32 lines
1.0 KiB
Python
32 lines
1.0 KiB
Python
|
|
||
|
import pandas as pd
|
||
|
from sklearn.tree import DecisionTreeClassifier
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn import metrics
|
||
|
|
||
|
col_names = ['idle','first','good']
|
||
|
data = pd.read_csv("results.csv", header=None, names=col_names)
|
||
|
data = data.iloc[1:]
|
||
|
data.head()
|
||
|
|
||
|
feature_cols = ['idle','first']
|
||
|
X = data[feature_cols]
|
||
|
y = data.good
|
||
|
|
||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)
|
||
|
|
||
|
clf = DecisionTreeClassifier(criterion="gini", max_depth=4)
|
||
|
|
||
|
clf = clf.fit(X_train,y_train)
|
||
|
|
||
|
from sklearn.externals.six import StringIO
|
||
|
from IPython.display import Image
|
||
|
from sklearn.tree import export_graphviz
|
||
|
import pydotplus
|
||
|
dot_data = StringIO()
|
||
|
export_graphviz(clf, out_file=dot_data,
|
||
|
filled=True, rounded=True,
|
||
|
special_characters=True, feature_names = feature_cols,class_names=['0','1'])
|
||
|
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
|
||
|
graph.write_png('results.png')
|
||
|
Image(graph.create_png())
|