moved tree

This commit is contained in:
Serhii Hromov 2020-05-25 13:55:43 +00:00
parent 3c8dc84f7b
commit bb1de89d71

203
main.py
View File

@ -7,6 +7,8 @@ import pygad
from concepts import * from concepts import *
from graphviz import * from graphviz import *
import numpy as np import numpy as np
from data import *
from choice_tree import *
pygame.init() pygame.init()
@ -28,198 +30,23 @@ display = pygame.display.set_mode((WIDTH * 32 + 200, HEIGHT * 32))
# eating time # eating time
EAT_TIME = 15 EAT_TIME = 15
#### Menu
menu = Context.fromstring(''' |meat|salad|meal|drink|cold|hot |
Pork | X | | | | | X |
Espresso | | | | X | | X |
Green Tea | | | | X | X | |
Greek Salad| | X | | | X | |
Pizza | | | X | | | X |''')
training_data = [
['meat','hot','Pork'],
['salad','cold','Greek Salad'],
['drink','hot','Espresso'],
['drink','cold','Green Tea'],
['meal','hot','Pizza'],
]
tree_format = ["dish", "temperature", "label"]
#menu.lattice.graphviz()
#Digraph.render('Lattice.gv', view=True)
#print(menu.extension(['meal',]))
#print(func_output)
def uniq_count(rows):
#count uniq labels(names)
count = {}
for row in rows:
lbl = row[-1]
if lbl not in count:
count[lbl] = 0
count[lbl] += 1
return count
#didn't used
def isnumer(val):
return isinstance(val, int) or isinstance(val, float)
class Question():
def __init__(self, col, value):
self.col = col #column
self.value = value #value of column
def compare(self, example):
#compare val in example with val in the question
val = example[self.col]
if isnumer(val): #in case menu have prices
return val >= self.value
else:
return val == self.value
def __repr__(self):
#just to print
condition = "=="
if isnumer(self.value):
condition = ">="
return "Is %s %s %s?" % (tree_format[self.col], condition, str(self.value))
def split(rows, quest):
#split data into True and False
t_rows, f_rows = [], []
for row in rows:
if quest.compare(row):
t_rows.append(row)
else:
f_rows.append(row)
return t_rows, f_rows
def gini(rows):
counts = uniq_count(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl] / float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(l, r, current_uncertainty):
p = float(len(l)) / (len(l) + len(r)) #something like an enthropy?
return current_uncertainty - p*gini(l) - (1-p)*gini(r)
def find_best_q(rows):
#best question to split the data
best_gain = 0
best_quest = None
current_uncertainty = gini(rows)
n_feat = len(rows[0]) - 1
for col in range(n_feat):
vals = set([row[col] for row in rows])
for val in vals:
quest = Question(col, val)
t_rows, f_rows = split(rows, quest)
if len(t_rows) == 0 or len(f_rows) == 0:
continue
gain = info_gain(t_rows, f_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_quest = gain, quest
return best_gain, best_quest
class Leaf:
#contain a number of how many times the label has appeared in dataset
def __init__(self, rows):
self.predicts = uniq_count(rows)
class Decision_Node():
#contain the question and child nodes
def __init__(self, quest, t_branch, f_branch):
self.quest = quest
self.t_branch = t_branch
self.f_branch = f_branch
def build_tree(rows):
#use info gain and question
gain, quest = find_best_q(rows)
#no gain = no more question, so return a Leaf
if gain == 0:
return Leaf(rows)
#split into true and false branch
t_rows, f_rows = split(rows, quest)
#print out branches
t_branch = build_tree(t_rows)
f_branch = build_tree(f_rows)
#return the child/leaf
return Decision_Node(quest, t_branch, f_branch)
def print_tree(node, spc=""):
#if node is a leaf
if isinstance(node, Leaf):
print(" " + "Predict", node.predicts)
return #end of function
#Or question
print("" + str(node.quest))
#True branch
print("" + '--> True:')
print_tree(node.t_branch, spc + " ")
#False branch
print("" + '--> False:')
print_tree(node.f_branch, spc + " ")
def classify(row, node):
#return our prediction in case the node is a leaf
if isinstance(node, Leaf):
return node.predicts
#otherwise go to the child
if node.quest.compare(row):
return classify(row, node.t_branch)
else:
return classify(row, node.f_branch)
def print_leaf(counts):
#count prediction
total = sum(counts.values())*1.0
probs = {} #probability
for lbl in counts.keys():
probs[lbl] = str(int(counts[lbl] / total*100)) + "%"
return probs
#print(menu.extension(['meal',]))
tree = build_tree(training_data) tree = build_tree(training_data)
#order_len = len(tree_format)
print_tree(tree) print_tree(tree)
def client_ordering():
order = []
for i in range(0, len(tree_format)-1):
tmpr = random.sample(rand_data[i], 1)
order.append(tmpr[0])
order.append('order')
return order
###
### ###
class Node: class Node:
def __init__(self, state, parent, action): def __init__(self, state, parent, action):