moved tree
This commit is contained in:
parent
3c8dc84f7b
commit
bb1de89d71
203
main.py
203
main.py
@ -7,6 +7,8 @@ import pygad
|
||||
from concepts import *
|
||||
from graphviz import *
|
||||
import numpy as np
|
||||
from data import *
|
||||
from choice_tree import *
|
||||
|
||||
pygame.init()
|
||||
|
||||
@ -28,198 +30,23 @@ display = pygame.display.set_mode((WIDTH * 32 + 200, HEIGHT * 32))
|
||||
# eating time
|
||||
EAT_TIME = 15
|
||||
|
||||
#### Menu
|
||||
menu = Context.fromstring(''' |meat|salad|meal|drink|cold|hot |
|
||||
Pork | X | | | | | X |
|
||||
Espresso | | | | X | | X |
|
||||
Green Tea | | | | X | X | |
|
||||
Greek Salad| | X | | | X | |
|
||||
Pizza | | | X | | | X |''')
|
||||
|
||||
|
||||
training_data = [
|
||||
['meat','hot','Pork'],
|
||||
['salad','cold','Greek Salad'],
|
||||
['drink','hot','Espresso'],
|
||||
['drink','cold','Green Tea'],
|
||||
['meal','hot','Pizza'],
|
||||
]
|
||||
|
||||
tree_format = ["dish", "temperature", "label"]
|
||||
|
||||
#menu.lattice.graphviz()
|
||||
#Digraph.render('Lattice.gv', view=True)
|
||||
|
||||
|
||||
#print(menu.extension(['meal',]))
|
||||
|
||||
|
||||
#print(func_output)
|
||||
|
||||
def uniq_count(rows):
|
||||
#count uniq labels(names)
|
||||
count = {}
|
||||
for row in rows:
|
||||
lbl = row[-1]
|
||||
if lbl not in count:
|
||||
count[lbl] = 0
|
||||
count[lbl] += 1
|
||||
return count
|
||||
|
||||
#didn't used
|
||||
def isnumer(val):
|
||||
return isinstance(val, int) or isinstance(val, float)
|
||||
|
||||
|
||||
class Question():
|
||||
|
||||
def __init__(self, col, value):
|
||||
self.col = col #column
|
||||
self.value = value #value of column
|
||||
|
||||
def compare(self, example):
|
||||
#compare val in example with val in the question
|
||||
val = example[self.col]
|
||||
if isnumer(val): #in case menu have prices
|
||||
return val >= self.value
|
||||
else:
|
||||
return val == self.value
|
||||
|
||||
def __repr__(self):
|
||||
#just to print
|
||||
condition = "=="
|
||||
if isnumer(self.value):
|
||||
condition = ">="
|
||||
return "Is %s %s %s?" % (tree_format[self.col], condition, str(self.value))
|
||||
|
||||
|
||||
def split(rows, quest):
|
||||
#split data into True and False
|
||||
t_rows, f_rows = [], []
|
||||
for row in rows:
|
||||
if quest.compare(row):
|
||||
t_rows.append(row)
|
||||
else:
|
||||
f_rows.append(row)
|
||||
return t_rows, f_rows
|
||||
|
||||
|
||||
def gini(rows):
|
||||
counts = uniq_count(rows)
|
||||
impurity = 1
|
||||
for lbl in counts:
|
||||
prob_of_lbl = counts[lbl] / float(len(rows))
|
||||
impurity -= prob_of_lbl**2
|
||||
return impurity
|
||||
|
||||
|
||||
def info_gain(l, r, current_uncertainty):
|
||||
p = float(len(l)) / (len(l) + len(r)) #something like an enthropy?
|
||||
return current_uncertainty - p*gini(l) - (1-p)*gini(r)
|
||||
|
||||
|
||||
def find_best_q(rows):
|
||||
#best question to split the data
|
||||
best_gain = 0
|
||||
best_quest = None
|
||||
current_uncertainty = gini(rows)
|
||||
n_feat = len(rows[0]) - 1
|
||||
|
||||
for col in range(n_feat):
|
||||
vals = set([row[col] for row in rows])
|
||||
|
||||
for val in vals:
|
||||
quest = Question(col, val)
|
||||
|
||||
t_rows, f_rows = split(rows, quest)
|
||||
|
||||
if len(t_rows) == 0 or len(f_rows) == 0:
|
||||
continue
|
||||
|
||||
gain = info_gain(t_rows, f_rows, current_uncertainty)
|
||||
|
||||
if gain >= best_gain:
|
||||
best_gain, best_quest = gain, quest
|
||||
|
||||
return best_gain, best_quest
|
||||
|
||||
|
||||
class Leaf:
|
||||
#contain a number of how many times the label has appeared in dataset
|
||||
def __init__(self, rows):
|
||||
self.predicts = uniq_count(rows)
|
||||
|
||||
|
||||
class Decision_Node():
|
||||
#contain the question and child nodes
|
||||
def __init__(self, quest, t_branch, f_branch):
|
||||
self.quest = quest
|
||||
self.t_branch = t_branch
|
||||
self.f_branch = f_branch
|
||||
|
||||
|
||||
def build_tree(rows):
|
||||
#use info gain and question
|
||||
gain, quest = find_best_q(rows)
|
||||
|
||||
#no gain = no more question, so return a Leaf
|
||||
if gain == 0:
|
||||
return Leaf(rows)
|
||||
|
||||
#split into true and false branch
|
||||
t_rows, f_rows = split(rows, quest)
|
||||
|
||||
#print out branches
|
||||
t_branch = build_tree(t_rows)
|
||||
f_branch = build_tree(f_rows)
|
||||
|
||||
#return the child/leaf
|
||||
return Decision_Node(quest, t_branch, f_branch)
|
||||
|
||||
|
||||
def print_tree(node, spc=""):
|
||||
|
||||
#if node is a leaf
|
||||
if isinstance(node, Leaf):
|
||||
print(" " + "Predict", node.predicts)
|
||||
return #end of function
|
||||
|
||||
#Or question
|
||||
print("" + str(node.quest))
|
||||
#True branch
|
||||
print("" + '--> True:')
|
||||
print_tree(node.t_branch, spc + " ")
|
||||
#False branch
|
||||
print("" + '--> False:')
|
||||
print_tree(node.f_branch, spc + " ")
|
||||
|
||||
def classify(row, node):
|
||||
#return our prediction in case the node is a leaf
|
||||
if isinstance(node, Leaf):
|
||||
return node.predicts
|
||||
#otherwise go to the child
|
||||
if node.quest.compare(row):
|
||||
return classify(row, node.t_branch)
|
||||
else:
|
||||
return classify(row, node.f_branch)
|
||||
|
||||
|
||||
def print_leaf(counts):
|
||||
#count prediction
|
||||
total = sum(counts.values())*1.0
|
||||
probs = {} #probability
|
||||
for lbl in counts.keys():
|
||||
probs[lbl] = str(int(counts[lbl] / total*100)) + "%"
|
||||
return probs
|
||||
|
||||
|
||||
|
||||
#print(menu.extension(['meal',]))
|
||||
|
||||
tree = build_tree(training_data)
|
||||
#order_len = len(tree_format)
|
||||
print_tree(tree)
|
||||
|
||||
|
||||
def client_ordering():
|
||||
order = []
|
||||
|
||||
for i in range(0, len(tree_format)-1):
|
||||
tmpr = random.sample(rand_data[i], 1)
|
||||
order.append(tmpr[0])
|
||||
|
||||
order.append('order')
|
||||
return order
|
||||
###
|
||||
|
||||
|
||||
###
|
||||
class Node:
|
||||
def __init__(self, state, parent, action):
|
||||
|
Loading…
Reference in New Issue
Block a user