erfQtnLzLlZvrdmt+G6oypIC9u1R4W49ywOPyxnQtTyxxQkdgc8HVVW5XQPOS3ExnHQSnH++QpuIRJRomOtww6zFhXmcPmzPCcXbqhtcsNtczachQe/zbTWs31HH+h11zFuxZff3Ksij316l9OlcSq9OJfTpXELvzu4++HPX8iIN32Ypay1f1jSyYUcdG3bUttx/Wbfbsfom77pkxkC/vUrZNxD0Q8NbjwoN2+8hdPh08GAXbCorW56fNq19DZ8GFRXB9OkKcSKSMh2uZ27kyJF2wYIFMZ/f1Oxn7fbar3ryPg3pzdvsi75/Y1F+Hr06F9OnUym9A2GvdyDo9QoEvx4VxRTkq7cmmay17KxtYv2O2pagFhLSNu6oY/2OWuoaoxeQrSwpoN9eZezX0/WuBUPbwO7lHWsIPrQY75AhcPvt0LdvbK+dNw/OOMOtOG1ocAGnqAheeqllnt4pp8DHH6f2M6RTXp6bD9eetkITkZTSMGuM4g1zkfjqGln/ZUs42Lizjo07XGD4Yqe731Ebvachz0CPymJ6dy6lZ2UxnUsL6VxaSKeSQjqXFtAp+LgseKyQTqUFlBbmd4jen7rGZnbWNvJlbSM7ahvZURP6uMHdhzz/ZU0jG3fUUdvYHPW9K4oLvupR7du5lD5dXMDu07mUvl1K6N251Hu3hI4i2Js2fTq8/PKez0ergebzwdSpMH48NHnMI8zPh/POg6efTl6bs8Vtt8G116pHTkRipjAXo2SGuVjUNDSFDXrB41t21XuucIymMN/QqaTQhb3SQjqVuODXEgQLqSwpoLggj8L8PAryDQV5eRTmGwry8yjMc/cF+YaiWJ7PM+QH5gg2Nlsam/00NvtpaPa7n5tafm5o8n91TkOzP/BcyM8hx2obm1sCWU1jILi1hLRYes+8lBXl06dzCX27lAYCWyl9g8EtcKyypDCh927XQmu4zZzpxpNra8Ofv2GDdy204GKGurr2OXwayfjxcPfdmW6FiOQYzZnLUmVFBYHFE+H/77yhyc8mnwt5m3317KhtZGdtEzvrGgOPG9lZ1/TV4x21jeyscyFna3UDW6tzvFhqFIX55qveyuCtS1lRoIeykC6hz5W5n3t2KqFTSUGH6LlMqkRquE2YAH/4w+7z4UaNyv0N7ePVqRMMGwaPP+72hBURSROFuSxQVJBHv73K6LdXWVyvq29qjhj6dta5UNjQ5KfJ76cp0DPW5G/pVWtqtjT6LU1fPQ453mx3e11js5/g4s3CfENhft5Xt6J8Q2FB8HEehQWBY6HnFHi8Jj+P4sI8upSGhLOy0NBW2GGGkzPO50ssgL3zjps719gI9fVu9SaQUHdzrtlnHzj+eO3UICIZpTCXw4oL8ulRmU+PyuK0XdPvtxiDwlV7NG2aq+8Wr48/3j241UdfGJRzxo+HG290vZDaaktEsozCnMRFdfXaseXLEyvU2x574Ixxw6YHHbT7sOljj2W0WSIiXhTmRMQZPNiV0mhvOy8koqLC7c6glagikgNU3ExEnNGjI/eylZa62mntWUGBK2SsfVJFJIe087+ZRSQuzWFq8+XlwW9+A8cdl972pNsdd7gCxiryKyI5RMOsIuJMnRp+8YLfDz/7mZtLlusKC73r3kUrgCwikqUU5kTEeeGFyM9b2z4WO5SUuBW4v/mNVqaKSLugMCcijtd2W+1JebkbLp49261O1cpUEWknFOZExOnZM9MtaLsuXaChwQ0HV1dDWZmbB3jBBXDiiW6RhxY2iEg7ozAnIk6vXpluQdtUVsKaNe7xtGmwYgXst58CnIi0ewpzIuIsW5bpFsQuL8+VSqmu3n34NBjarrgis+0TEUkjhTkRcWbPznQLYrdsGbz2mnrfRERQmBORXPPAA24BQ3CLLRGRDk5hTkSyV3GxW8Cw//5wxBEqISIi4kFhTkSy05AhcMMNGkIVEYlCYU5EskO3blBX53reZs6EQw7JdItERHKCwpyIpF9hodtNQsOnIiJtpjAnIuk1YAD88pcaPhURSRJj28Nei3EwxmwGVme6HXHoDmzJdCNkD+3uezkcDk/m+1mwTdCY56rA5fuheQUs3wU1ybxOiHb3nbQT+l6yk76X7HSAtbYy3hd1uJ45a22PTLchHsaYBdbakZluh+xO30v20XeSnfS9ZCd9L9nJGLMgkdflJbshIiIiIpI+CnMiIiIiOUxhLvs9nOkGiCd9L9lH30l20veSnfS9ZKeEvpcOtwBCREREpD1Rz5yIiIhIDlOYyzLGmK7GmJeNMcsD93uFOa/ZGPN+4DYr3e3sKIwxpxtjlhpjVhhjJng8X2yMmRZ4/m1jzD4ZaGaHEsN3crkxZnPIn4//yUQ7OxJjzKPGmE3GmMVhnjfGmPsC39kHxpgR6W5jRxTD93KCMWZHyJ+VX6a7jR2NMaa/MWauMeYjY8wSY8xPPM6J+8+Lwlz2mQD8y1o7GPhX4Gcvtdba4YHbt9LXvI7DGJMPPACcAQwFLjHGDG112hXAdmvtfsA9wB3pbWXHEuN3AjAt5M/HlLQ2smN6DDg9wvNnAIMDtyuBB9PQJon+vQC8EfJn5ddpaFNH1wT81Fo7FDgauMbj77C4/7wozGWfc4CpgcdTgW9nrikd3pHACmvtSmttA/AU7vsJFfp9zQBONsaYNLaxo4nlO5E0s9b+G9gW4ZRzgMet8xbQxRjTJz2t67hi+F4kzay1G6y17wYe+4CPgapWp8X950VhLvv0stZuCDzeCPQKc16JMWaBMeYtY8y309O0DqcKWBPy81r2/EP31TnW2iZgB9AtLa3rmGL5TgDODwxPzDDG9E9P0ySCWL83Sb9jjDGLjDEvGWMOynRjOpLAtJzDgLdbPRX3n5cOtwNENjDGvAJ47Sr+v6E/WGutMSbccuO9rbXrjDGDgFeNMR9aaz9NdltFctDfgSettfXGmB/iek5PynCbRLLRu7h/S3YZY0YBz+GG9iTFjDEVwDPAddbanW19P4W5DLDWnhLuOWPMF8aYPtbaDYFu1U1h3mNd4H6lMeY1XLpXmEuudUBor06/wDGvc9YaYwqAzsDW9DSvQ4r6nVhrQ3//U4A709AuiSyWP0uSZqEhwlo72xgz2RjT3VqrPVtTyBhTiAtyf7PWzvQ4Je4/LxpmzT6zgLGBx2OB51ufYIzZyxhTHHjcHfg68FHaWthxvAMMNsYMNMYUARfjvp9Qod/XBcCrVsUbUynqd9Jqbsm3cHNSJLNmAWMCq/SOBnaETCeRDDHG9A7O8TXGHInLBPqf0RQK/L4fAT621t4d5rS4/7yoZy77TASmG2OuAFYDFwEYY0YCP7LW/g9wIPCQMcaP+8M30VqrMJdk1tomY8w4YA6QDzxqrV1ijPk1sMBaOwv3h/IvxpgVuInGF2euxe1fjN/Jj40x38KtGtsGXJ6xBncQxpgngROA7saYtcCvgEIAa+0fgdnAKGAFUAN8LzMt7Vhi+F4uAK4yxjQBtcDF+p/RlPs68F3gQ2PM+4FjtwADIPE/L9oBQkRERCSHaZhVREREJIcpzImIiIjkMIU5ERERkRymMCciIiKSwxTmRERERHKYwpyIiIhIDlOYExEREclhCnMiInEwxhxhjPnAGFNijCk3xiwxxgzLdLtEpONS0WARkTgZY24FSoBSYK219vYMN0lEOjCFORGROAX2hX0HqAO+Zq1tznCTRKQD0zCriEj8ugEVQCWuh05EJGPUMyciEidjzCzgKWAg0MdaOy7DTRKRDqwg0w0QEcklxpgxQKO19gljTD7wX2PMSdbaVzPdNhHpmNQzJyIiIpLDNGdOREREJIcpzImIiIjkMIU5ERERkRymMCciIiKSwxTmRERERHKYwpyIiIhIDlOYExEREclhCnMiIiIiOez/A8PrzuJZdv6YAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:56.930014\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAFkCAYAAABLi72wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABqcElEQVR4nO3dd5yU1dn/8c/ZXulViog0ERtgi9iwo8ZEVBJNJAZjHgWjGBPR5ImJMYom6oNRjP4wEWPDgoqKIRYsJCqCSq+iyNI7A9t3z++PM+MOy/Sduvt9v177mt177rnvMzsCl+ec67qMtRYRERERyUxZqR6AiIiIiMROwZyIiIhIBlMwJyIiIpLBFMyJiIiIZDAFcyIiIiIZTMGciIiISAbLSfUAkq1Dhw62V69eqR6GiEhilJXB5s3Bn+/SBbp1S954RORbeypqWLujnCxj6Ne5lNxss9/z8+fP32at7RjtdVtcMNerVy/mzZuX6mGIiCTGlClw442wb9+BzxUXw513wpgxSR+WSEu3p7KGM+97n2pPFXdcdDhXntjrgHOMMWtjubaWWUVEksHjcYHWLbe4R48nMfcZNQqygvzVnpXlnheRpPvzv1awxVPFMT3bcMXxB8f12i1uZk5EJOnmzIERI6C+3s2YFRfDTTfBzJkwbFh871Va6q7b+H5ZWe54SUl87yciYc1fu5OnPllLTpbh7ouPIDvLhH9RFBTMiYgkksfjAiv/mTjfEuiIEbBhQ/wDrGHD3HWnTYPVq6FPHzcjp0BOJOlq6uq5bfoirIWfndqbAV1axf0eCuZERBJp2jQ3QxZIfb17PhF72EpKtDdOJA089sEaVmz2cHD7Im44o29C7qE9cyIiibRqVeBkBHDHV69O7nhEJGm+3raPSe+sAuBP3zuCgtzshNxHwZyISCL17ev2rAVSXOyWQEWk2bHW8ptXFlFdW8/3j+nGsL4dEnYvBXMiIomk7FKRFunlz9fzn9XbaVOUy2/PPyyh91IwJyKSSL7s0tLShhm64uKG40pKEGl2duyr5o+vLwXgNyMOo31JfkLvpwQIEZFEU3apSIvypzeWsbO8hhN7t+eSId0Tfj8FcyIiyaDsUpEW4b+rt/HSZ2Xk5WTxp+8Pwpj41pQLRMusIiIiInFQWVPHbS8vAuD60/vQu2NyZt8VzImIiIjEwUPvrubr7eX07VTCz089NGn31TKriEgm83jcXrxVq1wZlFGjXHKFiCTVik0e/vb+lwDcffER5OUkb74soXcyxrQxxrxojFlujFlmjDnRGNPOGPOWMWaV97Gt91xjjHnQGLPaGLPQGDPY7zqjveevMsaM9js+xBizyPuaB00yFqZFRNLFnDnQrRvceCPce6977NbNHReRpKmvt9z28iJq6y2XH9+Tob3aJfX+iQ4bJwH/stYOAI4ClgETgHestX2Bd7w/A5wH9PV+XQM8AmCMaQfcDhwPHAfc7gsAvef8zO915yb4/YiIpAf/nq++DhP79jUc37s3teMTaUGemfsN89fupGNpPrecOyDp909YMGeMaQ2cAjwOYK2tttbuAi4CpnpPmwp8z/v9RcCT1vkYaGOM6QqcA7xlrd1hrd0JvAWc632ulbX2Y2utBZ70u5aISPMWSc9XEUm4zXsquefN5QD8/sLDaV2Ym/QxJHJm7hBgK/APY8znxpgpxphioLO1dqP3nE1AZ+/33YB1fq8v8x4LdbwswPEDGGOuMcbMM8bM27p1axPflohIGlDPV5G08IfXluCpqmX4gE6MOKJLSsaQyGAuBxgMPGKtPQbYR8OSKgDeGTWbwDH47vOYtXaotXZox44dE307EZHEU89XkZR7Z9lmZi7aRGFuNndcdHhSasoFkshgrgwos9Z+4v35RVxwt9m7RIr3cYv3+fVAD7/Xd/ceC3W8e4DjIiLNn3q+iqTUvqpa/veVxQD88ux+dG9blLKxJCyYs9ZuAtYZY/p7D50BLAVmAL6M1NHAq97vZwBXerNaTwB2e5djZwFnG2PaehMfzgZmeZ/bY4w5wZvFeqXftUREmjf1fBVJqfv+vZINuysZ1K0VP/lOr5SOJdF15q4HnjbG5AFrgKtwAeTzxpgxwFrgMu+5M4ERwGqg3Hsu1todxpg/Ap96z7vDWrvD+/11wBNAIfCm90tEmjvVVnPU81UkJRaV7eaJ/35FloGJFx9JTnZqezAYt22t5Rg6dKidN29eqochIrGaM8eV3qivdxv9i4vdsuLMmS64ERFJoNq6ei56+D8s2bCHq4cdwm8vGBi3axtj5ltrh0b7OrXzEpHModpqIpJi//jP1yzZsIdubQoZf1a/VA8HUDAnIplEtdVEJIXW7Sjn/rdWAnDn9wZRnJ8eXVEVzIlI5lBtNRFJEWst//vqYipq6jj/yK6cPqBTqof0LQVzIpI5VFtNRFLk9YUbeW/FVkoLcrj9wvjtk4sHBXMikjlUW01EUmB3eQ1/eG0pALeedxidSgtSPKL9KZgTkcyh2moikgJ/mrmUbXurGHpwW35wbI/wL0iy9Ni5JyISKdVWE5EkemvpZp6fV0ZeThYTRx5BVlZqWnaFomBORDJPSQmMGZPqUYhIM7d9bxW3Tl8IwK/P6U+fTulZnFzLrCIiIiKNWGu57eVFbNtbzfGHtOOnJx2S6iEFpWBOREREpJGXP1/PrCWbKcnP4S+XHpWWy6s+CuZERERE/GzYVcHtry4B4HcXDqRHu6IUjyg0BXMiIiIiXvX1ll+9uABPVS1nHtaZS4d0T/WQwlIwJyIiIuL15Edf85/V22lfnMfdFx+BMem7vOqjYE5EREQEWL1lL3e/uRyAP33/CDqW5qd4RJFRMCciIiItXk1dPTc9/wVVtfWMHNydcwd1SfWQIqZgTkRERFq8ybO/ZGHZbg5qXcDt302v3qvhKJgTERGRFm1h2S7++u4qAP5y6VG0KshN8Yiio2BOREREWqzKmjpuen4BtfWWq07qxXf6dEj1kKKmYE5ERERarD/PWsHqLXs5tGMxt5w7INXDiYmCOREREWmR/vvlNh6f8xXZWYb7LzuagtzsVA8pJgrmREREpMXZU1nDr15YCMD1w/twVI82qR1QEyiYExERkRbnjteWsn5XBUd2b83Y0/ukejhNomBOREREWpRZSzbx4vwy8nOyuP+yo8jNzuxwKLNHLyIiIhKFbXuruG36IgBuOXcAfTqVpnhETadgTkRERFoEay23Tl/E9n3VnNi7PT/5Tq9UDykuFMyJiIhIi/DSZ+t5a+lmSvNz+MtlR5GVZVI9pLhQMCciIiLNXtnOcv4wYwkAt3/3cLq1KUzxiOInJ9UDEBGRNOfxwLRpsGoV9O0Lo0ZBaebvM5KWo77e8qsXFuKpquWcwzszcnC3VA8prhTMiYhIcHPmwIgRUF8P+/ZBcTHcdBPMnAnDhqV6dCIR+cd/v+ajNdvpUJLHXd8/AmOax/Kqj5ZZRUQkMI/HBXIejwvkwD36ju/dm9rxiURg1WYP9/xrOQB3ff8I2pfkp3hE8adgTkREAps2zc3IBVJf754XSWM1dfXc9PwCqmvruXRId84+vEuqh5QQCuZERCSwVasaZuQa27cPVq9O7nhEovTQu6tZtH433doU8rsLB6Z6OAmjYE5ERALr29ftkQukuBj6ZHYLJGneFqzbxUOzV2MM/OXSoygtyE31kBJGwZyIiAQ2ahRkBflnIivLPS+Shipr6hj//BfU1VvGnHQIJx7aPtVDSihls4pIelEZjPRRWuqyVhtns2ZlueMlJakeoUhAE99czpqt++jbqYSbz+mf6uEknII5EUkfKoORfoYNgw0bXIC9erVbWh01SoGcpK23lm7mif9+TU6W4f7LjqYgNzvVQ0o4BXMikh78y2D4+DbfjxjhAgoFEKlRUgJjxqR6FCJhrdtRzi+f/wKAX5/bnyO6t07tgJJEe+ZEJD2oDIaINEF1bT3jnv2cPZW1nDGgE1cP653qISWNgjkRSQ8qgyEiTTDxzeUsWLeLbm0Kue+yo8jKal5dHkJRMCci6UFlMEQkRv9avIm//+crcrIMf738GNoU5aV6SEmlYE5E0oPKYIhIDL7ZXs6vXlwAwITzBjC4Z9sUjyj5EhrMGWO+NsYsMsZ8YYyZ5z3WzhjzljFmlfexrfe4McY8aIxZbYxZaIwZ7Hed0d7zVxljRvsdH+K9/mrva1vOnKpIc+Mrg1Fa2jBDV1zccFzJDyLSSFVtHWOf+QxPZS1nD+zMmGGHpHpIKZGMbNbTrbXb/H6eALxjrZ1ojJng/fkW4Dygr/freOAR4HhjTDvgdmAoYIH5xpgZ1tqd3nN+BnwCzATOBd5MwnsSkURQGYzmQ/UCJQnuemMZi9bvpnvbQv58yVG01DmdVJQmuQg4zfv9VOA9XDB3EfCktdYCHxtj2hhjunrPfctauwPAGPMWcK4x5j2glbX2Y+/xJ4HvoWBOJLOpDEbmU71ASYI3Fm5k6kdryc02PHz5YFoXNd92XeEkes+cBf5tjJlvjLnGe6yztXaj9/tNQGfv992AdX6vLfMeC3W8LMDxAxhjrjHGzDPGzNu6dWtT3o+IiITiXy/Ql528b1/D8b17Uzs+aRa+3raPW15aCMBvRhzGUT3apHZAKZboYG6YtXYwbgl1rDHmFP8nvbNwNsFjwFr7mLV2qLV2aMeOHRN9OxGRzOfxwJQpcMst7tG/mHMoqhcoCVZZ4/bJ7a2qZcQRXRj9nV6pHlLKJXSZ1Vq73vu4xRjzMnAcsNkY09Vau9G7jLrFe/p6oIffy7t7j62nYVnWd/w97/HuAc4XEZGmiHWZ1OOBF19UvUBJqDvfWMqSDXs4uH0RE0ce2WL3yflLWDBnjCkGsqy1Hu/3ZwN3ADOA0cBE7+Or3pfMAMYZY57DJUDs9gZ8s4C7fFmv3uvcaq3dYYzZY4w5AZcAcSXw10S9HxGRjBJpAkLj80aMCN5WbfhwuP9+uPhiF9j5X3vBAve66urgY1K9QGmi1xZs4KmPvyEvO4uHLx9Mq4KWu0/On3ErnQm4sDG9gZe9P+YAz1hr/2SMaQ88D/QE1gKXeQMzAzyEy0gtB66y1vrKmfwUuM17rT9Za//hPT4UeAIoxCU+XG/DvKGhQ4faefPmxe+Nioikm0Aza1lZB86sBTqvrs49V1kZ+Nq5uVBTAwUF7pziYjDGva6iIvS4SkvVY1ditmbrXi786xz2Vdfxx+8N4scnHJzqIcWdMWa+tXZo1K9LVDCXrhTMiUiz5vFAt26B97j5B1Ohzou3vDzIz1c2q8SssqaO7z38H5Zv8nDBkV356w+PaZbLq7EGc+oAISLSnESagBDqvHg74wwXRCqQkxj94bUlLN/k4ZAOxdx98RHNMpBrCgVzIiLNyapVkSUghDovnoqLYeRILa1KzF75fD3Pzl1HXk4WD11+DKXaJ3cABXMiIs1J374N7dAa809ACHVeXhyblKuvrjTB6i17ue3lRQD8/sLDOfyg1ikeUXpSMCcikmlC1YAbNcoFUIH4B1ahzguVkRpMUZGbfVNfXYmTiuo6xj79GeXVdVx09EH88Lge4V/UQqWinZeIiMQqXA04XwAVLJvVF1gFOi8S2dkNGa/+/vxn+P73YcIEWLECeveGwYPhtddg+XL1ZpWo3T5jMSs2e+jdsZi7vq99cqEom1VEJFNEmqkKrm3WtGluj1yfPi6YCjRDtncvTJ3qAsJIZuSysgInThQWukCvpgaqqvZ/LlhpFJEgXppfxi9fWEBBbhavjD2JAV1apXpISRFrNqtm5kREMkUkmapjxrifS0oavg+lpMSVDcnNDR/M5eeDtYHPC1VjzjfrN2KE6sxJWKs2e/jtK4sBuOO7g1pMINcU2jMnIpIpwmWqLl0aWz/VSDNbgwVykaqpUW9WCam8upbrnv6Mipo6Lh7cjUuHdg//ItHMnIhIxvBloAYKvAoK4OGHIScnun6q4a4LDUV/r70WHnwweHeIcCorXcApEoC1lt++sphVW/bSt1MJd35vkPbJRUjBnIi0bJH2MI3ntWO956hRLkALxBdg+farRbO0Geq6eXlw993ucdmy2AM5n+3bm/Z6abZemF/G9M/WU5ibzeQrBlOUpxAlUvpNiUjLFS4zNBHXnjjRZXzGcs/SUvf6sWMPfC4vL/ASaOO9dMGuGywDtvF4m6p9+6ZfQ5qdFZs8/O5Vt0/uzu8Nom9nZT5HQ8GciLRMHo8LXvz3lTV1o75vxm3xYnj00f1nsXzXbhyI+d9zxQp4443gM3YejwusAgm2l82/60Mow4a59+yfATtiBPTvH7/+rQUFMHBgfK4lzcbeqlque3o+lTX1XDqkOyOHaJ9ctBTMiUjLFE1maCQaz8RFq6bG1WbLzg4+YxdLP1X/rg/hNM6AnTIlvv1bc3PVDUL2U19vufG5L/hy6z76dy7ljosGpXpIGUnBnIi0TJH2MI1EoFm+aDXeixZoljCWfqpNaacVa//WrCwXuPknYzQuWiwC/OXfK3h72WZaF+bytx8PoTAvO9VDykgK5kSkZQqVwRnNbBbENmMWKf9ZwnDZrNbGN4AKl+UaTGEh3HOPG1O4osXSYr3y+Xomv/cl2VmGyVcM5pAOQXoFS1gK5kSkZQqVwRntbFasM1iR8J8lDDXm3FxYudLtuYtXABXqfsHaevnGXFbmsmBFAvj8m538+qWFAPz+woGc1KdDikeU2VQ0WERaJl8GZ2lp05vD+2awQvFd++GHD7xnfr6bxQr2Ot8sYbgxd+niZvDuvts9NnUmzJc9G8ioUcHfc7Qzm9KibNxdwTX/nE91bT0/OqEnPz6xV6qHlPHUm1VEWrZIe5iGEqpnan6+y2AdOLDh2o3vGSprtHHPVYCNGxsa2vfv7wKurl2jG3NT35d/D9hIxiwCVFTXcdmjH7Fo/W5O7N2eJ8ccR2625pV81JtVRCQWkfYwDSVUnbZA9eMC3TPU6/2Dojlz4LzzGhraf/EFTJ8Ob74Zuk5dLIWKQ+0FtBbGjYPJk8OPWQTX4eHmFxewaP1uDm5fxOQrBiuQixMFcyIi8RCoTlsks3z+QdZdd4Exbr9ZoNd7PHDOOVBe3nCsqsp9nXMObN4c+H6xFkcOl/FrTGzvWVqkv767mjcWbqQkP4cpVw6lbXFeqofUbCiYE5HmK5GtuuJxj0BBVrDZPICpU/cP5PyVl7vnGxclDlUc+Ywz4L77YPTowGOOJOM3HjOb0uy9uWgj97+1EmPgrz88Rh0e4kx75kSkeQoVKB11VHyCvGiDMX+h9qMF23N27rkwa1bwa553nru3vylT4MYbg8+w5eW5fX2BxhzLGEUaWbx+N5f+7SMqaur4zYjD+NkpvVM9pLQV6545LVaLSPPjPxvlC2L27WtYpjzoIBfg3Huve+zWzQVm8brHiBGBEwP8RdKBIh7ClU2prnZjHj4cHnpo/8Atnhm/0iJt8VRyzZPzqKip45Ih3bn65ENSPaRmScGciDQ/oQKl8nIXaMUSgEV6j0iCsVg6UFxwQehrnn/+gcciKZsCLqHi5psPDGx9ewEnTXIZtJMmuZ/DzTxKi1dZU8fP/zmfDbsrGXJwW/70/UEYY1I9rGZJwZyIND+xFPGNdjasqe3AQgVZweq0jR7tuisEUlgIF1/sllVvucU9ejxuCTkrwr/qq6oCB7a+fXHxql8nzZ61ltteXsTn3+yiW5tC/vajIeTnqFVXoiiYE5HmJ9LZKH/R9mONJBjzeA4MrnxCBVnBOlCUlsK//+2CqTxvJmBenvv5L39xNecaLx8vWNCwVJqfH9l7i+cyr7RIj32whumfracwN5v/d+VQOpZG+N+exETZrCLS/IRqQxVMtF0LwrUD69HDBVO+5IiiIleXbeRIOP109/qJEw/MPgV3vPHsl3/W7N1371/CJFDRYd+s4YgRbll0wwaX7Tp+vFtSDSXawFbEz7vLNzPxX8sBeGDU0Qw8qFWKR9T8KZtVRJqnQJmmxrh+ohUVB54fS3Zm43sUFbnvL7wQZsxwy5aB+MZSXx+41EjjsYTLmg2VsVpc7Pa5+cqH+K5VVeWSH4KNz/81IhFaudnDxZP/y96qWn55Vj+uP6NvqoeUUdQBQkTEX7Aivl98EVmnhWjvMXs2vPiia0D/wguhXxduP59vmXPMmNB14nyzbpHs32tcnLiqCm67LXBAF2yZVySEHfuquXrqPPZW1XLhUQcxbrj68yaLgjkRSY5kFPBtLFBB21g7NYS6x2WXueXLYDNx0fJf5owkazZccV9r91/y9QWwDzzgMlTVjkuaqLq2nmufms83O8o5sntr/nzJkcpcTSIFcyKSeLG2k0qUUF0LYu1hGm4fWjQKChr270Uy63bbbcH371VXu6DNfwbOd70JE2DlSnjjDbXjkphZa7l9xhI++WoHnUrzeezHQynIVeZqMimYE5HEimSZMF2Ch1iDzsWLobIyfuOorGyoGde3rwvuAl3fF/T5ivj6j90nVJBZX+8COe2NkyZ48qO1PDv3G/JzsnjsyqF0aV2Q6iG1OCpNIiKJlaxOB03VlI4OO3fGdyx5eS7IAnfvYIGif9DnWz6+5x7IzY3sPspalSb6cNVW7nh9KQD3XnIkR/dok9oBtVAK5kQksZpaXDdZmhJ0tmsX+toDBrhZtEiDrOpqWOr+gWTmTPfaQAoKGoI+cDOc+fkNNejCibYci4ifNVv3Mvbpz6irt4w7vQ8XHd0t1UNqsRTMiUhixdLpIBWaEnQefnjogOvmm2HrVvjhDyEnwt0t27c3jCvUzFzjcUXT/UJZqxKj3eU1XD11Hnsqazl7YGduOqtfqofUoimYE5H4atz1YMSI6DsdRHJd/z148dCUoHPUqOCzbrm5DUkFDz0UvB1XYxs2uPfo2zMXiH+ihE8k3S+Kixv22aXLfkXJGLV19Yx79jPWbNvHgC6lPDDqaLKylLmaSgrmRCR+5sxxJTD8W0oNGOA6GpSWNgQZ0QYTga7buCF8U8XSXsuntBSuvjrwc1df3fAe/d9zdphsv/ffd++xQ4fI9sxF8j4KClxCx6RJLlhMRSaxZDRrLX94bSkfrtpG++I8poweSnG+cilTTR0gRCQ+PB4XfASaMSstjb0ERrjrxjMbNlynhWA2bHBjDGbjRujSpeEe553n9sUF68DgLz/fdYsIls360EMHZqPG+j5Ewpj09ioeeHsleTlZPH318RzbK8x+UYmKOkCISGqFSyCItQRGJIkJTSmt0biu3IoVLugJFXQ2fs2774a+x4QJ8MQTkWXGNlZXB7W1gZ8LtGcO4l8YWQR46uO1PPD2SrIMPPiDYxTIpREFcyISH4nKWk1kNqxvlqymxnVvyM93nRzefLOhldZzz+1fQHjBggNnvQL1V/W3YoV7DBWYBlNb6/bdBaoXF2ovX6jCyCJRmrloI//76mIA/vT9Izh3UJcUj0j8JTyYM8ZkA/OA9dbaC4wxhwDPAe2B+cCPrbXVxph84ElgCLAdGGWt/dp7jVuBMUAd8Atr7Szv8XOBSUA2MMVaOzHR70dEggjXUirWrNV4XbfxbNqIEXDOOfsHYlVV7uucc+Dll+GSSxqCtqIiGDfuwJmySDJH+/d3j9FkmvoUFbkxBArmlI0qSfDf1du48bkvsBZuPrsfPzyuZ6qHJI0kfM+cMeYmYCjQyhvMPQ9Mt9Y+Z4z5G7DAWvuIMeY64Ehr7f8YY34AfN9aO8oYMxB4FjgOOAh4G/DlQK8EzgLKgE+BH1prl4Yaj/bMiUQhmtZWidrbFo/rBtpDVlsbupdqfn78eq1u3OjuOW4cPPtsdK2/cnNh7FiXwWut9sBJUi0q280PHvuIfdV1/OQ7vbj9woHquZpAse6ZS2gwZ4zpDkwF/gTcBFwIbAW6WGtrjTEnAr+31p5jjJnl/f4jY0wOsAnoCEwAsNbe7b3mLOD33lv83lp7jvf4rf7nBaNgTiRCsWyij3XjfbigsSkb+kMFg6FkZUW/JBrI5Ze7x5dectesqAh8XlGRe94XsPkrLnZJEGPHukftgZMk+GrbPi555L9s31fNd486iP9TCZKES9cEiP8Dfg34/lZuD+yy1vrWKMoAXwpYN2AdgDfQ2+09vxvwsd81/V+zrtHx4+M8fpGWKdZ+qrFsvI+kH2pTNvTHsk8Non9NcTHccQcsXOj2yLVpAx9+CK+8EnpPnX9gevTRMHWqe//+ma6+3/3kyenVy1aarc17Kvnx45+wfV81J/ftwF8uPUqBXBpLWDBnjLkA2GKtnW+MOS1R94lwLNcA1wD07Km1fpGwmpJBGs3G+2iCRmvdV319w/eRiGWfWiyysuCaa9x4fbOB4e6bk+P25T30UMP7zM93S6uBypbEI3tXJIzdFTWM/vtcynZWcFSPNvztR0PIy1FZ2nSWyJm5k4DvGmNGAAVAK1yyQhtjTI53dq47sN57/nqgB1DmXWZtjUuE8B338X9NsOP7sdY+BjwGbpm16W9NpJlLVj/VSIPGSGbvggmVQBFKpMuseXkuAPMvgBzpbGBtLXTtuv9MW6b0spVmqbKmjp9NncfyTR56dyzmHz85VkWBM0DCQm1r7a3W2u7W2l7AD4B3rbVXALOBS7ynjQZe9X4/w/sz3ufftW5D3wzgB8aYfG8mbF9gLi7hoa8x5hBjTJ73HjMS9X5EWgyPBzZtCt5DNJ79VCMJXPxn73zn7tvnfj71VLcnbcOG4PcI1REhlBtucPv2wrXfuvvuA7spRDobGOh3mSm9bKXZqa2rZ9wznzP36x10aVXAP8ccT7vivFQPSyKQinnTW4CbjDGrcXviHvcefxxo7z1+Ew2JD0uA54GlwL+AsdbaOu/M3jhgFrAMeN57rojEytc268UXgxeqDVcOI5oeqpEELuFm75591o158uTA5/haaPm3EwunqMjtf9uwAS69NHjrrYICaN36wD1sPXoEPr+xQL/LprQVE4mRtZbbXl7E28s207owlyfHHEe3NhH2EZaUUzsvEXHCZX0WFrp9ahdfDKefHrhMSbRZp5GUHfnjH10/1kj4SoAEyozdu9clF4wfH7w0SF6e+3rzzYbx3nJL6PuPHw8DB+5/v6lT4frrg7/Gf2k20O9F7bgkye7513Ieee9LCnKzePrqExhycNtUD6lFStdsVhHJFKFmwHJyXACUlwfPPAOvvnrgnrVQyQzDh8P998Po0fsHgL5Zs2CBS0lJdHverroK/vOf4Hvr8vPdLFugYC47G374w/2TESD0/QsK4JFH3Gv973fhhaHHecYZ8PzzwbNS1Y5LkmjKh2t45L0vyc4yPHLFEAVyGUjBnIg4ofZ5+ZZcfY+BMk5DBYM1NXDzzXDbbQfOLoULXEaNcgFSJP797/3H0HicS5YEblgPrrND+/YHBkyh7t/4Wr77vfRS6K4VI0eGD8zUjkuS4OXPy7jzjWUA/PmSIzl9QKcUj0hioVxjEXFC7V8LxpdxCuE3/VdVBW807wtc7r7bPfoHOv573oIlZfgE22tWWekK7m7eHPr127cfeCzQnrviYjfLV1AQ+Dp1dcG7R2jfm6SJ2Su28KsXFgLw2/MP4+LB3VM8IomVgjkRcWLJ+vTPOA2VAevPPwCMlG/2bmKY9svBkjZqatzy8AsvhH59+/ah7z9pEkyY4B6vuy74LF9tbUMdPF/AV1zcEBhquVRSbP7anVz71Hxq6y0/P7U3V5/cO9VDkibQMquIOMH2r9XVuZ8DFbEtKHBBS7duBzagDybWWmklJfDLX7pEjLFjo399JGPbtMkFpoH6zzZe9pwyJfRevro692itW6YdOFD73iQtrNzs4adPfEplTT2XDunOhHMHpHpI0kSamRORBoFmoBYuDBzIgZuZevhhFwCFalnlL1CttGjKmVx3nctavfzy2OrHhfLiiy4wnTMn/LmRzmTm5LhArvHysUgKrN9VwZWPz2V3RQ1nHtaJuy8+AmPUpivTaWZORPbnPwPl8cC4cS5b0zfT5C8nJ/jesGAa7xmLtLvDhg1w662wfDkMGADHHOOyauPZqqu62n2F6j/r4z+TWVkZvNxJpnZt8HgCl3iRjLVjXzVXPv4Jm/ZUcmyvtvz1h4PJydacTnOgYE5EAvMFWZWVgQM5CL90mZvrypkEKjkCkfdmnTx5/6XVuXPDj9+YyPu3NhZpD1TfTObYsW5PXqDfRyZ2bWhK+zRJS/uqarnqiU/5cus+BnQpZcqVx1KYF6QYtmQcBXMicqBAQVYgOTmhA7pLL3U15oLVSoukN+t550W/R66oKHRGaTjRzKaVlLjadC+/HPj3lWnZq5EE2NZq1i6DVNfWc+3Tn7Fg3S66ty1k6k+Po3VRbqqHJXGkYE5E9udbWq2oCH9uuL02XbqEnt2KpDfrrbeGH0dj2dkuuLrkkgOLEU+c6PYDVlUF3wsY7WxaJMWPM0W4APvOO91MqWbtMkJdveWXLyzgg5VbaV+cx5M/PY7OrYKU1JGMpWBORBrMmeNmwioqgi+tgpuRKyyEa6+FBx8MXKIjOxu2bQucHerbj7VggVuGDRRUFRdD9+7w3HOhx5yV5cYSqO1VsGLEV17pWm7ddFPge8cym9ZcujaEC7Dvv3///YGBlsUlLdTW1fPLFxbw2oINFOdl88RVx9G7oz6f5ki9WUXE8XjcTFq4rNTsbPjRj9zSoq8sSbDl2EC9ThvvxwqmsNDdq7Iy9FLu5ZeHXsoNRT1QDzRlCtx4Y+DPJj/ffebBgu9Jk9S1Ik3U1tUz/nm/QO6nx3Fsr3apHpaEEWtvVgVzIuI89FDo5vD+Nm50gR80BER1dcEDwcJC2LIlfPAHLigwxgVYkZQ78R9LLPbuzfzZtHjyeIJ/RsFmUX0mTHBdPCSlauvquWHaF7yxcCMl+TlM/emxDDlYgVwmiDWY0zKriDivvx7ZeQUF8MYbDTMww4bB/Plw9tnw9deBX1NR4ZY18/OD78fKz3czbCNHuvMnTAg/locfDh3IRVJeQz1Q9xdq/9+117rfebCes5mWtdsM1dTVc+NzX/DGIl8gdxxDDm6b6mFJgimYE5HoVFbun+nZuGxIMG+8AUccEXxptaoKjjrKBVa33BJ6CXbQIHjrrdCBnMprxC7Y/j9r4ZFHAr8m07J2m6Gaunp+8eznvLl4E6X5OUwdcxyDeyqQawkUzImIc8EFMGtW+PP8Z2B8NdYisW6dC66CtcDyv27fvqHPu/HG8DNykdSvS6ZUF+GN9v7BZiybS9ZuM1NdW8/1z37GrCWbKS3I4Z9jjufoHm1SPSxJEu2ZExHH44HOncOXJCktbQiGRo+GJ5+M7Pq+ZIhge+H8rxtq35b/ecGE2sSfio36qU60iPf9tc8wrVTX1jP2mc94a+lmWhXk8NTVx3Nk9zapHpbEQHvmRKRpSkvh3/+Gc891S57BMkgnTmz4h3v58siv72uVVVjoXm9tQ2BhjNuP9cc/Qo8e7vwLL4Tp013QUV4e3QxQJPXrkiXVs4SJuL/2GaaNqto6xj79GW8v20LrwlyeGnM8R3RvnephSZIpmBOR/RkTuhjwr37l6rSVlLgeqZG01vLnK9xbUOCCKmvdpvpAG+t9nRyuuAJOPz3yGaBwy7TJ3KgfSZeLRAZGqb6/JExVbR3XPfUZ7yx3gdzTVx/PoG4K5FoiddgVEcc3g7N3b/Cm8eBmyaZOdd/HUoZi3z4oK3MBxG23uQSKvXsDB17l5W6WcMaM6JbyRo1yQWMgyd6on+pZwlTfXxKisqaO//nnfN5ZvoU2RQrkWjoFcyLiTJsWOojz9+qr7vGgg9yMWrS6d2+4Z7BZI3++GaRI+cprlJa6mThwj77jydzf5ZslDCQZs4Spvr/EXWVNHT//53xmr9hK26Jcnrn6BAVyLZyCORFxFi8O3JYrkI0bG76/7jo3+3PiidC+vZv5ygmzg+P9991MYKhZI3+xzCD5ymtMmuRq1k2a5H5OdlmSVM8Spvr+EleVNXX87Ml5vL9yK+2K83jmZycw8KBWqR6WpJj2zImIs3Nn5Od27drwfaAOEOFm26ZPh3/9yyU9BNvb5i/WGaR02KgfqghvMmYJU31/iRtfIPfhqm209wZy/bsksbyNpC0FcyLitIui3U/Hjg3ZkY0zJSNRV+deM3ly6GQLn0yfQQpWhDcegVQk9eMSeX9JiopqF8jNWb2NDiUukOvXWYGcOArmRMQ59NDIz335ZXjtNTezFsmet2CshXHjXFDnmzXy15xmkBIxSxhNl4t0mKWUmFRU1zFm6qf898vtdCjJ59mfHU9fBXLiR8GciETPV1j4gQciT5oIZN8+NzPnP2vkS44oK9MMUiiprl8nSVFeXcuYJ+bx0ZrtdCzN59mfnUCfTvpcZX8K5kTEWbcu+tcYA/n5rnxILHx74TRrFD3Vj2v29lXV8tMnPuWTr3bQqTSfZ685gUM7KpCTAymYExEnVKHdYKqrXYuuYHxFf+vqAneUiMdeuEzreRovqh/XrO2rquWqf3zK3K930LmVm5HrrUBOglBpEhFxQpWwCKa4GMaP37+eW1GRm6274gp48EHYtg1mz05Mzbc5c1wP1xtvhHvvdY/durnjyZDK+6t+XLO1t6qWn/xjLnO/3kGXVgU8d82JCuQkJGOtTfUYkmro0KF23rx5qR6GSHrybaivqnKzbuH4mt5D+EzJeDdn93hc4BQok9Y3rkT3PG3J95eE2FNZw0//8Snz1u6ka+sCnv3ZCfTqECRol2bHGDPfWjs02tdpmVVEGvhKWDz6KNx8c/DzCgtdYWD/mbVw+7PivS8u1XvGIrn/ZZclbglW9eOanc17Khn997ks3+ThoNYFPHvNCRzcXoGchBc2mDPGXA88Za2NoqKoiGSskhJo3RoKCgJ3hMjOdkHKQw+lNmBI9Z6xcPefPdstQUdSNiRWqh/XbKze4mH03z9l/a4KencsZupVx9GjXVGqhyUZIpKZuc7Ap8aYz4C/A7NsS1ubFWlpVq0K3tqrrs51gEh1wBAqYSOZPU8D3b+oCF56af/fYaLKhqQ6EzjVCSjNwLyvdzBm6jx2V9RwTM82/H30sbQtDpFYJNJI2N3O1trfAn2Bx4GfAKuMMXcZY6KoMCoiGSUTNtenuudoqPvX1bkZzEB8S7DNQaoTUJqBWUs2ccWUT9hdUcOZh3XmmatPUCAnUYsodc07E7fJ+1ULtAVeNMbcm8CxiUiqpDpQioRvz1gismSbev+RI5t/2RD/osW+97pvX8PxvXtTO74M8NTHa7n2qflU1dbzw+N68rcfDaYwL8j/BIiEEMmeuRuAK4FtwBTgV9baGmNMFrAK+HVihygiSZcpm+tTvWcs2P2few5efTV1S8DJkOoElAxmreW+f6/kodkuqL/prH5cP7wPJpI+xSIBRLJnrh1wsbV2rf9Ba229MeaCxAxLRFIu1YFSpFK9ZyzQ/UeNcskOgaTLzGZTeDzw4ovNf/YxAWrq6rlt+iJemF9GdpbhT98bxA+O65nqYUmGCxvMWWtvD/HcsvgOR0TSSqoDpUyVKTObsfCvRRhMc5l9jLPy6lque/oz3luxlYLcLB6+fDBnHNY51cOSZkB15kREEiFTZjaj4b9PLpTmMPsYZ9v2VjHmiU9ZULabtkW5/P0nx3JMz7apHpY0EwrmREQSJZ4zm6ksAeK794svhp6Ry893vXozffYxztZu38fov8/l6+3l9GhXyNSrjlN7LokrBXMiIunOt7TZlALE0QaDvvNnz4bp091sW3l56HsMHw7PP69Azs/Csl389IlP2ba3msMPasU/rjqWTqUFqR6WNDMJC+aMMQXAB0C+9z4vWmtvN8YcAjwHtAfmAz+21lYbY/KBJ4EhwHZglLX2a++1bgXGAHXAL6y1s7zHzwUmAdnAFGvtxES9HxGRlAi0tBltAeJog0Hf+XV14QM4n+JiV5JFgdy33l+5lWufmk95dR0n9+3AIz8aQkm+5lAk/iKqMxejKmC4tfYo4GjgXGPMCcA9wAPW2j7ATlyQhvdxp/f4A97zMMYMBH4AHA6cC0w2xmQbY7KBh4HzgIHAD73niog0H5GUAAkl2npw/udHGsiB9sk18tL8MsY88Snl1XV8/5huPD76WAVykjAJC+as4/tbItf7ZYHhwIve41OB73m/v8j7M97nzzCu6M5FwHPW2ipr7VfAauA479dqa+0aa201brbvokS9HxGRlGhqD9pog8FQ5weSzELNGcBay8OzV/PLFxZQW2/5n1MP5b5LjyIvJ5FzJ9LSJfR/E7yzZ/OBPrhZtC+BXdbaWu8pZUA37/fdgHUA1tpaY8xu3FJsN+Bjv8v6v2Zdo+PHBxnHNcA1AD17qp6PiGSQaHrQBtoXF20wGOp8f/n5bo/cyJGBs3RbYM/WunrLH15bwpMfrcUYuP2CgfzkpENSPSxpARIazFlr64CjjTFtgJeBAYm8X4hxPAY8BjB06FCbijGIiMQk0gLEwfbFXXtt5MEghA4eGxswAKx1X/7ikbCRYSpr6rjxuS/415JN5GVn8cCoozn/yK6pHpa0EEmZ97XW7gJmAycCbYwxviCyO7De+/16oAeA9/nWuESIb483ek2w4yIizUckPWhD7YubPBmCtYkKtM8tVF9egBzvX9/19fDAAzBuHBx0kAvgPB546CE3Y9eCerbuLq/hysfn8q8lmygtyOHJMccpkJOkSlgwZ4zp6J2RwxhTCJwFLMMFdZd4TxsNvOr9fob3Z7zPv2uttd7jPzDG5HszYfsCc4FPgb7GmEOMMXm4JIkZiXo/IiIp4ytAPGkSTJjgHjdsaJjlCrXPzVoYOzZ0MOgvUPDor9a7S6amxj1WVbkA7cwzXVB3880NzzUWScJGhtmwq4JLH/0vc7/eQZdWBbzwPydyQu/2qR6WtDCJXGbtCkz17pvLAp631r5ujFkKPGeMuRP4HHjce/7jwD+NMauBHbjgDGvtEmPM88BSoBYY612+xRgzDpiFK03yd2vtkgS+HxFpyZKxByzUPUIVIA63L86Y6LpR+ILHqVNh/PjgwZm/qqrQBYV9Y2lGPVs/WbOdsc98xra91fTtVMLUnx7HQW0KUz0saYESFsxZaxcCxwQ4vgaXidr4eCVwaZBr/Qn4U4DjM4GZTR6siEgoySja25R7RJIkEW03Cmth7twD98M1RTPp2Wqt5amP1/KH15ZSW285qU97Jl8+hNZFuakemrRQxsbzD2oGGDp0qJ03b16qhyEimcLjgW7dAvcjLS2NvWhvVlZDoNbUe8RjjIHGW1kZ2axcpGIZS5qpqq3jd68sYdo8V0zhZycfwi3nDiAnW6VHpOmMMfOttUOjfZ3+6xMRCSUZRXubeo9IkiQi5T/eeAVyeXnNohbdpt2VjHr0Y6bNW0d+ThaTfnA0vzl/oAI5STmVoxaRyLTAumFAcor2NvUe0LDPLdJ9cbGMNxZ5eXD//TB6dEYHcvO+3sG1T3/GVk8V3doU8uiPhzCoW+tUD0sEUDAnIpHI1Lph8QhAoynaG0gkgVpT7+ET7b44OPB3tGRJZDXmwsnPd4Fcuv83EoFnPvmG22cspqbOckLvdjx8+WDal+Snelgi39KeOREJLd77sZIl3D61SDX1/U+ZAjfeGDxQmzQJLrssPr9j/8Csh7cM57p1wQPZOXPgvPOgutp95eW541lZbr9cY9nZ7rGuLvxYzjsPnn8+Pf/biFB1bT2/f20Jz3zyDQBXndSL20YcRq6WVSVBYt0zp2BOREKLJBiJdjYo0RKVEBBLYBjpWGK9hy+Amz0bpk93rykv3/+cQNfyeKBzZ6ioiPz3kJfngr5wiovhnnvc7FyGLstv2VPJtU9/xvy1O8nLyeLu7x/ByCHdUz0saeZiDea0zCoiocVjP1eyRbJPLZoAtCn70Xwb/4MFar5rxHIPXwBYV3dgAOfP9/mNGNEQPE6dGjqQy8933R78x3vttfDww+GXYWtr4ZZbXAKFb8Zv/Hh4882MWHL97JudXPvUfDbvqaJr6wIe/fEQjuzeJtXDEglKwZyIhBav/VzJlIgANJb9aD6RBmrR3MM/6zRS/oHs66+HPveUU9wY/cdrLTzySPj7NC4g7FvGPfts2LIlrZden/90Hb99ZTHVdfUc16sdD18xmI6l2h8n6U3BnIiEFmmj93SSjgFoJIFaNAkbsWSdRhPI5uQEHq9vlrGqKrIlV38VFW5GcOzY6F6XBDV19fzx9aU8+dFaAK488WB+e/5A8nK0P07Sn/4rFZHQ4lnDLFlCNYtPtwDU43H7Eq+4Ajp1ghtugHvvdfsUu3VzS6mBhJp9DMY/kL3ggtDnnn9+4OO+Wcbhw6O7t88bb8T2ugTa6qniiv/3CU9+tJa87CzuHXkkd1w0SIGcZAzNzIlIeMOGwYoVrsn7ihXQuzcMHgyvvQbLl6ff5vZI96mlWqg9b75A7Ywz4L77XJ02/9+xL1s1Gr5A1rc0m5Pj9rc1VlTk7hdMSQmMHAkffhifMiYptGDdLv7nqfls3F1J51b5/O1HQzimZ9tUD0skKspmFZHwGmda+ou15Ecy+LorNKWIbqKEynJtLC/PJST4/44fegiuvz6ye/l/RhD8s8zPh9zcyBIVohm/v4ceSptl1pfml3Hry4uorq1nyMFteeRHg+lUWpDqYUkLpmxWEUmMcBvtA2VKpoumJC0kWjR73nwJBGedBf/zP3D44bBsWejXDB8OF18MZWX7JzAEC8Dy8hpmAEtKwu/fCzb7aYzLYvVPgPAJN+OXJDV19dw1cxn/+M/XAFx+fE9+f+HhWlaVjKVgTkRCizToiKXkR0sWy563ykr4v/9zQVOgYMlf+/Ywd65bBt+wwRXxnTkz+GeZmwsFBcFr3gXq+BEsS/eLL9z9fEGd/4xfioP97XurGPvMZ3y8Zge52YY/fHcQlx/fM6VjEmkqBXMiElqkQUe61pxLV6EybsOJ5DUvvNDw/dy58OSTcOaZ4Uu2BJqJDTX7Gmj2c9gw2Lgx7Za4P1mznRunfcHG3ZV0LM3nbz8azJCD26V0TCLxoGBOREKLNOgIVPIjHr1Rm6tRo+AXv0juPd9+2y11Biow7Pv84lVwOY2WuGvq6nnwnVU8PHs19RaO6dmGv/1oCJ1baX+cNA8K5kQktFB15vw1LvkR6VJdsqRjYGlM8u8ZrDac7/P74x8zr+NHCOt2lPOL5z7n8292YQyMO70PN5zZV/1VpVlRMCcioQXa6O4vUMmPcEt1K1a4emPJCqzSMbAcNy74vre8PBfo+dppxVO/frBuXfCSLelYcDlGr36xnt++vBhPVS1dWxfwwKijOaF3+1QPSyTuVJpERCLjX+aju7fhuH+mpP9+qClTXNHbQAFBQYHLqmzc9zNRgVWkje6TxRdYlpe7+nLBjBsHRx8Nf/sbxPPvrNGjXXmQYPvZIvl9WZt+s5x+PJU13P7qEqZ/vh6Acw/vwsSRR9CmKC/FIxMJTaVJRCSxotkDFSpporLSPfpmpRJd2iRee8DiIZp+qvPnw113ucBp4cLoW2cFM3Fi8M/StxR94YUwfboLssvL9w+4v/givWY5G/li3S5+8eznfLOjnILcLG6/8HB+cGwPTCqWtEWSRMGciAQX6z6zWDI1ExVYhQosk70HLJracnPnQseOLnCKVyD38MPQpUvg5xovRRcVuZnDK66A008PXqcuTeoM1tVb/vb+lzzw1kpq6y0Du7biwR8eQ59OaVT3UCRBFMyJSGBN2WcWadKEv0QFVum0Byya2nJ1de7r5Zebdk9j4MQT4aWXggdygWYMfRmvM2a4pd6SErd8ni6znH427q7gpmkL+GjNdgDGDDuEX5/bn/yc7KSPRSQVlM4jIgfy/8fdF3zs29dwfO/e0K/3JU2UlrqACdxjQYH7CiRRgdWoUW6JMJDGGbiNeTwugLnlFvcYbeuqxnyBZTKVlMCsWcEDOYhsKRrSa5bTa9aSTZw36UM+WrOdDiV5PHHVsfzvBQMVyEmLopk5ETlQPPaZBeoOMGIE9O/fsG/OX7jAKlbB2k41zsBtLBEZsLHMWMbKv59ruKXPSIO0NJrlrKiu449vLOWZT74B4LT+HfnzJUfRsTQ/aWMQSRcK5kTkQPGagfHfaO+/uf6llyA7+8DN9ZH0BI1FsLZTwYKcaLsgRMo/sKyrC1y8N16OPhpeeQW6dg1/bqRBWqhgNFHBeABLN+zhF899zuote8nLzuLWEQP4yXd6KclBWiwFcyJyoHjPwASa5Wq8uT6anqCxiCYbN5EZsP6B5ezZ8OKLUFsbukxJLD7/3M2CNnWPo3+QFussZ5xYa/nHf75m4pvLqa6rp0+nEh78wTEMPKhVQu8rku5UZ05EDuTxQOfOUFFx4HOFhbBlS+T/cEda5y2d6sHdcgvce2/w5ydMgLvvbvp95sxxDenLyyPPcs3KivxciPx3FyiQDlb/z7/mYJL6rm7bW8XNLyzgvRVbAbji+J789vyBFOZpb5w0H6ozJyLxFWzJKtqlrEhnudKpHlwy9oZFmkzS2A03uGSMSJdpm7LHMViQluS+q++t2MLNLyxk294q2hTlcs/IIznn8BAJHSItjII5ETnQtGmhg7lQwUHjPW9LlkS2/y6dMiVDLTtWV7sZS4/nwL180ez3i6bmnL/8/AOXaevq3FJtIIF+d8HGmeQgLZzKmjr+PGsFj8/5CoATe7fngVFH06V1kIxokRZKwZyIHCjWwCrQUl1trStHEiiD1X+WK40yJSktdZ0Sxo498LmaGrfMetttbgnyqKMaAqvGiR2h9vtFU3POx/d7sLahgO9f/gIffQQvvODGFuw1PoGKA19/PVx8ccP+xTRozfXxmu3cOn0RX23bR06W4aaz+/HzUw4lO0tJDiKNKZgTkQP16BH6eV9vVn+hMkCD8d9cH69MyXhkw3o8LmALxve+zj7bBW/19QcueYbLfo2lS0ZWlvtsunXbP2A2BnJzAwdz/r+7UMWBn3nGZb+muDXXnsoa7p65nGfnupIjfTuV8OdLj+LoHm1SMh6RTKBgTkTiI9Syoa9QcHZ28AzIeGRKxisbNtIl0EAJIo0F27M2apTb/xZIfr4Lzqzd//fw4otwySWBA+bCQvc7avwa/99duPflC+xS1Jrr30s28b+vLmbznipysw1jT+/DtacdqgLAImEomBORA61bF/r5srIDj4VaNqysdEHVwIGhN9dHWw/OXzxrw8WyBBpMsD1rU6dCVVXg12RluTG88cb+v4fnngsejGVluaXhgoLgv7tI31eSE062eqr4/YwlvLFoIwDH9GzDPSOPpF/n1C/3imQCBXMisj+PBzZtgpycwJvqg+1f69s3+N64ggIXyEUSHMS6CT+e2bCxLIGG0sqvDppv9rC6OnhtuawsF8g1Hm+4vYxlZaFLpkT6vpKUcGKt5YX5ZfzpjWXsrqihKC+bX53TnytP7KW9cSJRUG9WEWkwZ47bj+UrZBtIsP1rI0YEDuTAHT///PiNM5B4ZsOG6ucai1dfdY/+s4fBZuXAjfeBB9xsor9QvV2Li91exlC9ZCN9X0lIOPlmezk/fnwuv35xIbsraji1X0f+Pf4UrjrpEAVyIlFSMCcijn+gEah+WVFRw762QMuVM2c27I1rrKDAzTQlUlMDHX/+7zMvL/D1gt0rkHXr3P3GjYtsnx24ki7dusHkyQ3HQgVj1rqkjRtvdAWPb7zRvX7OnIZzfO+rtNR9nsEksDVXbV09/++DNZz9f+8zZ/U22hbl8sCoo3jiqmPp3jbEmEQkKC2ziogTapkyNxcuvRQeeij4vrNVq0LPzDV12S5clmqobFhfoONLDigqcoHVyJHhy3H46u3l5bnvL7nEvWbnTvjVryIbe7t2LrCqrAw+4xnM2LGubEiXLsGTRIxxS7b+BYgb7xe0tuH3d9dd7jUffeRmYYP1yY2zZRv3cMtLC1lYthuA7x51ELdfOJD2Jflxv5dIS6JgTkScUMuUNTWuYXuof+ATWScukizVaAId/3Icr7564LUCdWeornaPM2bA3/7mgrpIffVV0/bfTZgATzzhvg+UJFJREbyUSn093HknPPywew/V1S4wzcuDN9+EP//ZvXbFCtfLdeJE91nHUWVNHX99dxWPvr+G2nrLQa0LuPP7gxg+oHNc7yPSUimYExGnqcFYvOrENRZNlmq0gY7/tYYPh/vvh9GjI0umiNSZZ7oZsKZYsWL/nxsnidxyS+j9gvfdt/+MoC+oO/PM/UugLF4ML78c1zpzc7/awYTpC1mzdR/GwJUnHsyvzx1ASb7++RGJF+2ZExEn1H6sSIIx//1Yvv1kxcWh99kF4vE07G176CH4+c+DL98GCqx8gc7dd7vHdesimxWrqYHx4+Ggg1w3h3DJFBdcEPp6hxzizhs8OPT9c3LcVyj9+4d+3pdJHEh2dvCl3aoqN/voG9++fbH3jG3EU1nDb15exGWPfsSarfs4tGMxL/z8RO64aJACOZE4058oEXHiUbQ3VJ24SDozNF5ODSdclqqvzEp2dvAyIP5qa10Q8+KLbl9doEQQ3yzlZZfBr38dOKGhsBAWLnTvO9SMZ24uXH45/OY30K9f8HFNnBh63CNGwM9+Fvi5SN53Y02sM/f20s389pXFbNpTSU6W4brTDuW60/tQkKvivyKJYKy1ibmwMT2AJ4HOgAUes9ZOMsa0A6YBvYCvgcustTuNMQaYBIwAyoGfWGs/815rNPBb76XvtNZO9R4fAjwBFAIzgRtsmDc0dOhQO2/evDi+U5FmZu/e2Ir2hhJoz5svSPTfp9atW+gs08aKi+Gee1zHhMZBou+etbWRZ5D6y8tr2Cfnr7S0YWl38uTA/VvPPNONwzebGex9RXKthx+G664LHQxPmeL6qwaawTTGLaNGa8KE0DXrAtjiqeSO15by+kJX/PeoHm24Z+QRDOjSKswrRQTAGDPfWjs06hdaaxPyBXQFBnu/LwVWAgOBe4EJ3uMTgHu8348A3gQMcALwifd4O2CN97Gt9/u23ufmes813teeF25cQ4YMsSKSRHv2WFta6msNv/9Xaam1Ho877//9P2uLiwOfF+yrqMjakpKG1xUXu2vOmhX8npF+HX+8u0bja3/4Yfj35T+2X//a2ssvt7agwB0LdC2fjRutHT3a2hNOcI8bN7rjH34Yeiy//nXT3mvjr+Jia6dMifgjrqyptY+8t9oe/rt/2YNved0O+O2bdsqHa2xtXX2T/tMRaWmAeTaGmCthy6zW2o3ARu/3HmPMMqAbcBFwmve0qcB7wC3e409638zHxpg2xpiu3nPfstbuADDGvAWca4x5D2hlrf3Ye/xJ4HveoE5E0kWknRmiaaGVm+tm44KV47jooqYX/W3Xbv8l4+7dXajz2muwfLmbBQvU2N7Ht0R7773usajIjfeKKxrKoTSe8ezSpSFr1SeSBJBQS7lFRW52MtAsYzARJqxYa/n30s3cNXMZa7e79zt8QCf+8N3D6dFONeNEkiUpe+aMMb2AY4BPgM7eQA9gE24ZFlyg598Qssx7LNTxsgDHA93/GuAagJ49ezbhnYhI1CLtzNCjR2TXy852Ne+sdXvbAqmrC540Eakzz2xIpgi0TFxdHTqYa8wX3PlKm0S6dB1JMBwqkzg722WojhzpxltV5QLh3Fy3RD1hQkx7JJdv2sMdry3lv19uB6BPpxL+94KBnNqvY2TvS0TiJuHBnDGmBHgJuNFau8eYhjYt1lprjEnMpj0/1trHgMfA7ZlL9P1ExMuXgJCbGzjwiaX+XF2dC+Lq64NnadbUxL5XzCffW8g21MxYLKJNLogkGA6XvDJsGGzcGHgv5JVXRrVHcvveKu5/ayXPzv2GegutC3MZf2ZfrjjhYHKzVSBBJBUSGswZY3JxgdzT1trp3sObjTFdrbUbvcuoW7zH1wP+/2ve3XtsPQ3Lsr7j73mPdw9wvojESyQZqMH4ZrPq6oLPYPmW8zZscLNVkYpkybCpyV1r1rjHUDNjsYi2T2yk9f9CZRLDgbXpfIIdb6S6tp4nP/qaSe+swlNZS3aWYfQJPbnxzH60LQ7Q8kxEkiZhwZw3O/VxYJm19n6/p2YAo4GJ3sdX/Y6PM8Y8BxwP7PYGfLOAu4wxbb3nnQ3caq3dYYzZY4w5Abd8eyXw10S9H5EWJ5KuC8EEms3y5z9r9OSTgbM4U227Wz6Mai9fJKKdjYymGHOEgVk0rLXMXrGFO19fxppt7vdwct8O/O8FA+nXOcLAXkQSKpEzcycBPwYWGWO+8B67DRfEPW+MGQOsBS7zPjcTl9G6Glea5CoAb9D2R+BT73l3+JIhgOtoKE3yJkp+EImPaLouBHrtuHGBa7SB28N1ySWuIPCePXDyyfEde7y0b+8eQ82MxSLabhjxqP8Xo9VbPNzx+jI+WLkVgEM6FPPb8w9j+IBO+G+ZEZHUSmQ26xxcyZBAzghwvgUC/u+5tfbvwN8DHJ8HDGrCMEWkMV8wFqw2W6g9X77ZvIqK4MVq6+oaGr/femv8xt3UPXL+Cgpg4ED3faiZscLChib14ZZimxKAhVtCjbNd5dX839ur+OfHa6mrt5QW5HDDGX258sRe5OVoX5xIulEHCBFp4AvGKiuDJxcE2/MVbmnV3+zZrpBuPBu65+W5tljxmEHLzW2YPQs3M3b00TBoEKxdG/x6XbrAb3+7f2mTaPYfQkKWUBurravn6U++4YG3V7KrvIYsA5cf35NfntWP9iX5Cb23iMROwZyIOJEGY8H2fE2bFnmpjtpad594BV4FBS7D9ZJLmnatnBw329Z49izczNipp7q9f8EcfbSbhYxl/2GSfLhqK3e8tpRVW1zdvhN7t+d3Fw7ksK7q3iCS7hLWzitdqZ2XSBBTpsCNN4YPsAoLYcuWA5f4xo+H//u/6O4Zj6XRyy5z++7WectRTp7srtn4fRQXuyDSmMA16Hx9Uh96KPrlyw0b3ExjMCUlgRvX+7fzSpGvtu3jT28s5e1lrrBAz3ZF3DbiMM45vLP2xYkkWaztvDQzJyJOpFmbwf6B37Ej8PFQ4vE/k9OnwyuvuHIleXkuKBs3zo2zu7d6UVmZm00bMQL69w8czBUUxBbIARx0kOuhGigr9/LL4dVXDzwOTW5o3xTb9lbxyHtf8uRHX1NTZynOy2bc8L78dFgv8nOykz4eEYmdgjkRcSLN2qytDRyAtG0b+PxQgjWzj4b/3r7qavf14IOBZw8h9szQcDX3rrsOLr7YdVRYscIFjRMnwgMPRNYBI0l2lVfz6AdrmPrfrymvrsMYuGxod24+pz+dSguSOhYRiQ8FcyLijBoFN9wQ/rzqanj6abe86R/MDBrkZreiaaNlrdunFizZIlYVFTB1auCZslgyQyOtuReot2qkRX8TbE9lDY9/+BV/n/MVnir3+z5jQCfGn9WPQd1aJ2UMIpIY2jMnIo7HA507By9J4s8YF/z4BzMej9s3Fkk2q79oA0BwQVBlZfDyJwCHHAK33RZ91mhjod5XJHvemvr6JtpXVcsT//2axz5Yw+4Kl6Byct8O3HRWP47pGcNsqogkTKx75lQwSEScadPccmMkrHXByfDhbp+Zx9NQwqO0tKGvaSQiCeSMgeOPh/vuc8uYkybB6aeHfs1XX7mEjm7d3MxarCJpdB+K/++luNgdKy5uOJ6gQK6iuo7HPviSk++dzZ9nrWB3RQ3HH9KO539+Iv8cc7wCOZFmRMusIuLE0raqpgZuvtnNgPlm6TZsgEsvhX/9K35jsxYWL4alSxvuU1EBb78d+nWRdq0IJZJG9+EksehvZU0dz879hsnvfclWTxUAg3u24Zdn9+c7h7ZPXoZqU/r6ikhUFMyJiBNr26qqKvflHzCNHAkffhjfnqaNA7PRo+GWW4K3DfPXlKzReO15S3DR3+rael6Yv46H3l3Nxt1utvOIbq256ex+nNavY3LLjDSlr6+IRE3LrCLijBoV+TJrIP5Ljk29Vig1Ne4+paUwa5YLksIt6zYlazTUe4m2z2oC1NbV8/y8dQy/7z1+8/JiNu6uZECXUh778RBmjDuJ0/snuY+qf/FpXwC8b1/D8UD19kSkSRTMiYjjv7crln/8/QOmQPvEiopc0JXTxAWBykq33ApulmfjRlfj7bzzggd10cygeTyugPItt7hHaNjb5rt+fn5DAkiKCv7W1Vte+Xw9Zz3wAb9+cSFlOyvo06mEhy8fzMxfnMzZh3dJTdHfadPcTG0gVVXh9xiKSNS0zCoiDYYNczXSBg2Kvghw44DJf5/Y7Nmu3VZ2dvB/6KOxfXvD977ly8suc8kOga4f6QxasOXBiRPd877s/xRWAaivt/xrySYeeGvlt623erUv4oYz+/Ldo7qRnZXCrg0ejytbE6x2YHU1fPFFUock0hIomBORBr5gJpLyJI0FCphKSlyQNX588CArWKZoKO3bH3jMNxsYS0FgCNyb1rdM2Lhena84cVMSK6JkreXtZVu4/62VLNu4B4BubQq54Yy+XDy4GznZKV5o8f23E26f5GefJWc8Ii2IgjkRcQIFM9GYODFwUBOqtEdBgSsYHE0XiIICGDgw8HNNyRoNNc5gktCOq7q2nle/WM//+3ANKze7mbgurQoYN7wPlw3tQV5OioM4j8cVaL7pJrefMZxIzhGRqCiYExEnlmDG34QJcOWVBwZOoUp7lJfDFVe43qpVVS6wy8lxe9Lq6wPPEObmhl4yjTVrNJbSLAlsx7WnsoZnPvmGf/znKzbvcbOaXVoVcM0pvbn8+J4U5KZB/9Q5c9xexcrKyLt4BAvERSRmCuZExIkkmAm1LBpslipcaY/u3V3CRXa2Cwiys93Pf/mLCxBjWTKNRSylWRLQjmvj7gr+Pucrnp27jr3etlv9O5dyzSm9ufCog1I/E+fj8cA550RWGsafb/+hiMSNgjkRcUIFMwUFbtN/qNmXQLNUHo+btQm2jGqMy0T1L1fhq1s3YQKsXAlvvJHwQruAu/ZNN0X3msb7BJtQKHf5pj089sEaZnyxgdp6l2BxYu/2XHNq7+TXiYPw72Xq1OgDORFJCAVzIuKECmYiabnlm6XyBQGzZ8P06S7gabxPqqjI9VUdOBAWLAh8vfp6F8glcD/afkIlUEycGH6WMIZCudZaPvpyO49+sIb3V24FIMvABUd25eenHMoR3Vsn/n0HCtoWLHDLp75Ej7w8l8Ty5psN7+X112O73y9/6TJeRSRuFMyJiFNa6oKWxpmb4P4xD5ekkJUFPXq48iB1dcFnbXJy3PM5OTB3bvDrJXA/WlChEiiuvDJ4YkWoTNgAGa+1dfXMXLyJxz74ksXrXWZqYW42o47twZhhh9CjXVFy3m+gAHT8+IYgzsf389lnw5YtsGcPLFoU2z0//jg+YxeRbymYExHH44Ff/Srwc6ECuZwcKCx0deQuuSR8NmxtrfsKV28uAfvRIhIsgSJUYkWo5BG/vYT7qmp5ft46Hp/zFWU7XXJHh5I8Rp/Yix+dcDBti/Pi9CYiECoADaaiAk4/HebNi/2+KazRJ9JcKZgTESeWPVC5uXD55fDQQ/Dcc03Lhm0sDVplBdV4aXLJkuCB0L59bF21lqmzVvDPj9eyu8ItOffuUMzVJ/fm4sHdUpOZGmv2clMCOYDNm5v2ehE5gII5EXFi2QNVUOACuZKS2Ep7BJLorNWmCrQ0WVvrfheN9hZ+2a4bU75zKS+Z46ie7ZaMhxzclmtO6c1Zh3UmK5XdGuL1eUUrkv2XIhIVBXMi4kRaJwxcAkN29v4BVyylPfzl5cEZZ8DIkYnNWm2KCJYm60wW7/UewlPHjOC93kOwJgtj4ayBnfn5Kb0Z2qtdkgcdgMcDmza5mdVkF/HNS+JSskgLoWBORJxOnSI7LzcXLr20YUbOJ1xpj+JiV4qkri5wMeD8fHj++fQM4nxCLE1ubdeZ5w8/g2cGncn6Vu53mVdbzcjexVx96Xc4tGOavC/fzGJdXWq6MaRiH6RIM6dgTkSczp0jO6+mBrp2PTDoCpUNe/bZrkfrqFGu0Xqs/VNTrdHSpAU+7nEETx9zHrP6nUhNdi4APangig41XHrlubTr1DZFg20k2rZbiVJYmLp7izRTCuZExDn88MhKkATLMvV4XC22QD76CF56yQVrTemfmmrepeTdtTB90HCePvo8VnfoCUBWfT1nFVfyo1GncHKfDm4/nMcDU6bEVEQ4rnyzcdXVqe+NqnZeInFnbAtLEx86dKid19RsLJHmaMMGVyMunNLSA+qmAS5oufHGwHvmcnIasl5TEczEycIVG3j6V/cxo893qMgrAKCTZzs/WDiLH3z5Hw5auTh0EWHfDGSQIsIxCdapYeVK+MlPYM0a2Lo1vpnGTbFxI3TpkupRiKQlY8x8a+3QaF+nmTkRcaZPD/18Xp7b1xZsOTRUdmRtLTz7LLz8cvyDmcaa0FIrkIrqOl5bsIGnPlnLwrLdMHA4ACetW8SP5r3GmRsXk4vd//cSZRHhmAXrOnHeeW7/Ybp5+GEFciIJoGBORJxwpUn69XPLpcGCkHDZrDU17iuewUxjMbTUCmb1lr08/claXppfxp5Kl+nbujCXS4d05/IjOtD77U3Q8xTo89MDl4kjLCLcJKECxnQL5L7/fZg8WYGcSIIomBORyPToEToAi7RRfbyCmcbiMBtWXVvPv5du4qmP1/Lxmh3fHj+6Rxt+dMLBXHBk14YCv6HGH2qWMl5tymIt+pts48fD/fenehQizZqCORFxLrgAZs0K/vz554d+vX+j+oqK4HXrEtVzNVRwU1HhsmyD7Nn7cutepn9WxrRPy9i217UZK8zN5nvHHMQVxx/MoG5RNrwPNUsZrzZlqSr6G6kjj3RL94cemuqRiDR7CuZExLn4Yrj++uDPjxwZ/hq+TNWxY90euUCZk4nquRrlnr1d5dW8tnAjL80v44t1u749tV/nEn50wsF875hutCrIjW0soWYpI21TFmrvXyqL/kbissvc2EUkKRTMiYgzc2bw0iR5efDGG5EtjZaUuBmwl18OHGgkqudqBHv2aurqee+6/+Wlmyby7qodVNe5mbyS/BxGHNGFS4b04NhebTGmiW22/GcpY6mnF2jv3/jxcN11UFbmyrzU16dfIHfIIfDKK25WTkSSRsGciDiLFwevMVddDUuXRn6tpgYzsRg1Cn7xiwMOW2Bx50N5adAZzBh4KjuKWsPybWQZOKVfR0YO7sbZA7tQmBfnZvex1tMLtffv3nvjO8Z4SFTJFRGJmII5EXF27gz9/Pbt0V0vFcWB/WbUNpW055WBpzF90HBWdjz42+P9tq5lZMd6vnfr1XRuVZC4sYB7r9EkemzYAJdcAnv3Jm5M8VJQ4GYKBw7MnKLPIs2UgjkRcdqFaQDfvn1k14lznbeITZtGRW4+swYex0uDhvOfg4+iPsvNtrUr3813l77PJYvf4fC9mzCTJkGiA7loTZ4cuBVauvGvN6iZOJG0oGBORJzDD3ezLZWVBz5XUBBZG6Y41nmLVH29Ze7XO3hplWHmVY+yL78IgLzaGs5Y9TEXL36H09bMJ7e+zr2gtDQxe/aawpc0ku7y8lyZkdGjNRMnkkbUzktEHI/HtfPy36vlE6yFVzxfH6Wvtu3j5c/KmP75esp2Vnx7/Jj1y7l48TtcuPxD2lT6LVfm57tgJN1mlDweOPNMmDs31SMJLivLBebp9rsTaWbUzktEmqapSQtJ6Hqwbkc5byzayBsLN7Jo/e5vjx/UuoCLB3Xk+2Mv5dB1Kw98YW4u3Hdf+s0ozZnjWm+l+x65O+90ZWvS6XcnIt9KWDBnjPk7cAGwxVo7yHusHTAN6AV8DVxmrd1pXB2AScAIoBz4ibX2M+9rRgO/9V72TmvtVO/xIcATQCEwE7jBtrRpRpF4a0rSQoK6HqzbUc7MRRt5Y9FG1xvVqzgvm3MHdWXkkG6ccEh7srIMtH08Oc3t48HjgXPOgfLyVI8ktPHj4dZbUz0KEQkhkTNzTwAPAU/6HZsAvGOtnWiMmeD9+RbgPKCv9+t44BHgeG/wdzswFFdhYL4xZoa1dqf3nJ8Bn+CCuXOBNxP4fkRahmgzMH3i2PWgbGc5by7axOuLNrLAr6BvUV42Zx7WmfOP7Mqp/To2tNbySUUGbaQ2bHBB0fLlMGCA63WbzoHc0KHw3HPq4CCSARK6Z84Y0wt43W9mbgVwmrV2ozGmK/Cetba/MeZR7/fP+p/n+7LW/tx7/FHgPe/XbGvtAO/xH/qfF4r2zIkkSBP3zG3YVcHMRRt5feHG/ToyFOVlc8ZhnTn/iK6c1j9AAJcJMiVT1efhh13ZERFJqkzZM9fZWrvR+/0moLP3+27AOr/zyrzHQh0vC3BcRFIlhj13G3dXMHPRJt5YuIHPvtn17fHC3GyGH9aJC47oymn9O8W/oG8yZUqmKsCFF8Jjj0GXLqkeiYhEIWUJENZaa4xJyh43Y8w1wDUAPXv2TMYtRVqmCJY5N+2uZOaijcxctJF5axsKFRfkZjF8QCfOP+IgTh/QkaK8NM7PiqaWXqbsN1M/VZGMley/LTcbY7r6LbNu8R5fD/TwO6+799h63FKr//H3vMe7Bzg/IGvtY8Bj4JZZm/YWRCSkAHvuNu6uYNbiTbyxaCOfft0QwOXneAO4I7tyev9OFOenWQAXKGhbsCDyWnoeD3zwQWrGHqmDD4YZM9RPVSSDJftvzhnAaGCi9/FVv+PjjDHP4RIgdnsDvlnAXcaYtt7zzgZutdbuMMbsMcacgEuAuBL4azLfiIgEZ61lxWYP/16ymbeWbt6vjEheThan9+/I+UcexBkD0jCA8wnW7L6+fv/EBV/Cx4gR++8L9L0+WIZvOtDeOJFmIZGlSZ7Fzap1MMaU4bJSJwLPG2PGAGuBy7ynz8SVJVmNK01yFYA3aPsj8Kn3vDustTu8319HQ2mSN1Emq0hK1dbV8+nXO3lr6WbeWraJdTsaCvkW5GZxSt+OnH9kV844rDMl6RrA+YRqdh9MfT1MneqKEy9eDI8+GribRipkZUFhIZx8MuzaBf37w8SJ2hsn0kyoA4SIxGxfVS0frNzKW0s38+6KLewqr/n2ufbFeZxxWCfOGtiFYX06ZFYSw5QpLmmhujq61+XmgjHRvy7R7rsPrrkmPUq0iEhQmZLNKiIZbounkneWbeGtpZuZs3ob1bUNXR96dyjmrIGdOWtgZ47p2ZbsLJPCkTbB55/HFpDV1IQ/J9m0lCrS7CmYE5GQrLV8uXUv/17q9r99sW4Xvgl9Y2BwzzacNbALZw3sTJ9OzWTm5/PPUz2CprvsMpg0SUupIi2AgjkROUBdveXzb3Z+G8B9ta1hv1heThYn9+nAWQM7M/ywTnQqLUjhSBMk3ZZJo6XZOJEWRcGciACwq7yaD1Zt473lW3hv5VZ27GsIaNoU5TJ8QCfOHtiZk/t2TN8M1HjweCA7g/b3+bv0UnjwQc3GibQwzfhvZBEJxVrL0o17eG/FVmYv38Jn3+yk3i8fqqet4Kw2dZx14XcYelg3crKzUjfYePOvH9fDW+JynbfZzOTJUFWVurHFSrNxIi2WgjmRFmRvVS1zVm3jvRVbmL1iC5v3NAQtudmGE9tmcfqrT3DaV59x6PpVmOJiuDsrcEHcTNW4flwm69IFzjlHZUZEWjgFcyLNmC95YfbyrcxesYVPv95BTV3D9FvnVvmc3r8Tp/XvxEld8intfXDg2mqNC+JmqkD14zJN585w6KHw5JPuUURaPAVzIs1MRXUdH6/ZzrvL3exb2c6G4r1ZBoYe3JbTB3Ti9P6dOKxrKcZ4y4dMmeJmqwKpr3fLko3adKWlDRtcP9Tly12wM3gwbN3q2nFVVgZ/j5lAS6kiEoCCOZFm4Jvt5cz2Lp1+9OV2qvxqv7UrzuPUfh05fUAnTunbgTZFeYEvsmpV8GXHfftg9eoEjDzOJk92xX595s6FZ5913xcXuyzVdKwFF47KjIhICArmRDLQvqpaPl6znfdXbuWDlVv5env5fs8f2b01p/XvxOn9O3Jk9zaRFe/t29cFPIECuuJi6NMnTqOPM18yw+efu2AumEzdH6fZOBEJQ8GcSAbwZZ5+sHIbH6zcyry1++99Ky3I4ZS+HTmtf0dO69+JjqX50d9k1Ci46abAz2VluefThS+Amz0bXnoJrM382nAFBfCnP8HChbBihfqnikjEFMyJpKlte6uYs8oFbx+s2sa2vQ2Zp8bA0T3acEq/jpzarwNHdW/T9NIhpaUua9U/07O42AVyM2emT/KDLxu1rg7Ky8Ofnylyc9U/VURiomBOJE3U1NUzf+1Ob/C2lcXr9+z3fOdW+ZzStyOn9OvIsD4daFscZO9bUwwb5hIIpk1ze+T69HEzcskMMILVgOvRwyUw3HZbZu57CyYdA2YRySgK5kRS6Jvt5by/yu17++/qbeyrrvv2ubycLI4/pN23AVy/ziUNmaeJVFKSuqzV5lQDrrHsbPd16aVw4onuWFlZagJmEWlWFMyJJNHeqlo+/nI7H6wKnLjQp1OJN3jrwPGHtKcwL0PbSsWiOdSACyQ/H4YPh5EjFbSJSEIomBNJoLp6y6L1u/lw5VY+XLWNz77ZSa1fz6xWBTkM69uBU/p25OR+HenWpjCFo00w/+XTvn1dYFNa2vD8tGnNa/nUJy8Pnn9eQZyIJIyCOZE4K9tZzoertjFn1TbmrN7G7oqGACXLwOCebRjWtyOn9uvIUd1bZ07PU/9ivAMGwN13w0EHRfbaOXPgvPNcxml1tQtwxo+HN99s2Kd3//1uT1xzkZXl9sNpL5yIJJix1oY/qxkZOnSonTdvXqqHIc2Ib+n0w1Vu9m3Ntv33evVsV8TJfTtwct+OnHhoe1oX5qZopDHwzaY9/zy89daBz4ergebxwNSpLnCrrT3w+exsuPhieOGF+I05Xdx1F1x/vQI5EYmYMWa+tXZo1K9TMCcSnXBLp6X5OXynT3tO7tuRk/t24OD2xSkcbQz8a7hNn+7qoFRUBD9/48bAtdB8yQyVlc1z+TSU8ePdTKOISBRiDea0zCoSgVBLp9lZhiEHt/XOvsWp5luqxFLDbcIE+Otf998PN2JE80xmCKVVKxg0CJ580vWEFRFJEgVzIgH42mV9sDLw0unB7YsY1idDl06DiTWb9NNP3d65mhqoqnLZm+C6MjR3vXrBqaeqU4OIpJSCORGgvt6yZMOeb0uGfPbNzgPaZX3n0AxeOo3EtGmuvlu0li3bP3Crqgp+bqYaPx5+/Ws3C6lWWyKSZhTMSYu1aXclH65yrbL+s3obO/Y19Pb0ZZ2e7K35ltFLp5FatSq2Qr3NcQbOGLdsevjh+y+bPvFESoclIhKIgjlpMSqq65j79Q4+9LbLWrl5737Pd2tTyCn9OnJK3w5859AOtC5qBkun0ejb15XSaG6dF2JRUuK6MygTVUQygII5abastSzf5HGzbyu3MffrHVTXNiwjFuVlc2Lv9pzctwOn9OvIIR2Kk9MuK12NGgU33BD8+cJCt4Qay1JspsjJce9TteFEJIMomJNmZfveKj5ctY0PvDXftnr23791RLfW39Z8G3JwW/JymvnSabTq6gIfz8qCP/4RXn8d3nsvqUNKqnvugWuuUSAnIhlFwZxktLp6yxfrdvH+ii28v3IrC9fv3m8LV6fSfE7p55IWhvXpQPuS/NQNNt1NnRo8eaG+Hn71K7eXLNPl5gauexeuALKISJpSMCcZZ6univdXbuX9lVv5cNVWdpU3/MOcl53F8b3beZvVd6Rf55KWvXQajddfD/28tc0j2aGgwGXg/vGPykwVkWZBwZykvdq6ej5ft4v3V2zlvZVbWLx+z37P92xXxGn9O3Ja/46c0Ls9RXn6zzomgdptNSfFxW65eOZMl52qzFQRaSb0r56kpc17Kt3s2wo3+7ansiHQyM/J4oTe7b0BXCd6tS/S7Fs8dOqU6hE0XZs2UF3tloP37YOiIrcP8JJL4PTTXZKH9sOJSDOjYE7SQk1dPfPX7uT9lVt5b8VWlm3cf/atd4diTunXMPtWkJudopE2Y507p3oETVNaCuvWue+nTYPVq6FPHwVwItLsKZiTlNniqeS95Vt5d/kW/rN6G56qhtm3wtxsvnNoe07t35HT+nWiZ/uiFI60hVi5MtUjiFxWlishsm/f/sunvqBtzJjUjk9EJIkUzEnSWGtZttHDO8s28/byLSxYt2u/5/t0KuG0fh05tX9Hju3VTrNvyTZzZqpHELmVK12JFM2+iYgomJPEqqyp4+M123ln2RbeXb6F9bsqvn0uLyeLkw5tz/DDOnNav470aKfZN4nAww+7BAZfiy0RkRZOwZzE3VZPFbOXb+HtZZuZs3ob5dUNhWg7luZzxoBOnHFYZ07qo8xTCSM/3yUw9OsHxx6rEiIiIgHoX1JpMl/brHeWbebtZVtYULZrv3JkA7u24szDXAB3RLfWZGUp81QiMGAA3HyzllBFRMJQMCcxqaqt46Mvt/Pu8i28s+zA5dPvHNqeMw7rzBkDOnFQm8IUjlQyRvv2UFnpZt6mT4cjj0z1iEREMoKCOYnYrvJq3l62hbeWbuLDVfsvn3YoyWf4gI6ccVhnTu7bQcunElpurusmoeVTEZEm07+4EtJWTxX/XrqJfy3exEdfbqe2vmH99DC/5dMjtXwqkerZE373Oy2fiojEibHNoddiFIwxW4G1qR5HFDoA21I9CDlAs/tchsCQeF7Pgq2FmixXBS67HupWw6q9UB7P+/hpdp9JM6HPJT3pc0lP/a21pdG+qMXNzFlrO6Z6DNEwxsyz1g5N9Thkf/pc0o8+k/SkzyU96XNJT8aYebG8LiveAxERERGR5FEwJyIiIpLBFMylv8dSPQAJSJ9L+tFnkp70uaQnfS7pKabPpcUlQIiIiIg0J5qZExEREclgCubSjDGmnTHmLWPMKu9j2yDn1RljvvB+zUj2OFsKY8y5xpgVxpjVxpgJAZ7PN8ZM8z7/iTGmVwqG2aJE8Jn8xBiz1e/Px9WpGGdLYoz5uzFmizFmcZDnjTHmQe9nttAYMzjZY2yJIvhcTjPG7Pb7s/K7ZI+xpTHG9DDGzDbGLDXGLDHG3BDgnKj/vCiYSz8TgHestX2Bd7w/B1JhrT3a+/Xd5A2v5TDGZAMPA+cBA4EfGmMGNjptDLDTWtsHeAC4J7mjbFki/EwApvn9+ZiS1EG2TE8A54Z4/jygr/frGuCRJIxJwn8uAB/6/Vm5IwljaulqgV9aawcCJwBjA/wdFvWfFwVz6eciYKr3+6nA91I3lBbvOGC1tXaNtbYaeA73+fjz/7xeBM4wxqgVRuJE8plIkllrPwB2hDjlIuBJ63wMtDHGdE3O6FquCD4XSTJr7UZr7Wfe7z3AMqBbo9Oi/vOiYC79dLbWbvR+vwnoHOS8AmPMPGPMx8aY7yVnaC1ON2Cd389lHPiH7ttzrLW1wG6gfVJG1zJF8pkAjPQuT7xojOmRnKFJCJF+bpJ8JxpjFhhj3jTGHJ7qwbQk3m05xwCfNHoq6j8vLa4DRDowxrwNBOoq/hv/H6y11hgTLN34YGvtemNMb+BdY8wia+2X8R6rSAZ6DXjWWltljPk5buZ0eIrHJJKOPsP9W7LXGDMCeAW3tCcJZowpAV4CbrTW7mnq9RTMpYC19sxgzxljNhtjulprN3qnVbcEucZ67+MaY8x7uOhewVx8rQf8Z3W6e48FOqfMGJMDtAa2J2d4LVLYz8Ra6//7nwLcm4RxSWiR/FmSJPMPIqy1M40xk40xHay16tmaQMaYXFwg97S1dnqAU6L+86Jl1vQzAxjt/X408GrjE4wxbY0x+d7vOwAnAUuTNsKW41OgrzHmEGNMHvAD3Ofjz//zugR416p4YyKF/Uwa7S35Lm5PiqTWDOBKb5beCcBuv+0kkiLGmC6+Pb7GmONwMYH+ZzSBvL/vx4Fl1tr7g5wW9Z8Xzcyln4nA88aYMcBa4DIAY8xQ4H+stVcDhwGPGmPqcX/4JlprFczFmbW21hgzDpgFZAN/t9YuMcbcAcyz1s7A/aH8pzFmNW6j8Q9SN+LmL8LP5BfGmO/issZ2AD9J2YBbCGPMs8BpQAdjTBlwO5ALYK39GzATGAGsBsqBq1Iz0pYlgs/lEuBaY0wtUAH8QP8zmnAnAT8GFhljvvAeuw3oCbH/eVEHCBEREZEMpmVWERERkQymYE5EREQkgymYExEREclgCuZEREREMpiCOREREZEMpmBOREREJIMpmBMRERHJYArmRESiYIw51hiz0BhTYIwpNsYsMcYMSvW4RKTlUtFgEZEoGWPuBAqAQqDMWnt3iockIi2YgjkRkSh5+8J+ClQC37HW1qV4SCLSgmmZVUQkeu2BEqAUN0MnIpIympkTEYmSMWYG8BxwCNDVWjsuxUMSkRYsJ9UDEBHJJMaYK4Eaa+0zxphs4L/GmOHW2ndTPTYRaZk0MyciIiKSwbRnTkRERCSDKZgTERERyWAK5kREREQymII5ERERkQymYE5EREQkgymYExEREclgCuZEREREMpiCOREREZEM9v8BBMZiWjWCnFEAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "cost_fun_slices = []\n", "\n", "for n in range(1, 4):\n", " plot_and_mse(data_ins_train, data_ins_test, n)\n", " \n", " cost_data = cost_functions.get(n)\n", " cost_x = [line[1] for line in cost_data[:250]]\n", " cost_y = [line[0] for line in cost_data[:250]]\n", " cost_fun_slices.append((cost_x, cost_y))" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:57.375013\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFvCAYAAAAL/LzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXLklEQVR4nO3de7BlZXkn4N8roBhFnZEey+ISLAcT0RI07Y0QBzUxQDlBM0YlxngnKl4y5SRiJhEr80dMWRqTiWBhwqCOgWK8RMogODFGjPeGICCGhHiJoNgojuCYMQHf+WPvTg5tn9O7m7PP+Xbv56nadfb61tprv4ePdfix1re+Vd0dAAA21102uwAAAIQyAIAhCGUAAAMQygAABiCUAQAMQCgDABjAQoayqjqnqrZX1dUzbHt4VX2kqv66qq6sqpM2okYAgD2xkKEsyblJTphx299MckF3PzzJM5OcOa+iAAD21kKGsu6+NMnNK9uq6oFVdXFVXVZVH6uqH9+xeZJ7Td/fO8nXNrBUAICZ7L/ZBayjs5O8uLv/rqoenckZsSckeV2SD1XVy5PcI8lPb16JAAC7tk+Esqq6Z5Jjk/yvqtrRfLfpz1OSnNvdb6yqxyZ5Z1U9tLt/sAmlAgDs0j4RyjK5DPt/uvuYXax7Qabjz7r7k1V1YJKDk2zfuPIAANa2kGPKdtbdtyT5UlX9QpLUxNHT1f+Q5InT9gcnOTDJTZtSKADAKqq7N7uGPVZV5yU5PpMzXt9IckaSv0hyVpL7Jzkgyfnd/dtVdVSStyW5ZyaD/n+9uz+0GXUDAKxmIUMZAMC+Zp+4fAkAsOiEMgCAASzc3ZcHH3xwH3HEEZtdBgDAHVx22WXf7O4te/v5hQtlRxxxRLZt27bZZQAA3EFVfeXOfN7lSwCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABjC3UFZV51TV9qq6ejfbPbKqbquqp82rFgCA0c3zTNm5SU5Ya4Oq2i/J7yb50BzrAAAY3txCWXdfmuTm3Wz28iTvSbJ9XnUAACyCTRtTVlWHJHlqkrM2qwYAgFFs5kD/Nyd5dXf/YHcbVtWpVbWtqrbddNNN868MAGCD7b+J3701yflVlSQHJzmpqm7r7j/decPuPjvJ2UmydevW3sgiAQA2wqaFsu5+wI73VXVukg/sKpABACyDuYWyqjovyfFJDq6q65OckeSAJOnut87rewEAFtHcQll3n7IH2z53XnUAACwCM/oDAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABzBzKqupH5lkIAMAy220oq6pjq+qaJH8zXT66qs6ce2UAAEtkljNlv5fkZ5N8K0m6+3NJHjfPogAAls1Mly+7+6s7Nd0+h1oAAJbW/jNs89WqOjZJV9UBSV6Z5AvzLQsAYLnMcqbsxUlOS3JIkhuSHDNdBgBgnez2TFl3fzPJszagFgCApbXbUFZV/yNJ79ze3c+fS0UAAEtoljFlH1jx/sAkT03ytfmUAwCwnGa5fPmelctVdV6Sv5pbRQAAS2hvHrN0ZJJ/t96FAAAss1nGlN2ayZiymv68Mcmr51wXAMBSmeXy5UEbUQgAwDJbNZRV1SPW+mB3X77+5QAALKe1zpS9cY11neQJ61wLAMDSWjWUdffjN7IQAIBlNss8ZamqhyY5KpN5ypIk3f2OeRUFALBsZrn78owkx2cSyi5KcmIm85QJZQAA62SWecqeluSJSW7s7uclOTrJvedaFQDAkpkllP1jd/8gyW1Vda8k25McNt+yAACWyyyhbFtV3SfJ25JcluTyJJ/c3Yeq6pyq2l5VV6+y/llVdWVVXVVVn6iqo/ekcACAfcksk8e+dPr2rVV1cZJ7dfeVM+z73CR/mNXHnn0pyX/o7m9X1YlJzk7y6Bn2CwCwz9ntmbKqurCqfrGq7tHdX54xkKW7L01y8xrrP9Hd354ufirJoTNVDACwD5rl8uUbkxyX5JqqendVPa2qDtzdh/bQC5J8cJ33CQCwMGa5fPnRJB+tqv0ymcX/RUnOSXKv9Sigqh6fSSg7bo1tTk1yapIcfvjh6/G1AABDmeVMWarq7kn+U5IXJ3lkkrevx5dX1cOS/FGSk7v7W6tt191nd/fW7t66ZcuW9fhqAIChzDJ57AVJHpXk4kwG7n90OkXGnVJVhyd5b5Jnd/ff3tn9AQAsslkes/THSU7p7tv3ZMdVdV4mTwI4uKquT3JGkgOSpLvfmuS1Se6b5MyqSpLbunvrnnwHAMC+YpYxZZfszY67+5TdrH9hkhfuzb4BAPY1M40pAwBgvoQyAIABzDKmLFV1SJIfXbn9dHJYAADWwSx3X/5ukmckuSbJjsH+nUQoAwBYJ7OcKXtKkh/r7u/PuRYAgKU1y5iyL2Y6lQUAAPMxy5my7yW5oqo+nORfzpZ19yvmVhUAwJKZJZRdOH0BADAns0we+/aqumuSB02bru3uf55vWQAAy2WWuy+Pz+QB5F9OUkkOq6rnmBIDAGD9zHL58o1JntTd1yZJVT0oyXlJfmKehQEALJNZ7r48YEcgS5Lu/tu4GxMAYF3NcqZsW1X9UZL/OV1+VpJt8ysJAGD5zBLKXpLktCQ7psD4WJIz51YRAMASmuXuy+8nedP0BQDAHKwayqrqgu5+elVdlcmzLu+gux8218oAAJbIWmfKXjn9+eSNKAQAYJmtevdld399+val3f2Vla8kL92Y8gAAlsMsU2L8zC7aTlzvQgAAltlaY8pekskZsQdW1ZUrVh2U5BPzLgwAYJmsNabsT5J8MMnvJDl9Rfut3X3zXKsCAFgya40p+053fznJ7ye5ecV4stuq6tEbVSAAwDKYZUzZWUm+u2L5u9M2AADWySyhrLr7X+Yp6+4fZLYnAQAAMKNZQtkXq+oVVXXA9PXKJF+cd2EAAMtkllD24iTHJrkhyfVJHp3k1HkWBQCwbGZ59uX2JM/cgFoAAJbWbkNZVW1J8qIkR6zcvrufP7+yAACWyywD9t+f5GNJ/jzJ7fMtBwBgOc0Syn6ku18990oAAJbYLAP9P1BVJ829EgCAJTZLKHtlJsHsH6vqlqq6tapumXdhAADLZJa7Lw/aiEIAAJbZLHdfPm5X7d196fqXAwCwnGYZ6P9rK94fmORRSS5L8oS5VAQAsIRmuXz5H1cuV9VhSd48r4IAAJbRLAP9d3Z9kgevdyEAAMtsljFl/z1JTxfvkuSYJJfPsSYAgKUzy5iybSve35bkvO7++JzqAQBYSquGsqr6cHc/MclRZvQHAJivtc6U3b+qjk3yc1V1fpJaubK7XcIEAFgna4Wy1yb5rSSHJnnTTus6psQAAFg3q4ay7n53kndX1W9193/bwJoAAJbObqfEEMgAAOZvb+YpAwBgnQllAAAD2G0oq6p3ztIGAMDem+VM2UNWLlTVfkl+Yj7lAAAsp1VDWVW9pqpuTfKwqrpl+ro1yfYk79+wCgEAlsCqoay7f6e7D0ryhu6+1/R1UHfft7tfs4E1AgDs82a5fPmBqrpHklTVL1XVm6rqR+dcFwDAUpkllJ2V5HtVdXSSVyX5+yTvmGtVAABLZpZQdlt3d5KTk/xhd78lyUHzLQsAYLms9ezLHW6tqtckeXaSn6qquyQ5YL5lAQAsl1nOlD0jyfeTPL+7b8zkAeVvmGtVAABLZpZnX96Y5F1J7l1VT07y/7rbmDIAgHU0y4z+T0/ymSS/kOTpST5dVU+bd2EAAMtkljFl/zXJI7t7e5JU1ZYkf57k3fMsDABgmcwypuwuOwLZ1Ldm+VxVnVNV26vq6lXWV1X9QVVdV1VXVtUjZqwZAGCfM0sou7iqLqmq51bVc5P8WZIPzvC5c5OcsMb6E5McOX2dmsl8aAAAS2m3ly+7+9eq6ueTHDdtOru73zfD5y6tqiPW2OTkJO+YzoH2qaq6T1Xdv7u/PkvhAAD7klVDWVX9+yT36+6Pd/d7k7x32n5cVT2wu//+Tn73IUm+umL5+mnbD4Wyqjo1k7NpOfzww+/k1wIAjGety5dvTnLLLtq/M123Ybr77O7e2t1bt2zZspFfDQCwIdYKZffr7qt2bpy2HbEO331DksNWLB86bQMAWDprhbL7rLHu7uvw3Rcm+eXpXZiPSfId48kAgGW11kD/bVX1ou5+28rGqnphkst2t+OqOi/J8UkOrqrrk5yR6TMzu/utSS5KclKS65J8L8nz9uYXAADYF6wVyn41yfuq6ln51xC2Ncldkzx1dzvu7lN2s76TnDZbmQAA+7ZVQ1l3fyPJsVX1+CQPnTb/WXf/xYZUBgCwRGaZp+wjST6yAbUAACytWWb0BwBgzoQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAHMNZVV1QlVdW1XXVdXpu1h/eFV9pKr+uqqurKqT5lkPAMCo5hbKqmq/JG9JcmKSo5KcUlVH7bTZbya5oLsfnuSZSc6cVz0AACOb55myRyW5rru/2N3/lOT8JCfvtE0nudf0/b2TfG2O9QAADGueoeyQJF9dsXz9tG2l1yX5paq6PslFSV6+qx1V1alVta2qtt10003zqBUAYFNt9kD/U5Kc292HJjkpyTur6odq6u6zu3trd2/dsmXLhhcJADBv8wxlNyQ5bMXyodO2lV6Q5IIk6e5PJjkwycFzrAkAYEjzDGWfTXJkVT2gqu6ayUD+C3fa5h+SPDFJqurBmYQy1ycBgKUzt1DW3bcleVmSS5J8IZO7LD9fVb9dVT833exVSV5UVZ9Lcl6S53Z3z6smAIBR7T/PnXf3RZkM4F/Z9toV769J8pPzrAEAYBFs9kB/AAAilAEADEEoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAA6ju3uwa9khV3ZTkK0kOTvLNTS6HvaPvFpN+W0z6bTHpt8X0Y9190N5+eP/1rGQjdPeWJKmqbd29dbPrYc/pu8Wk3xaTfltM+m0xVdW2O/N5ly8BAAYglAEADGCRQ9nZm10Ae03fLSb9tpj022LSb4vpTvXbwg30BwDYFy3ymTIAgH3GQoayqjqhqq6tquuq6vTNrofVVdWXq+qqqrpix10pVfVvq+p/V9XfTX/+m82uc9lV1TlVtb2qrl7Rtst+qok/mB5/V1bVIzav8uW2Sr+9rqpumB5zV1TVSSvWvWbab9dW1c9uTtVU1WFV9ZGquqaqPl9Vr5y2O+YGtka/rdsxt3ChrKr2S/KWJCcmOSrJKVV11OZWxW48vruPWXF79+lJPtzdRyb58HSZzXVukhN2alutn05McuT0dWqSszaoRn7YufnhfkuS35sec8d090VJMv07+cwkD5l+5szp31M23m1JXtXdRyV5TJLTpv3jmBvbav2WrNMxt3ChLMmjklzX3V/s7n9Kcn6Skze5JvbMyUnePn3/9iRP2bxSSJLuvjTJzTs1r9ZPJyd5R098Ksl9qur+G1Iod7BKv63m5CTnd/f3u/tLSa7L5O8pG6y7v97dl0/f35rkC0kOiWNuaGv022r2+JhbxFB2SJKvrli+Pmv/Q2FzdZIPVdVlVXXqtO1+3f316fsbk9xvc0pjN1brJ8fg+F42vcx1zorhAfptQFV1RJKHJ/l0HHMLY6d+S9bpmFvEUMZiOa67H5HJ6ffTqupxK1f25PZftwAPTj8tlLOSPDDJMUm+nuSNm1oNq6qqeyZ5T5Jf7e5bVq5zzI1rF/22bsfcIoayG5IctmL50GkbA+ruG6Y/tyd5Xyanbr+x49T79Of2zauQNazWT47BgXX3N7r79u7+QZK35V8vl+i3gVTVAZn8h/1d3f3eabNjbnC76rf1POYWMZR9NsmRVfWAqrprJoPoLtzkmtiFqrpHVR20432SJyW5OpP+es50s+ckef/mVMhurNZPFyb55ekdYY9J8p0Vl1zYZDuNNXpqJsdcMum3Z1bV3arqAZkMGv/MRtfH5G7KJH+c5Avd/aYVqxxzA1ut39bzmFvEB5LfVlUvS3JJkv2SnNPdn9/ksti1+yV53+Tf4+yf5E+6++Kq+mySC6rqBUm+kuTpm1gjSarqvCTHJzm4qq5PckaS12fX/XRRkpMyGbT6vSTP2/CCSbJqvx1fVcdkcunry0l+JUm6+/NVdUGSazK5i+y07r59E8om+ckkz05yVVVdMW37jTjmRrdav52yXsecGf0BAAawiJcvAQD2OUIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBC6Wqvjv9eURV/eI67/s3dlr+xHruH2AtQhmwqI5IskehrKp2NzfjHUJZdx+7hzUB7DWhDFhUr0/yU1V1RVX956rar6reUFWfnT4Y+FeSpKqOr6qPVdWFmUzimKr606q6rKo+X1WnTtten+Tu0/29a9q246xcTfd9dVVdVVXPWLHvv6yqd1fV31TVu6azfgPssYWb0R9g6vQk/6W7n5wk03D1ne5+ZFXdLcnHq+pD020fkeSh3f2l6fLzu/vmqrp7ks9W1Xu6+/Sqell3H7OL7/r5TB42fHSSg6efuXS67uFJHpLka0k+nsms33+13r8ssO9zpgzYVzwpk+cDXpHk00num8mz5pLkMysCWZK8oqo+l+RTmTww+Mis7bgk500fOvyNJB9N8sgV+75++jDiKzK5rAqwx5wpA/YVleTl3X3JHRqrjk/yf3da/ukkj+3u71XVXyY58E587/dXvL89/q4Ce8mZMmBR3ZrkoBXLlyR5SVUdkCRV9aCquscuPnfvJN+eBrIfT/KYFev+ecfnd/KxJM+YjlvbkuRxST6zLr8FwJT/owMW1ZVJbp9ehjw3ye9ncunw8ulg+5uSPGUXn7s4yYur6gtJrs3kEuYOZye5sqou7+5nrWh/X5LHJvlckk7y69194zTUAayL6u7NrgEAYOm5fAkAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGMD/B/SOoZ4s8uqDAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:57.669013\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFvCAYAAAAL/LzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXIklEQVR4nO3de7RmZX0f8O9PQDGI2srU5eKSsRYT0QoavKGxeKkBlgmaZVRijXei4iWNTcQ0EVfyR8xyabSNYDGhqDWwqJfIsgg0xojxPhAExJBQLxEUZ5RWsKYm4K9/vO8kh3HOOe8M5z3nOfN+Pmuddd797Mv7Gx728GXvZz+7ujsAAGysu2x0AQAACGUAAEMQygAABiCUAQAMQCgDABiAUAYAMIBNGcqq6pyq2l5V18yw7RFV9bGq+suquqqqTlqPGgEA9sSmDGVJzk1ywozb/maSC7r7YUmeneTMeRUFALC3NmUo6+7Lkty8tK2qHlBVF1fV5VX1iar6yZ2bJ7nn9PO9knxjHUsFAJjJ/htdwBo6O8lLu/tvqupRmVwRe2KSNyS5tKpemeSgJE/euBIBAHZvnwhlVXWPJMcl+e9VtbP5btPfpyQ5t7vfXFWPSfKeqnpId/9wA0oFANitfSKUZXIb9v909zG7WfeiTMefdfenq+rAJIck2b5+5QEArGxTjinbVXffkuQrVfULSVITR09X/22SJ03bH5TkwCQ7NqRQAIBlVHdvdA17rKrOS3J8Jle8vpXkjCR/luSsJPdLckCS87v7t6vqqCTvTHKPTAb9/3p3X7oRdQMALGdThjIAgH3NPnH7EgBgsxPKAAAGsOmevjzkkEN669atG10GAMAdXH755d/u7i17u/+mC2Vbt27Ntm3bNroMAIA7qKqv3Zn93b4EABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAcwtlVXVOVW2vqmtW2e4RVXVbVT1jXrUAAIxunlfKzk1ywkobVNV+SX4vyaVzrAMAYHhzC2XdfVmSm1fZ7JVJ3p9k+7zqAADYDDZsTFlVHZrk6UnOmmHbU6tqW1Vt27Fjx/yLAwBYZxs50P+tSV7b3T9cbcPuPru7j+3uY7ds2TL/ygAA1tn+G/jdxyY5v6qS5JAkJ1XVbd39JxtYEwDAhtiwUNbd99/5uarOTfJhgQwAWFRzC2VVdV6S45McUlU3JDkjyQFJ0t3vmNf3AgBsRnMLZd19yh5s+/x51QEAsBmY0R8AYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxg5lBWVT82z0IAABbZqqGsqo6rqmuT/NV0+eiqOnPulQEALJBZrpT9fpKfSfKdJOnuLyR5/DyLAgBYNDPdvuzur+/SdPscagEAWFj7z7DN16vquCRdVQckeXWSL823LACAxTLLlbKXJjktyaFJbkxyzHQZAIA1suqVsu7+dpLnrEMtAAALa9VQVlX/NUnv2t7dL5xLRQAAC2iWMWUfXvL5wCRPT/KN+ZQDALCYZrl9+f6ly1V1XpK/mFtFAAALaG9es3Rkkn+x1oUAACyyWcaU3ZrJmLKa/r4pyWvnXBcAwEKZ5fblwetRCADAIls2lFXVw1fasbuvWPtyAAAW00pXyt68wrpO8sQ1rgUAYGEtG8q6+wnrWQgAwCKbZZ6yVNVDkhyVyTxlSZLufve8igIAWDSzPH15RpLjMwllFyU5MZN5yoQyAIA1Mss8Zc9I8qQkN3X3C5IcneRec60KAGDBzBLK/q67f5jktqq6Z5LtSQ5fbaeqOqeqtlfVNcusf05VXVVVV1fVp6rq6D0rHQBg3zFLKNtWVfdO8s4klye5IsmnZ9jv3CQnrLD+K0n+TXf/6yS/k+TsGY4JALBPmmXy2JdPP76jqi5Ocs/uvmqG/S6rqq0rrP/UksXPJDlstWMCAOyrVr1SVlUXVtUvVtVB3f3VWQLZXnhRko/M4bgAAJvCLLcv35zkcUmurar3VdUzqurA1XaaVVU9IZNQtuz7NKvq1KraVlXbduzYsVZfDQAwjFVDWXd/fHoL818m+S9JnpnJYP87raoemuQPk5zc3d9ZoYazu/vY7j52y5Yta/HVAABDmXXy2Lsn+dkkz0ry8CTvurNfXFVHJPlAkud291/f2eMBAGxms0wee0GSRya5OMkfJPn4dIqM1fY7L5NJZw+pqhuSnJHkgCTp7nckeX2S+yQ5s6qS5LbuPnbv/hgAAJvbLFfK/ijJKd19+54cuLtPWWX9i5O8eE+OCQCwr5plSoxL1qMQAIBFNsvTlwAAzJlQBgAwgFmfvjw0yY8v3b67L5tXUQAAi2aWpy9/L5OpMK5NsnOwfycRygAA1sgsV8qeluQnuvsHc64FAGBhzTKm7MuZzi8GAMB8zHKl7PtJrqyqjyb5x6tl3f2quVUFALBgZgllF05/AACYk1kmj31XVd01yQOnTdd19z/MtywAgMUyy9OXx2fyAvKvJqkkh1fV80yJAQCwdma5ffnmJE/p7uuSpKoemOS8JD81z8IAABbJLE9fHrAzkCVJd/91PI0JALCmZrlStq2q/jDJf5suPyfJtvmVBACweGYJZS9LclqSnVNgfCLJmXOrCABgAc3y9OUPkrxl+gMAwBwsG8qq6oLufmZVXZ3Juy7voLsfOtfKAAAWyEpXyl49/f3U9SgEAGCRLfv0ZXd/c/rx5d39taU/SV6+PuUBACyGWabE+Le7aTtxrQsBAFhkK40pe1kmV8QeUFVXLVl1cJJPzbswAIBFstKYsj9O8pEkv5vk9CXtt3b3zXOtCgBgwaw0puy73f3VJG9LcvOS8WS3VdWj1qtAAIBFMMuYsrOSfG/J8vembQAArJFZQll19z/OU9bdP8xsbwIAAGBGs4SyL1fVq6rqgOnPq5N8ed6FAQAskllC2UuTHJfkxiQ3JHlUklPnWRQAwKKZ5d2X25M8ex1qAQBYWKuGsqrakuQlSbYu3b67Xzi/sgAAFsssA/Y/lOQTSf40ye3zLQcAYDHNEsp+rLtfO/dKAAAW2CwD/T9cVSfNvRIAgAU2Syh7dSbB7O+q6paqurWqbpl3YQAAi2SWpy8PXo9CAAAW2SxPXz5+d+3dfdnalwMAsJhmGej/a0s+H5jkkUkuT/LEuVQEALCAZrl9+bNLl6vq8CRvnVdBAACLaJaB/ru6IcmD1roQAIBFNsuYsv+cpKeLd0lyTJIr5lgTAMDCmWVM2bYln29Lcl53f3JO9QAALKRlQ1lVfbS7n5TkKDP6AwDM10pXyu5XVccl+bmqOj9JLV3Z3W5hAgCskZVC2euT/FaSw5K8ZZd1HVNiAACsmWVDWXe/L8n7quq3uvt31rEmAICFs+qUGAIZAMD87c08ZQAArDGhDABgAKuGsqp6zyxtAADsvVmulD146UJV7Zfkp+ZTDgDAYlo2lFXV66rq1iQPrapbpj+3Jtme5EPrViEAwAJYNpR19+9298FJ3tTd95z+HNzd9+nu161jjQAA+7xZbl9+uKoOSpKq+ndV9Zaq+vE51wUAsFBmCWVnJfl+VR2d5DVJ/leSd8+1KgCABTNLKLutuzvJyUn+oLvfnuTg+ZYFALBYVnr35U63VtXrkjw3yU9X1V2SHDDfsgAAFsssV8qeleQHSV7Y3Tdl8oLyN821KgCABTPLuy9vSvLeJPeqqqcm+X/dbUwZAMAammVG/2cm+VySX0jyzCSfrapnzLswAIBFMsuYsv+Y5BHdvT1JqmpLkj9N8r6Vdqqqc5I8Ncn27n7IbtZXkrclOSnJ95M8v7uv2LPyAQD2DbOMKbvLzkA29Z0Z9zs3yQkrrD8xyZHTn1MzmXoDAGAhzXKl7OKquiTJedPlZyX5yGo7dfdlVbV1hU1OTvLu6XQbn6mqe1fV/br7mzPUBACwT1k1lHX3r1XVzyd53LTp7O7+4Bp896FJvr5k+YZp24+Esqo6NZOraTniiCPW4KsBAMay0gvJ/1VVPTZJuvsD3f2r3f2rSXZU1QPWrcLJ95/d3cd297FbtmxZz68GAFgXK40Ne2uSW3bT/t3pujvrxiSHL1k+bNoGALBwVgpl9+3uq3dtnLZtXYPvvjDJL9XEo5N813gyAGBRrTSm7N4rrLv7ageuqvOSHJ/kkKq6IckZmb6eqbvfkeSiTKbDuD6TKTFeMFPFAAD7oJVC2baqekl3v3NpY1W9OMnlqx24u09ZZX0nOW2mKgEA9nErhbJfSfLBqnpO/imEHZvkrkmePue6AAAWyrKhrLu/leS4qnpCkp0z8v+P7v6zdakMAGCBzDJP2ceSfGwdagEAWFizvC4JAIA5E8oAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABzDWVVdUJVXVdV11fV6btZf0RVfayq/rKqrqqqk+ZZDwDAqOYWyqpqvyRvT3JikqOSnFJVR+2y2W8muaC7H5bk2UnOnFc9AAAjm+eVskcmub67v9zdf5/k/CQn77JNJ7nn9PO9knxjjvUAAAxr/zke+9AkX1+yfEOSR+2yzRuSXFpVr0xyUJInz7EeAIBhbfRA/1OSnNvdhyU5Kcl7qupHaqqqU6tqW1Vt27Fjx7oXCQAwb/MMZTcmOXzJ8mHTtqVelOSCJOnuTyc5MMkhux6ou8/u7mO7+9gtW7bMqVwAgI0zz1D2+SRHVtX9q+qumQzkv3CXbf42yZOSpKoelEkocykMAFg4cwtl3X1bklckuSTJlzJ5yvKLVfXbVfVz081ek+QlVfWFJOcleX5397xqAgAY1TwH+qe7L0py0S5tr1/y+dokj51nDQAAm8FGD/QHACBCGQDAEIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACquze6hj1SVTuSfC3JIUm+vcHlsHf03eak3zYn/bY56bfN6Se6++C93Xn/taxkPXT3liSpqm3dfexG18Oe03ebk37bnPTb5qTfNqeq2nZn9nf7EgBgAEIZAMAANnMoO3ujC2Cv6bvNSb9tTvptc9Jvm9Od6rdNN9AfAGBftJmvlAEA7DM2ZSirqhOq6rqqur6qTt/oelheVX21qq6uqit3PpVSVf+8qv5nVf3N9Pc/2+g6F11VnVNV26vqmiVtu+2nmvhP0/Pvqqp6+MZVvtiW6bc3VNWN03Puyqo6acm610377bqq+pmNqZqqOryqPlZV11bVF6vq1dN259zAVui3NTvnNl0oq6r9krw9yYlJjkpySlUdtbFVsYondPcxSx7vPj3JR7v7yCQfnS6zsc5NcsIubcv104lJjpz+nJrkrHWqkR91bn6035Lk96fn3DHdfVGSTP+efHaSB0/3OXP69ynr77Ykr+nuo5I8Oslp0/5xzo1tuX5L1uic23ShLMkjk1zf3V/u7r9Pcn6Skze4JvbMyUneNf38riRP27hSSJLuvizJzbs0L9dPJyd5d098Jsm9q+p+61Iod7BMvy3n5CTnd/cPuvsrSa7P5O9T1ll3f7O7r5h+vjXJl5IcGufc0Fbot+Xs8Tm3GUPZoUm+vmT5hqz8D4WN1UkurarLq+rUadt9u/ub0883JbnvxpTGKpbrJ+fg+F4xvc11zpLhAfptQFW1NcnDknw2zrlNY5d+S9bonNuMoYzN5XHd/fBMLr+fVlWPX7qyJ4//egR4cPppUzkryQOSHJPkm0nevKHVsKyqukeS9yf5le6+Zek659y4dtNva3bObcZQdmOSw5csHzZtY0DdfeP09/YkH8zk0u23dl56n/7evnEVsoLl+sk5OLDu/lZ3397dP0zyzvzT7RL9NpCqOiCT/7C/t7s/MG12zg1ud/22lufcZgxln09yZFXdv6rumskgugs3uCZ2o6oOqqqDd35O8pQk12TSX8+bbva8JB/amApZxXL9dGGSX5o+EfboJN9dcsuFDbbLWKOnZ3LOJZN+e3ZV3a2q7p/JoPHPrXd9TJ6mTPJHSb7U3W9Zsso5N7Dl+m0tz7nN+ELy26rqFUkuSbJfknO6+4sbXBa7d98kH5z8e5z9k/xxd19cVZ9PckFVvSjJ15I8cwNrJElVnZfk+CSHVNUNSc5I8sbsvp8uSnJSJoNWv5/kBeteMEmW7bfjq+qYTG59fTXJLydJd3+xqi5Icm0mT5Gd1t23b0DZJI9N8twkV1fVldO234hzbnTL9dspa3XOmdEfAGAAm/H2JQDAPkcoAwAYgFAGADAAoQwAYABCGQDAAIQyYFOpqu9Nf2+tql9c42P/xi7Ln1rL4wOsRCgDNqutSfYolFXVanMz3iGUdfdxe1gTwF4TyoDN6o1Jfrqqrqyqf19V+1XVm6rq89MXA/9yklTV8VX1iaq6MJNJHFNVf1JVl1fVF6vq1GnbG5PcfXq8907bdl6Vq+mxr6mqq6vqWUuO/edV9b6q+quqeu901m+APbbpZvQHmDo9yX/o7qcmyTRcfbe7H1FVd0vyyaq6dLrtw5M8pLu/Ml1+YXffXFV3T/L5qnp/d59eVa/o7mN2810/n8nLho9Ocsh0n8um6x6W5MFJvpHkk5nM+v0Xa/2HBfZ9rpQB+4qnZPJ+wCuTfDbJfTJ511ySfG5JIEuSV1XVF5J8JpMXBh+ZlT0uyXnTlw5/K8nHkzxiybFvmL6M+MpMbqsC7DFXyoB9RSV5ZXdfcofGquOT/N9dlp+c5DHd/f2q+vMkB96J7/3Bks+3x9+rwF5ypQzYrG5NcvCS5UuSvKyqDkiSqnpgVR20m/3uleR/TwPZTyZ59JJ1/7Bz/118IsmzpuPWtiR5fJLPrcmfAmDK/9EBm9VVSW6f3oY8N8nbMrl1eMV0sP2OJE/bzX4XJ3lpVX0pyXWZ3MLc6ewkV1XVFd39nCXtH0zymCRfSNJJfr27b5qGOoA1Ud290TUAACw8ty8BAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAP4/2ZIquHM5iNjAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2022-06-20T19:06:57.964014\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.3.4, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAFvCAYAAAAL/LzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXIklEQVR4nO3de7RmZX0f8O9PQDGI2srU5eKSsRYT0QoavKGxeKkBlgmaZVRijXei4iWNTcQ0EVfyR8xyabSNYDGhqDWwqJfIsgg0xojxPhAExJBQLxEUZ5RWsKYm4K9/vO8kh3HOOe8M5z3nOfN+Pmuddd797Mv7Gx728GXvZz+7ujsAAGysu2x0AQAACGUAAEMQygAABiCUAQAMQCgDABiAUAYAMIBNGcqq6pyq2l5V18yw7RFV9bGq+suquqqqTlqPGgEA9sSmDGVJzk1ywozb/maSC7r7YUmeneTMeRUFALC3NmUo6+7Lkty8tK2qHlBVF1fV5VX1iar6yZ2bJ7nn9PO9knxjHUsFAJjJ/htdwBo6O8lLu/tvqupRmVwRe2KSNyS5tKpemeSgJE/euBIBAHZvnwhlVXWPJMcl+e9VtbP5btPfpyQ5t7vfXFWPSfKeqnpId/9wA0oFANitfSKUZXIb9v909zG7WfeiTMefdfenq+rAJIck2b5+5QEArGxTjinbVXffkuQrVfULSVITR09X/22SJ03bH5TkwCQ7NqRQAIBlVHdvdA17rKrOS3J8Jle8vpXkjCR/luSsJPdLckCS87v7t6vqqCTvTHKPTAb9/3p3X7oRdQMALGdThjIAgH3NPnH7EgBgsxPKAAAGsOmevjzkkEN669atG10GAMAdXH755d/u7i17u/+mC2Vbt27Ntm3bNroMAIA7qKqv3Zn93b4EABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAcwtlVXVOVW2vqmtW2e4RVXVbVT1jXrUAAIxunlfKzk1ywkobVNV+SX4vyaVzrAMAYHhzC2XdfVmSm1fZ7JVJ3p9k+7zqAADYDDZsTFlVHZrk6UnOmmHbU6tqW1Vt27Fjx/yLAwBYZxs50P+tSV7b3T9cbcPuPru7j+3uY7ds2TL/ygAA1tn+G/jdxyY5v6qS5JAkJ1XVbd39JxtYEwDAhtiwUNbd99/5uarOTfJhgQwAWFRzC2VVdV6S45McUlU3JDkjyQFJ0t3vmNf3AgBsRnMLZd19yh5s+/x51QEAsBmY0R8AYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxg5lBWVT82z0IAABbZqqGsqo6rqmuT/NV0+eiqOnPulQEALJBZrpT9fpKfSfKdJOnuLyR5/DyLAgBYNDPdvuzur+/SdPscagEAWFj7z7DN16vquCRdVQckeXWSL823LACAxTLLlbKXJjktyaFJbkxyzHQZAIA1suqVsu7+dpLnrEMtAAALa9VQVlX/NUnv2t7dL5xLRQAAC2iWMWUfXvL5wCRPT/KN+ZQDALCYZrl9+f6ly1V1XpK/mFtFAAALaG9es3Rkkn+x1oUAACyyWcaU3ZrJmLKa/r4pyWvnXBcAwEKZ5fblwetRCADAIls2lFXVw1fasbuvWPtyAAAW00pXyt68wrpO8sQ1rgUAYGEtG8q6+wnrWQgAwCKbZZ6yVNVDkhyVyTxlSZLufve8igIAWDSzPH15RpLjMwllFyU5MZN5yoQyAIA1Mss8Zc9I8qQkN3X3C5IcneRec60KAGDBzBLK/q67f5jktqq6Z5LtSQ5fbaeqOqeqtlfVNcusf05VXVVVV1fVp6rq6D0rHQBg3zFLKNtWVfdO8s4klye5IsmnZ9jv3CQnrLD+K0n+TXf/6yS/k+TsGY4JALBPmmXy2JdPP76jqi5Ocs/uvmqG/S6rqq0rrP/UksXPJDlstWMCAOyrVr1SVlUXVtUvVtVB3f3VWQLZXnhRko/M4bgAAJvCLLcv35zkcUmurar3VdUzqurA1XaaVVU9IZNQtuz7NKvq1KraVlXbduzYsVZfDQAwjFVDWXd/fHoL818m+S9JnpnJYP87raoemuQPk5zc3d9ZoYazu/vY7j52y5Yta/HVAABDmXXy2Lsn+dkkz0ry8CTvurNfXFVHJPlAkud291/f2eMBAGxms0wee0GSRya5OMkfJPn4dIqM1fY7L5NJZw+pqhuSnJHkgCTp7nckeX2S+yQ5s6qS5LbuPnbv/hgAAJvbLFfK/ijJKd19+54cuLtPWWX9i5O8eE+OCQCwr5plSoxL1qMQAIBFNsvTlwAAzJlQBgAwgFmfvjw0yY8v3b67L5tXUQAAi2aWpy9/L5OpMK5NsnOwfycRygAA1sgsV8qeluQnuvsHc64FAGBhzTKm7MuZzi8GAMB8zHKl7PtJrqyqjyb5x6tl3f2quVUFALBgZgllF05/AACYk1kmj31XVd01yQOnTdd19z/MtywAgMUyy9OXx2fyAvKvJqkkh1fV80yJAQCwdma5ffnmJE/p7uuSpKoemOS8JD81z8IAABbJLE9fHrAzkCVJd/91PI0JALCmZrlStq2q/jDJf5suPyfJtvmVBACweGYJZS9LclqSnVNgfCLJmXOrCABgAc3y9OUPkrxl+gMAwBwsG8qq6oLufmZVXZ3Juy7voLsfOtfKAAAWyEpXyl49/f3U9SgEAGCRLfv0ZXd/c/rx5d39taU/SV6+PuUBACyGWabE+Le7aTtxrQsBAFhkK40pe1kmV8QeUFVXLVl1cJJPzbswAIBFstKYsj9O8pEkv5vk9CXtt3b3zXOtCgBgwaw0puy73f3VJG9LcvOS8WS3VdWj1qtAAIBFMMuYsrOSfG/J8vembQAArJFZQll19z/OU9bdP8xsbwIAAGBGs4SyL1fVq6rqgOnPq5N8ed6FAQAskllC2UuTHJfkxiQ3JHlUklPnWRQAwKKZ5d2X25M8ex1qAQBYWKuGsqrakuQlSbYu3b67Xzi/sgAAFsssA/Y/lOQTSf40ye3zLQcAYDHNEsp+rLtfO/dKAAAW2CwD/T9cVSfNvRIAgAU2Syh7dSbB7O+q6paqurWqbpl3YQAAi2SWpy8PXo9CAAAW2SxPXz5+d+3dfdnalwMAsJhmGej/a0s+H5jkkUkuT/LEuVQEALCAZrl9+bNLl6vq8CRvnVdBAACLaJaB/ru6IcmD1roQAIBFNsuYsv+cpKeLd0lyTJIr5lgTAMDCmWVM2bYln29Lcl53f3JO9QAALKRlQ1lVfbS7n5TkKDP6AwDM10pXyu5XVccl+bmqOj9JLV3Z3W5hAgCskZVC2euT/FaSw5K8ZZd1HVNiAACsmWVDWXe/L8n7quq3uvt31rEmAICFs+qUGAIZAMD87c08ZQAArDGhDABgAKuGsqp6zyxtAADsvVmulD146UJV7Zfkp+ZTDgDAYlo2lFXV66rq1iQPrapbpj+3Jtme5EPrViEAwAJYNpR19+9298FJ3tTd95z+HNzd9+nu161jjQAA+7xZbl9+uKoOSpKq+ndV9Zaq+vE51wUAsFBmCWVnJfl+VR2d5DVJ/leSd8+1KgCABTNLKLutuzvJyUn+oLvfnuTg+ZYFALBYVnr35U63VtXrkjw3yU9X1V2SHDDfsgAAFsssV8qeleQHSV7Y3Tdl8oLyN821KgCABTPLuy9vSvLeJPeqqqcm+X/dbUwZAMAammVG/2cm+VySX0jyzCSfrapnzLswAIBFMsuYsv+Y5BHdvT1JqmpLkj9N8r6Vdqqqc5I8Ncn27n7IbtZXkrclOSnJ95M8v7uv2LPyAQD2DbOMKbvLzkA29Z0Z9zs3yQkrrD8xyZHTn1MzmXoDAGAhzXKl7OKquiTJedPlZyX5yGo7dfdlVbV1hU1OTvLu6XQbn6mqe1fV/br7mzPUBACwT1k1lHX3r1XVzyd53LTp7O7+4Bp896FJvr5k+YZp24+Esqo6NZOraTniiCPW4KsBAMay0gvJ/1VVPTZJuvsD3f2r3f2rSXZU1QPWrcLJ95/d3cd297FbtmxZz68GAFgXK40Ne2uSW3bT/t3pujvrxiSHL1k+bNoGALBwVgpl9+3uq3dtnLZtXYPvvjDJL9XEo5N813gyAGBRrTSm7N4rrLv7ageuqvOSHJ/kkKq6IckZmb6eqbvfkeSiTKbDuD6TKTFeMFPFAAD7oJVC2baqekl3v3NpY1W9OMnlqx24u09ZZX0nOW2mKgEA9nErhbJfSfLBqnpO/imEHZvkrkmePue6AAAWyrKhrLu/leS4qnpCkp0z8v+P7v6zdakMAGCBzDJP2ceSfGwdagEAWFizvC4JAIA5E8oAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABzDWVVdUJVXVdV11fV6btZf0RVfayq/rKqrqqqk+ZZDwDAqOYWyqpqvyRvT3JikqOSnFJVR+2y2W8muaC7H5bk2UnOnFc9AAAjm+eVskcmub67v9zdf5/k/CQn77JNJ7nn9PO9knxjjvUAAAxr/zke+9AkX1+yfEOSR+2yzRuSXFpVr0xyUJInz7EeAIBhbfRA/1OSnNvdhyU5Kcl7qupHaqqqU6tqW1Vt27Fjx7oXCQAwb/MMZTcmOXzJ8mHTtqVelOSCJOnuTyc5MMkhux6ou8/u7mO7+9gtW7bMqVwAgI0zz1D2+SRHVtX9q+qumQzkv3CXbf42yZOSpKoelEkocykMAFg4cwtl3X1bklckuSTJlzJ5yvKLVfXbVfVz081ek+QlVfWFJOcleX5397xqAgAY1TwH+qe7L0py0S5tr1/y+dokj51nDQAAm8FGD/QHACBCGQDAEIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACEMgCAAQhlAAADEMoAAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAMQygAABiCUAQAMQCgDABiAUAYAMAChDABgAEIZAMAAhDIAgAEIZQAAAxDKAAAGIJQBAAxAKAMAGIBQBgAwAKEMAGAAQhkAwACquze6hj1SVTuSfC3JIUm+vcHlsHf03eak3zYn/bY56bfN6Se6++C93Xn/taxkPXT3liSpqm3dfexG18Oe03ebk37bnPTb5qTfNqeq2nZn9nf7EgBgAEIZAMAANnMoO3ujC2Cv6bvNSb9tTvptc9Jvm9Od6rdNN9AfAGBftJmvlAEA7DM2ZSirqhOq6rqqur6qTt/oelheVX21qq6uqit3PpVSVf+8qv5nVf3N9Pc/2+g6F11VnVNV26vqmiVtu+2nmvhP0/Pvqqp6+MZVvtiW6bc3VNWN03Puyqo6acm610377bqq+pmNqZqqOryqPlZV11bVF6vq1dN259zAVui3NTvnNl0oq6r9krw9yYlJjkpySlUdtbFVsYondPcxSx7vPj3JR7v7yCQfnS6zsc5NcsIubcv104lJjpz+nJrkrHWqkR91bn6035Lk96fn3DHdfVGSTP+efHaSB0/3OXP69ynr77Ykr+nuo5I8Oslp0/5xzo1tuX5L1uic23ShLMkjk1zf3V/u7r9Pcn6Skze4JvbMyUneNf38riRP27hSSJLuvizJzbs0L9dPJyd5d098Jsm9q+p+61Iod7BMvy3n5CTnd/cPuvsrSa7P5O9T1ll3f7O7r5h+vjXJl5IcGufc0Fbot+Xs8Tm3GUPZoUm+vmT5hqz8D4WN1UkurarLq+rUadt9u/ub0883JbnvxpTGKpbrJ+fg+F4xvc11zpLhAfptQFW1NcnDknw2zrlNY5d+S9bonNuMoYzN5XHd/fBMLr+fVlWPX7qyJ4//egR4cPppUzkryQOSHJPkm0nevKHVsKyqukeS9yf5le6+Zek659y4dtNva3bObcZQdmOSw5csHzZtY0DdfeP09/YkH8zk0u23dl56n/7evnEVsoLl+sk5OLDu/lZ3397dP0zyzvzT7RL9NpCqOiCT/7C/t7s/MG12zg1ud/22lufcZgxln09yZFXdv6rumskgugs3uCZ2o6oOqqqDd35O8pQk12TSX8+bbva8JB/amApZxXL9dGGSX5o+EfboJN9dcsuFDbbLWKOnZ3LOJZN+e3ZV3a2q7p/JoPHPrXd9TJ6mTPJHSb7U3W9Zsso5N7Dl+m0tz7nN+ELy26rqFUkuSbJfknO6+4sbXBa7d98kH5z8e5z9k/xxd19cVZ9PckFVvSjJ15I8cwNrJElVnZfk+CSHVNUNSc5I8sbsvp8uSnJSJoNWv5/kBeteMEmW7bfjq+qYTG59fTXJLydJd3+xqi5Icm0mT5Gd1t23b0DZJI9N8twkV1fVldO234hzbnTL9dspa3XOmdEfAGAAm/H2JQDAPkcoAwAYgFAGADAAoQwAYABCGQDAAIQyYFOpqu9Nf2+tql9c42P/xi7Ln1rL4wOsRCgDNqutSfYolFXVanMz3iGUdfdxe1gTwF4TyoDN6o1Jfrqqrqyqf19V+1XVm6rq89MXA/9yklTV8VX1iaq6MJNJHFNVf1JVl1fVF6vq1GnbG5PcfXq8907bdl6Vq+mxr6mqq6vqWUuO/edV9b6q+quqeu901m+APbbpZvQHmDo9yX/o7qcmyTRcfbe7H1FVd0vyyaq6dLrtw5M8pLu/Ml1+YXffXFV3T/L5qnp/d59eVa/o7mN2810/n8nLho9Ocsh0n8um6x6W5MFJvpHkk5nM+v0Xa/2HBfZ9rpQB+4qnZPJ+wCuTfDbJfTJ511ySfG5JIEuSV1XVF5J8JpMXBh+ZlT0uyXnTlw5/K8nHkzxiybFvmL6M+MpMbqsC7DFXyoB9RSV5ZXdfcofGquOT/N9dlp+c5DHd/f2q+vMkB96J7/3Bks+3x9+rwF5ypQzYrG5NcvCS5UuSvKyqDkiSqnpgVR20m/3uleR/TwPZTyZ59JJ1/7Bz/118IsmzpuPWtiR5fJLPrcmfAmDK/9EBm9VVSW6f3oY8N8nbMrl1eMV0sP2OJE/bzX4XJ3lpVX0pyXWZ3MLc6ewkV1XVFd39nCXtH0zymCRfSNJJfr27b5qGOoA1Ud290TUAACw8ty8BAAYglAEADEAoAwAYgFAGADAAoQwAYABCGQDAAIQyAIABCGUAAAP4/2ZIquHM5iNjAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "#WYKRESY FUNKCJI KOSZTU\n", "for fig in cost_fun_slices:\n", " cost_x, cost_y = fig\n", " fig = plot_data_cost(cost_x, cost_y, \"Iteration\", \"Cost function value\")" ] } ], "metadata": { "author": "Paweł Skórzewski", "celltoolbar": "Slideshow", "email": "pawel.skorzewski@amu.edu.pl", "kernelspec": { "name": "python3", "display_name": "Python 3.9.5 64-bit", "metadata": { "interpreter": { "hash": "ac59ebe37160ed0dfa835113d9b8498d9f09ceb179beaac4002f036b9467c963" } } }, "lang": "pl", "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5-final" }, "livereveal": { "start_slideshow_at": "selected", "theme": "white" }, "subtitle": "5.Regresja wielomianowa. Problem nadmiernego dopasowania[wykład]", "title": "Uczenie maszynowe", "year": "2021" }, "nbformat": 4, "nbformat_minor": 4 }